三角函数线
- 格式:ppt
- 大小:535.00 KB
- 文档页数:10
三角函数线
三角函数线是正弦线、余弦线、正切线、余切线、正割线和余割线的总称(有时还包括正矢线、余矢线等,是三角函数的几何表示。
如图:
设任意角a的顶点在原点O(单位圆的圆心),始边与x轴的非负半轴重合,终边与单位圆相交于点P(x,y),过点P作x轴的垂线,,垂足为点M;过点A(1,0)作单位圆的切线,设它与角a的终边(当a位于第一、第四象限时)或其反向延长线(当a位于第二、第三象限是)相交于点T,于是有sin a=y=MP,cos a=x=OM,tan a=y/x=PM/OM=AT/OA=AT.
我们规定与坐标轴同向时,方向为正方向,与坐标轴反向时,方向为负向,则有向线段MP,OM,AT,分别叫做角a的正弦线、余弦线、正切线,他们统称三角函数线。
(1)三角函数线的意义是可以表示三角函数的值,其长度等于三角
函数值的绝对值,方向表示三角函数值的正负。
(2)因为三角函数线是与单位圆有关的有向线段,所以作角的三角函数线时,一定要先做单位圆。
(3)有向线段的书写:有向线段的起点字母写在前面,终点字母写在后面。
高考数学知识点:三角函数线(正弦线、余弦线、正切线)高考数学知识点:三角函数线(正弦线、余弦线、正切线)三角函数线的定义:设任意角α的顶点在原点O,始边与x轴的正半轴重合,终边与单位圆相交于点P(x,y),过P点作x轴的垂线,垂足为M,过点A(1,0)作单位圆的切线,高二,设它与角α的终边或其反向延长线相交于点T,则有向线段MP、OM,AT分别叫做角α的正弦线,余弦线,正切线,即:sinα=MP,cosα=OM,ta nα=AT,如下图:注:线段长度表示三角函数值大小,线段方向表示三角函数值正负。
关于三角函数线,要注意以下几点:(1)正弦线、余弦线、正切线都是有向线段,利用它们的数量来表示三角函数值,是数形结合的典型体现。
三角函数线表示三角的函数值的符号规定如下:正弦线MP、正切线AT方向与y轴平行,向上为正,向下为负;余弦线OM在x 轴上,向右为正,向左为负。
(2)作三角函数线时,所用字母一般都是固定的,书写顺序也不能颠倒。
特别要注意正切线必在过A(1,0)的单位圆的切线上(其中二、三象限角需作终边的反向延长线)。
(3)对于终边在坐标轴上的角,有时三角函数线退化为一个点,有时又为整个半径。
当角α的终边在y轴上时,角α的正切线不存在。
(4)当时,正弦线、余弦线、正切线与角α并不是一一对应的。
一般地,每一个确定的MP、OM、AT都对应两个α的值。
诱导公式:公式一公式二公式三公式四公式五公式六规律:奇变偶不变,符号看象限。
即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
三角函数线证明不等式
我们要证明的不等式是:对于任意实数x,有sin x ≤x ≤tan x。
第一步,根据三角函数线的基本性质,我们知道在单位圆上,正弦线、余弦线、正切线与x轴围成的面积分别等于1/2、1/4、1/4。
第二步,由于正弦线与x轴围成的面积大于余弦线与x轴围成的面积,所以对于任意实数x,有sin x > cos x。
第三步,由于正切线与x轴围成的面积等于正弦线与x轴围成的面积的一半,所以对于任意实数x,有tan x > sin x。
第四步,由于正弦线与x轴围成的面积小于正切线与x轴围成的面积,所以对于任意实数x,有sin x < tan x。
综上,我们证明了对于任意实数x,有sin x ≤x ≤tan x。
高考数学知识点:三角函数线(正弦线、余弦线、正切线)_知识点总结高考数学知识点:三角函数线(正弦线、余弦线、正切线)三角函数线的定义:设任意角α的顶点在原点O,始边与x轴的正半轴重合,终边与单位圆相交于点P(x,y),过P点作x轴的垂线,垂足为M,过点A(1,0)作单位圆的切线,高二,设它与角α的终边或其反向延长线相交于点T,则有向线段MP、OM,AT分别叫做角α的正弦线,余弦线,正切线,即:sinα=MP,cosα=OM,tanα=AT,如下图:注:线段长度表示三角函数值大小,线段方向表示三角函数值正负。
关于三角函数线,要注意以下几点:(1)正弦线、余弦线、正切线都是有向线段,利用它们的数量来表示三角函数值,是数形结合的典型体现。
三角函数线表示三角的函数值的符号规定如下:正弦线MP、正切线AT 方向与y轴平行,向上为正,向下为负;余弦线OM在x轴上,向右为正,向左为负。
(2)作三角函数线时,所用字母一般都是固定的,书写顺序也不能颠倒。
特别要注意正切线必在过A(1,0)的单位圆的切线上(其中二、三象限角需作终边的反向延长线)。
(3)对于终边在坐标轴上的角,有时三角函数线退化为一个点,有时又为整个半径。
当角α的终边在y轴上时,角α的正切线不存在。
(4)当时,正弦线、余弦线、正切线与角α并不是一一对应的。
一般地,每一个确定的MP、OM、AT都对应两个α的值。
诱导公式:公式一公式二公式三公式四公式五公式六规律:奇变偶不变,符号看象限。
即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
三角函数线教学目的:1.理解并掌握各种三角函数在各象限内的符号.2.理解并掌握终边相同的角的同一三角函数值相等.3.掌握正弦线、余弦线、正切线.教学重点:三角函数在各象限内的符号,掌握三角函数线教学难点:正确理解三角函数可看作以“实数”为自变量的函数教学过程:一、基础梳理:(1)单位圆:半径等于_________的圆叫做单位圆.(2)有向线段:带有_____的线段叫做有向线段.设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点P(x,y),过P 作x 轴的垂线,垂足为M ;过点A(1,0)作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T.规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值;当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值;当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值;根据上面规定,则OM=x, MP=y ,(3)三角函数线根据正弦、余弦、正切的定义,就有sin _____,cos _____,tan ____.11y y x x y MP AT y x r r x OM OAααα============这三条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线(4)三角函数在各象限内的符号规律:ααcsc sin 为正 全正 ααcot tan 为正 ααsec cos 为正符号的记忆口诀:____________________________________________ 二、自测自评:1.已知角α的正弦线长度为单位长度,那么角α 终边( )(A )在x 轴上 (B )在y轴上 (C )在直线y=x上 (D )在直线y=-x 上2.如果42ππα〈〈,那么下列各式中正确的是( )(A )cos tan sin ααα〈〈(B )sin cos tan ααα〈〈 (C )tan sin cos ααα〈〈(D )cos sin tan ααα〈〈 正切、余切余弦、正割正弦、余割3.sin1_____sin3π(填大于或小于) 三、讲解范例:例1 确定下列三角函数值的符号(1)cos250° (2))4sin(π- (3)tan (-672°) (4))311tan(π例2 若⎩⎨⎧><0tan 0sin θθ,则角θ为第几象限角?例3 求函数cos sin tan |cot ||sin |cos tan cot x x x x y x x x x=+++的值域四、课堂练习:1.确定下列各式的符号(1)sin100°·cos240° (2)sin5+tan52. x 取什么值时,xx x tan cos sin +有意义? 3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为……( )A 锐角三角形B 钝角三角形C 直角三角形D 以上三种情况都可能4.若是第三象限角,则下列各式中不成立的是………………( )A :sin α+cos α<0B :tan α-sin α<0C :cos α-cot α<0D :cot αcsc α<05.已知θ是第三象限角且cos 02θ<,问2θ是第几象限角?。