变频器的转差频率补偿控制木
- 格式:pdf
- 大小:128.79 KB
- 文档页数:5
低压变频器基本原理介绍:变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
我们现在使用的变频器主要采用交—直—交方式(Variable Voltage Variable Frequency 即VVVF),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成.其基本结构见下图,主电路原理图三相工频交流电经过VD1~VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。
经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通短路掉缓冲电阻RL,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。
由于一个电容的耐压有限,所以把两个电容串起来用.电容的耐压就提高了一倍。
CF1、CF2两个电容的容量是一样的,虽然标称的容量相同,但是在实际上两个电容的容量不可能一致,造成分压不均。
所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了.HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示直流电源送入。
直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB 上还串联了变频器的制动电阻RB,组成了变频器制动回路。
我们知道,由于电动机的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。
当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉.当电机较大时,还可并联外接电阻RB.一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的直流电抗器,直流电抗器的作用是改善电路的功率因数。
变频器基本参数的调试变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。
实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。
但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。
因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。
由于基本参数是各类型变频器几乎都有的,完全可以做到触类旁通。
一加减速时间加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。
通常用频率设定信号上升、下降来确定加减速时间。
在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
二转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。
设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。
如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。
对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。
三电子热过载保护本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。
本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。
电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×100%。
变频器常用的几种控制方式Prepared on 22 November 2020变频器常用的几种控制方式变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。
本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。
1、变频器简介变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。
对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。
变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
2、变频器中常用的控制方式非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。
(1) V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。
V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。
(2) 转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。
9.1 变频器工作原理交流变频器是微计算机及现代电力电子技术高度发展的结果。
微计算机是变频器的核心,电力电子器件构成了变频器的主电路。
大家都知道,从发电厂送出的交流电的频率是恒定不变的,在我国50赫兹。
而交流电动机的同步转速:式中N1——同步转速,r/min ;f1——定子频率,Hz ;P ——电机的磁极对数。
而异步电动机转速式中s 为转差率,11/)(N N N s -=,一般小于3%,N 与送入电机的电流频率f 1成正比例或接近于正比例。
因而,改变频率可以方便地改变电机的运行速度,也就是说变频对于交流电机的调速来说是十分合适的。
9.1.1 变频器的基本结构从频率变换的形式来说,变频器分为交-交和交-直-交两种形式。
交-交变频器可将工频交流电直接变换成频率、电压均可控制的交流电,称为直接式变频器,价格较高。
而交-直-交变频器则是先把工频交流电通过整流变成直流电,然后再把直流电变换成频率、电压均可控制的交流电,又称间接式变频器。
市售通用变频器多是交-直-交变频器,其基本结构如图9-1所示,由主回路,包括整流器、中间直流环节、逆变器和控制回路组成,现将各部分的功能分述如下:(1)整流器。
电网侧的变流器是整流器,它的作用是把三相(也可以是单相)交流整流成直流。
(2)直流中间电路。
直流中间电路的作用是对整流电路的输出进行平滑,以保证逆变电路及控制电源得到质量较高的直流电源。
由于逆变器的负载多为异步电动机,属于感性负载。
无论是电动机处于电动或发电制动状态其功率因数总不会为1。
因此在中间直流环节和电动机之间总会有无功功率的交换。
这种无功能量要靠中间直流环节的储能元件(电容器或电抗器)来缓冲。
所以又常称直流中间环节为中间直流储能环节。
Pf N 1160=)1(60)1(11s Pf s N N -=-=图9-1 交-直-交变频器的基本结构(3)逆变器。
负载侧的变流器为逆变器。
逆变器的主要作用是在控制电路的控制下将直流平滑输出电路的直流电源转换为频率及电压都可以任意调节的交流电源。
变频器最常用的15个参数变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,必须对相关的参数进行正确的设定。
1 、控制方式:即速度控制、转距控制、PID 控制或其他方式。
采取控制方式后,一般要根据控制精度进行静态或动态辨识。
2 、最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。
而且低速时,其电缆中的电流也会增大,也会导致电缆发热。
3 、最高运行频率:一般的变频器最大频率到60Hz ,有的甚至到400 Hz ,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。
4 、载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。
5 、电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
6 、跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。
7、加减速时间加速时间就是输出频率从0 上升到最大频率所需时间,减速时间是指从最大频率下降到0 所需时间。
通常用频率设定信号上升、下降来确定加减速时间。
在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
8、转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V 增大的方法。
变频器复习题及答案1、输出电磁滤波器安装在变频器和电动机之间,抑制变频器输出侧的浪涌电压。
变频器具有多种不同的类型:按变换环节可分为交—交型和___交-直-交________型;按改变变频器输出电压的⽅法可分为脉冲幅度调制(PAM )型和_脉冲宽度调制(PWM )___型;按⽤途可分为专⽤型变频器和___通⽤型__型变频器。
1.变频器种类很多,其中按滤波⽅式可分为电压型和电流型;按⽤途可分为通⽤型和专⽤型。
2.变频器的组成可分为主电路和控制电路。
4.变频器安装要求其正上⽅和正下⽅要避免可能阻挡进风、出风的⼤部件,四周距控制柜顶部、底部、隔板或其他部件的距离不应⼩于120mm 。
变频器按控制⽅式分类:压频⽐控制变频器( V/f )、转差频率控制变频器(SF )、⽮量控制(VC )、直接转矩控制。
变频器产⽣谐波时,由于功率较⼤,因此可视为⼀个强⼤的⼲扰源,其⼲扰途径与⼀般电磁⼲扰途径相似,分别为传导、辐射和⼆次辐射、电磁耦合、边传导边辐射等。
13.输⼊电源必须接到变频器输⼊端⼦R 、S 、T 上,电动机必须接到变频器输出端⼦U 、V 、W 上。
交-交变频根据其输出电压的波形,可以分为矩形波及正弦波型两种。
⾼(中)压变频调速系统的基本型式有直接⾼-⾼型、⾼-中型和⾼-低-⾼型等三种。
8.(:对)电压型变频器多⽤于不要求正反转或快速加减速的通⽤变频器中。
5.(错)交-交变频器的最⼤输出频率和市⽹电压频率⼀样,为50Hz 。
16.变频器的问世,使电⽓传动领域发⽣了⼀场技术⾰命,即交流调速取代直流调速。
19.SCR 是指(可控硅)。
20.GTO 是指(门极关断晶闸管)。
21.IGBT 是指(绝缘栅双极型晶体管 )。
22.IPM 是指(智能功率模块)。
53.电阻性负载的三相桥式整流电路负载电阻L R 上的平均电压O U 为()。
A .2.342UB .2UC .2.341UD .1U107.下述选项中,()不是⾼中压变频器调速系统的基本形式。
变频器常用的10种控制方式
变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素。
除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。
本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。
一、变频器的分类
变频器的分类方法有多种。
按照主电路工作滤波方式分类,可以分为电压型变频器和电流型变频器。
按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器。
按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等。
按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
二、变频器中常用的控制方式
1、非智能控制方式
在交流变频器中使用的非智能控制方式有V/f控制、转差频率控制、矢量控制、直接转矩控制等。
(1) V/f控制
V/f就是加在电机定子上的电压和电源频率的比值。
如下图,V/F符合直线AB,则是直线型;符合折线段ABC,则是多点型;符合曲线AB,则是平方型。
《变频技术应用》第7章 习题7解答1. 什么是U /f 控制?变频器在变频时为什么还要变压?答:U /f 控制是使变频器的输出在改变频率的同时也改变电压,通常是使U /f 为常数,变频器在变频时还要变压是为了使电动机磁通保持一定,在较宽的调速范围内,电动机的转矩、效率、功率因数不下降。
2.说明恒U /f 控制的原理。
答:E 1为每相定子绕组的反电动势,它是定子绕组切割旋转磁场而产生的,其有效值计算如下:M N N k f E Φ=111144.4由于4.44k N1N 1均为常数,所以定子绕组的反电势E 1可用下式表示:M f E Φ∝11在额定频率时即f 1=f N 时,可以忽略△U ,可得到:U 1 ≈ E 1因此进而得到: U 1 ≈ E 1∝f 1ΦM此时若U 1没有变化,则E 1也可认为基本不变。
如果这时从额定频率f N 向下调节频率,必将使ΦM 增加,即f 1↓→ΦM ↑。
由于额定工作时电动机的磁通已接近饱和,ΦM 增加将会使电动机的铁心出现深度饱和,这将使励磁电流急剧升高,导致定子电流和定子铁心损耗急剧增加,使电动机工作不正常。
可见,在变频调速时单纯调节频率是行不通的。
为了达到下调频率时,磁通ΦM 不变,可以让=11f E 常数 有U 1 ≈ E 1,即可写为:=11f U 常数 因此,在额定频率以下,即f 1<f N 调频时,同时下调加在定子绕组上的电压,即恒U /f 控制。
3.什么是转矩补偿?答:转矩提升是指通过提高U /f 比来补偿f x 下调时引起的T Kx 下降。
即通过提高U x (k u >k f )使得转矩T Kx 提升4.转矩补偿过分会出现什么情况?答:如果变频时的U /f 比选择不当,使得电压补偿过多,即U x 提升过多,E x 在U x 中占的比例会相对减小(E x /U x 减小),其结果是使磁通ΦM 增大,从而达到新的平衡。
即: ↑→↑→Φ↑→↑→↓→↑↑→xx x M x x x U E E I I U E U 01 由于ΦM 的增大会引起电动机铁心饱和,而铁心饱和会导致励磁电流的波形畸变,产生很大的峰值电流。