1.3.2 函数的奇偶性
- 格式:ppt
- 大小:1.55 MB
- 文档页数:19
高一数学《函数的奇偶性》教案课题:1.3.2函数的奇偶性一、三维目标:知识与技能:使学生明白得奇函数、偶函数的概念,学会运用定义判定函数的奇偶性。
过程与方法:通过设置问题情境培养学生判定、推断的能力。
情感态度与价值观:通过绘制和展现优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的专门性和一样性之间的关系,培养学生善于探究的思维品质。
二、学习重、难点:重点:函数的奇偶性的概念。
难点:函数奇偶性的判定。
三、学法指导:学生在独立摸索的基础上进行合作交流,在摸索、探究和交流的过程中获得对函数奇偶性的全面的体验和明白得。
关于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识链接:1.复习在初中学习的轴对称图形和中心对称图形的定义:2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。
五、学习过程:函数的奇偶性:(1)关于函数,其定义域关于原点对称:假如______________________________________,那么函数为奇函数;假如______________________________________,那么函数为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于________ _对称。
(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。
六、达标训练:A1、判定下列函数的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;(3)f(x)=x+(4)f(x)=A2、二次函数( )是偶函数,则b=___________ .B3、已知,其中为常数,若,则_______ .B4、若函数是定义在R上的奇函数,则函数的图象关于()(A)轴对称(B)轴对称(C)原点对称(D)以上均不对B5、假如定义在区间上的函数为奇函数,则=_____ .C6、若函数是定义在R上的奇函数,且当时,,那么当时,=_______ .D7、设是上的奇函数,,当时,,则等于()(A)0.5 (B)(C)1.5 (D)D8、定义在上的奇函数,则常数____ , _____ .七、学习小结:单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
1.3.2奇偶性课标要点课标要点学考要求高考要求1.奇函数、偶函数的概念b b2.奇函数、偶函数的性质c c知识导图学法指导1.要深挖函数“奇偶性”的实质,也就是图象的对称性:是关于原点的中心对称还是关于y轴的轴对称.2.学习本节知识注意结合前面所学的知识,如单调性、函数图象、解析式等,加强它们之间的联系.3.学习奇偶性时不能忘记函数的定义域,奇偶性是函数整个定义域上的性质,忽略定义域是一个易错点.知识点奇、偶函数1.偶函数的定义一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.2.奇函数的定义一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.3.奇、偶函数的图象特征(1)奇函数的图象关于原点成中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)偶函数的图象关于y轴对称;反之,如果一个函数的图象关于y轴对称,则这个函数是偶函数.奇偶函数的定义域关于原点对称,反之,若定义域不关于原点对称,则这个函数一定不具有奇偶性.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)偶函数的图象关于(0,0)对称.()(2)奇函数的图象关于y轴对称.()(3)函数f(x)=x2,x∈[-1,2]是偶函数.()(4)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.()答案:(1)×(2)×(3)×(4)√2.下列函数为奇函数的是()A.y=|x|B.y=3-x C.y=1x3D.y=-x2+14解析:A、D两项,函数均为偶函数,B项中函数为非奇非偶函数,而C项中函数为奇函数.答案:C3.若函数y=f(x),x∈[-2,a]是偶函数,则a的值为()A.-2 B.2 C.0 D.不能确定解析:因为偶函数的定义域关于原点对称,所以-2+a=0,所以a=2.答案:B4.下列图象表示的函数是奇函数的是________,是偶函数的是________.(填序号)解析:(1)(3)关于y轴对称是偶函数,(2)(4)关于原点对称是奇函数.答案:(2)(4)(1)(3)类型一函数奇偶性的判断例1判断下列函数的奇偶性:(1)f(x)=x3+x;(2)f(x)=1-x2+x2-1;(3)f(x)=2x2+2xx+1;(4)f(x)=⎩⎪⎨⎪⎧x-1,x<0,0,x=0,x+1,x>0.【解析】(1)函数的定义域为R,关于原点对称.又f(-x)=(-x)3+(-x)=-(x3+x)=-f(x),因此函数f(x)是奇函数.(2)由⎩⎨⎧1-x2≥0,x2-1≥0得x2=1,即x=±1.因此函数的定义域为{-1,1},关于原点对称.又f(1)=f(-1)=-f(-1)=0,所以f(x)既是奇函数又是偶函数.(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,所以f(x)既不是奇函数也不是偶函数.(4)函数f(x)的定义域为R,关于原点对称.f(-x)=⎩⎪⎨⎪⎧-x-1,-x<0,0,-x=0,-x+1,-x>0,即f(-x)=⎩⎪⎨⎪⎧-(x+1),x>0,0,x=0,-(x-1),x<0.于是有f(-x)=-f(x).所以f(x)为奇函数.满足f(-x)=f(x)是偶函数,f(-x)=-f(x)是奇函数.方法归纳函数奇偶性判断的方法(1)定义法:(2)图象法:若函数的图象关于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函数为偶函数.此法多用在解选择、填空题中.跟踪训练1判断下列函数的奇偶性:(1)f(x)=x2(x2+2); (2)f(x)=|x+1|-|x-1|;(3)f(x)=1-x2x;(4)f(x)=⎩⎪⎨⎪⎧x+1,x>0,-x+1,x<0.解析:(1)∵x∈R,∴-x∈R.又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),∴f(x)为偶函数.(2)∵x∈R,∴-x∈R.又∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),∴f(x)为奇函数.(3)f(x)的定义域为[-1,0)∪(0,1].即有-1≤x≤1且x≠0,则-1≤-x≤1,且-x≠0,又∵f(-x)=1-(-x)2-x=-1-x2x=-f(x),∴f(x)为奇函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-x)=1+x=f(x);当x<0时,-x>0,f(-x)=1+(-x)=1-x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.根据函数奇偶性定义判断.类型二函数奇偶性的图象特征例2设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是________.【解析】由奇函数的性质知,其图象关于原点对称,则f(x)在定义域[-5,5]上的图象如图,由图可知不等式f(x)<0的解集为{x|-2<x<0或2<x≤5}.【答案】{x|-2<x<0或2<x≤5}根据奇函数的图象关于原点对称作图,再求出f(x)<0的解集.方法归纳根据奇偶函数在原点一侧的图象求解与函数有关的值域、定义域、不等式问题时,应根据奇偶函数图象的对称性作出函数在定义域另一侧的图象,根据图象特征求解问题.跟踪训练2如图,给出了偶函数y=f(x)的局部图象,试比较f(1)与f(3)的大小.解析:方法一因函数f(x)是偶函数,所以其图象关于y轴对称,补全图如图.由图象可知f (1)<f (3).方法二 由图象可知f (-1)<f (-3). 又函数y =f (x )是偶函数, 所以f (-1)=f (1),f (-3)=f (3),故f (1)<f (3).方法一是利用偶函数补全图象,再比较f(1)与f(3)的大小; 方法二f(1)=f(-1),f(3)=f(-3),观察图象判断大小.类型三 利用函数奇偶性求参数例3 (1)设函数f (x )=(x +1)(x +a )x为奇函数,则a =________; (2)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x >0,ax 2+x ,x <0是奇函数,则a =________.【解析】 (1)方法一(定义法) 由已知 f (-x )=-f (x ),即(-x +1)(-x +a )-x=-(x +1)(x +a )x . 显然x ≠0得,x 2-(a +1)x +a =x 2+(a +1)x +a , 故a +1=0,得a =-1.方法二(特值法) 由f (x )为奇函数得 f (-1)=-f (1),即(-1+1)(-1+a )-1=-(1+1)(1+a )1, 整理得a =-1.(2)(特值法) 由f (x )为奇函数, 得f (-1)=-f (1),[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分) 1.下列函数是偶函数的是( ) A .y =2x 2-3 B .y =x 3 C .y =x 2,x ∈[0,1] D .y =x解析:对于A ,f (-x )=2(-x )2-3=2x 2-3=f (x ),∴f (x )是偶函数,B ,D 都为奇函数,C 中定义域不关于原点对称,函数不具备奇偶性,故选A.答案:A2.函数f (x )=1x -x 的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称解析:∵f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x -(-x )=x -1x =-f (x ),∴f (x )是奇函数,图象关于原点对称.答案:C3.下列图象表示的函数具有奇偶性的是( )解析:选项A 中的图象不关于原点对称,也不关于y 轴对称,故排除;选项C ,D 中函数的定义域不关于原点对称,也排除.选项B 中的函数图象关于y 轴对称,是偶函数,故选B.答案:B4.下列四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④奇函数y =f (x )(x ∈R )的图象必过(-a ,f (a )).表述正确的个数是( ) A .1 B .2 C .3 D .4解析:偶函数的图象一定关于y 轴对称,但不一定与y 轴相交,例如,函数f (x )=x 0,其定义域为{x |x ≠0},故其图象与y 轴不相交,但f (x )=x 0=1(x ≠0)是偶函数,从而可知①是错误的,③是正确的. 奇函数的图象关于原点对称,但不一定经过坐标原点,例如,函数f (x )=1x ,其定义域为{x |x ≠0},可知其图象不经过坐标原点,但f (x )=1x 是奇函数,从而可知②是错误的.若点(a ,f (a ))在奇函数y =f (x )(x ∈R )的图象上,则点(-a ,-f (a ))也在其图象上,故④是错误的.答案:A5.如图,给出奇函数y =f (x )的局部图象,则f (-2)+f (-1)的值为( )A .-2B .2C .1D .0解析:由图知f (1)=12,f (2)=32,又f (x )为奇函数,所以f (-2)+f (-1)=-f (2)-f (1)=-32-12=-2.故选A.答案:A二、填空题(每小题5分,共15分)6.若函数f (x )=kx 2+(k -1)x +3是偶函数,则k 等于________.解析:由于函数f (x )=kx 2+(k -1)x +3是偶函数,因此k -1=0,k =1.答案:17.给出下列四个函数的论断: ①y =-|x |是奇函数;②y =x 2(x ∈(-1,1])是偶函数;解得b=0.答案:0三、解答题(每小题10分,共20分)9.判断下列函数的奇偶性:(1)f(x)=x3-x2x-1;(2)f(x)=x2-x3;(3)f(x)=|x-2|-|x+2|;(4)f(x)=x2+ax(x≠0,a∈R).解析:(1)∵函数f(x)=x3-x2x-1的定义域为{x|x∈R且x≠1},定义域不关于原点对称,∴该函数既不是奇函数也不是偶函数.(2)f(x)的定义域为R,是关于原点对称的.∵f(-x)=(-x)2-(-x)3=x2+x3,又-f(x)=-x2+x3,∴f(-x)既不等于f(x),也不等于-f(x).故f(x)=x2-x3既不是奇函数也不是偶函数.(3)方法一(定义法)函数f(x)=|x-2|-|x+2|的定义域为R,关于原点对称.∵f(-x)=|-x-2|-|-x+2|=|x+2|-|x-2|=-(|x-2|-|x+2|)=-f(x),∴函数f(x)=|x-2|-|x+2|是奇函数.方法二(根据图象进行判断)f(x)=|x-2|-|x+2|=⎩⎪⎨⎪⎧-4,x≥2,-2x,-2<x<2,4,x≤-2,画出图象如图所示,图象关于原点对称,因此函数f(x)是奇函数.(4)当a=0时,f(x)=x2为偶函数.当a≠0时,f(x)=x2+ax(x≠0),取x=±1,得f(-1)+f(1)=2≠0,f(-1)-f(1)=-2a≠0,即f(-1)≠-f(1),f(-1)≠f(1),∴函数f(x)既不是奇函数也不是偶函数.综上所述,当a∈R且a≠0时,函数f(x)既不是奇函数也不是偶函数;当a=0时,函数f(x)为偶函数.10.已知函数f(x)是定义域为R的奇函数,当x>0时,f(x)=x2-2x.(1)求出函数f(x)在R上的解析式;(2)画出函数f(x)的图象.解析:(1)①由于函数f(x)是定义域为R的奇函数,则f(0)=0;②当x<0时,-x>0,∵f(x)是奇函数,∴f(-x)=-f(x),∴f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x,综上,f(x)=⎩⎪⎨⎪⎧x2-2x,(x>0)0,(x=0)-x2-2x,(x<0)(2)图象如图:[能力提升](20分钟,40分)11.定义两种运算:a b=a2-b2,a⊗b=(a-b)2,则函数f(x)=2x(x⊗2)-2为()A.奇函数B.偶函数C.奇函数且为偶函数D.非奇函数且非偶函数解析:由定义知f(x)=4-x2(x-2)2-2=4-x2|x-2|-2,由4-x2≥0且|x-2|-2≠0,得-2≤x<0或0<x≤2,即函数f(x)的定义域为{x|-2≤x<0或0<x≤2},关于原点对称;f(x)=4-x22-x-2=-4-x2x,f(-x)=-4-x2-x=-f(x).故f(x)是奇函数.故选A.答案:A12.若f(x)是[-2,2]上的偶函数,在(0,2]上为增函数,且f(m-1)>f(m+1),则m的取值范围为________.解析:∵f(x)为偶函数,。
函数的奇偶性(第1课时)教学设计嵊州市三界中学竹林烽一.教材分析1 教材的地位与作用内容选自人教版A版必修1第一章第三节;函数奇偶性是研究函数的一个重要策略,因此成为函数的重要性质之一,它的研究也为今后幂函数、三角函数的性质等后续内容的深入起着铺垫的作用;奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。
2 学情分析已经学习了函数的单调性,对于研究函数的性质的方法已经有了一定的了解。
尽管他们尚不知函数奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图象的特殊对称性早已有一定的感性认识;在研究函数的单调性方面,学生懂得了由形象到具体,然后再由具体到一般的科学处理方法,具备一定数学研究方法的感性认识;高一学生具备一定的观察能力,但观察的深刻性及稳定性也都还有待于提高;高一学生的学习心理具备一定的稳定性,有明确的学习动机,能自觉配合教师完成教学内容。
二.目的分析教学目标:1、奇函数的概念;2、偶函数的概念;3、函数奇偶性的判断;过程与方法目标:1、培养学生的类比,观察,归纳能力;2、渗透数形结合的思想方法,感悟由形象到具体,再从具体到一般的研究方法情感态度与价值观目标:1、对数学研究的科学方法有进一步的感受;2、体验数学研究严谨性,感受数学对称美重点与难点重点:函数奇偶性的概念难点:函数奇偶性的判断三.教法、学法、教学手段教法自学辅导法、讨论法、讲授法学法归纳——讨论——练习教学手段多媒体电脑四.过程分析(一)情境导航、引入新课问题提出源于生活,那么我们现在正在学习的函数图象,是否也会具有对称的特性呢是否也体现了图象对称的美感呢(二)构建概念、突破难点考察下列两个函数:1 2思考1:这两个函数的图象有何共同特征思考2:对于上述两个函数,f1与f-1,f2与f-2,f与f-有什么关系一般地,若函数=f的图象关于轴对称,当自变量任取定义域中的一对相反数时,对应的函数值相等。
§1.3.2函数的奇偶性学习目标:1.知识与技能:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;2.过程与方法:通过函数奇偶性概念的形成过程,培养自己观察、归纳、抽象的能力,渗透数形结合的数学思想.3.情态与价值:通过函数的奇偶性教学,培养自己从特殊到一般的概括归纳问题的能力. 重点和难点分析:重点:函数的奇偶性及其几何意义难点:判断函数的奇偶性的方法与格式 问题导学:预习教材P 33----P 36, 并找出疑惑之处。
1. 明确偶函数的概念并找出如何通过函数图象判断该函数是否偶函数2. 明确奇函数的概念并找出如何通过函数图象判断该函数是否奇函数预习自测:判断下列函数的奇偶性1.2()f x x =2. ()||1f x x =-3. 21)(x x f =4. 2432)(x x x f +=5. x x x f 2)(3-=6. xx x f 1)(2+=7. 1)(2+=x x f学习过程:学习探究思考:“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性?1.观察下列函数的图象,总结各函数之间的共性.2()f x x = ()||1f x x =- 21()f x=通过讨论归纳:函数2()f x x =是定义域为 ————的抛物线;函数()||1f x x =-是定义域为———— 的折线;函数21()f x x=是定义域为 ————的两支曲线,各函数之间的共性为图象关于————对称.2.观察一对关于y 轴对称的点的坐标有什么关系?归纳问题:若点(,())x f x 在函数图象上,则相应的点(,())x f x -是否也在函数图象上?即函数图象上横坐标互为相反数的点,它们的纵坐标是否一定相等?归纳定义:函数的奇偶性定义:1.偶函数一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.依照偶函数的定义给出奇函数的定义.2.奇函数一般地,对于函数()f x 的定义域的任意一个x ,都有 ————,那么()f x 就叫做奇函数. 注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x -也一定是定义域内的一个自变量(即定义域关于原点对称).3.具有奇偶性的函数的图象的特征偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.典型例题:例1.判断下列函数是否是偶函数.(1)2()[1,2]f x x x =∈-(2)32()1x x f x x -=-例2.判断下列函数的奇偶性(1)4()f x x =(2)5()f x x =(3)1()f x x x =+(4)21()f x x=小结:利用定义判断函数奇偶性的格式步骤: ①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定()()f x f x -与的关系; ③作出相应结论:若()()()()0,()f x f x f x f x f x -=--=或则是偶函数;若()()()()0,()f x f x f x f x f x -=--+=或则是奇函数.例3.判断下列函数的奇偶性:2211(0)2()11(0)2x x g x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩分析:先验证函数定义域的对称性,再考察()()()f x f x f x --是否等于或.例4.利用函数的奇偶性补全函数的图象.教材P 35思考题规律:偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.例5.已知()f x 是奇函数,在(0,+∞)上是增函数.证明:()f x 在(-∞,0)上也是增函数.小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.课堂训练:判断下列函数的奇偶性,并说明理由.①()0,[6,2][2,6];f x x =∈--②()|2||2|f x x x =-++③()|2||2|f x x x =--+④())f x lg x =(五)归纳小结,整体认识. 本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.。
1.3.2《函数的奇偶性》(一)导学案【学习目标】1、借助函数图象理解函数的奇偶性概念;2、会利用定义判断函数的奇偶性;【课前导学】预习教材第33-36页,找出疑惑之处,完成新知学习1、试在下面作出以下函数的图像:(1)2)(x x f =; (2)x x f =)(; (3)x x f =)(; (4)x f 1)(=。
2、奇偶性的定义:一般地,设函数)(x f 的定义域为A ,如果对于 ,都有 ,那么称函数)(x f y =是偶函数; 如果对于 ,都有 ,那么称函数)(x f y =是奇函数。
3、结合开始两个具体例子,你能归纳奇函数与偶函数的图像特征吗?【精讲点拨】例:判断下列函数的奇偶性.(1)1)(2-=x x f ; (2) xx x f 23)(+= ; (3) 2)1()(-=x x f ;(4)2211(0)2()11(0)2x x g x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩ ; (5) 1122-+-=x x y .1. 你能小结用定义判断函数奇偶性的方法步骤吗?2. 奇(偶)函数的性质:①f(x)为奇函数,定义域为D ,若0∈D ,则必有 ;② 在同一个关于原点对称的定义域上,奇函数+奇函数= ; 偶函数+偶函数= ;奇函数×奇函数= ; 偶函数×偶函数= 。
③对于分段函数的奇偶性的判断,须特别注意与-x 的对应关系。
【巩固练习】1、若函数()f x 为奇函数,且(2)3f =,则(2)f -=________;若函数()f x 为偶函数,且(1)3f -=,则(1)f =________。
2、已知定义在[-5,5]上的奇函数)(x f 的部分图像如右图所示,试画出函数在y 轴左侧的大致图像,且满足0)(>x f 的x 的集合为____ _____;满足不等式()0xf x <的集合为____ ____;满足不等式(2)0f x +<的集合为____ _____;3、对于定义域是R 的任意奇函数()f x 有( ).A .()()0f x f x --=B .()()0f x f x +-=C .()()0f x f x -=D .(0)0f ≠4、 已知()f x 是定义(,)-∞+∞上的奇函数,且()f x 在[)0,+∞上是减函数. 下列关系式中正确的是( )A. (5)(5)f f >-B.(4)(3)f f >C. (2)(2)f f ->D.(8)(8)f f -=5、下列说法错误的是( ). A. 1()f x x x=+是奇函数 B. ()|2|f x x =-是偶函数 C. ()0,[6,6]f x x =∈-既是奇函数,又是偶函数 D.32()1x x f x x -=-既不是奇函数,又不是偶函数 6、判断下面函数的奇偶性:(1)221)(x x x f +=; (2) x x x f 5)(3+=; (3) ⎩⎨⎧<-≥+=0),1(0),1()(x x x x x x x f ;。
§1.3.2函数的奇偶性一.教学目标1.知识教学目标:进一步理解函数的奇偶性概念及其几何意义;会判断函数的奇偶性.2.能力训练目标:培养学生利用数学概念进行判断、推理的能力;加强观察、化归、转化能力的训练.3.德育渗透目标:培养学生探索问题、发现规律、归纳概括能力;培养学生辩证思维及审美能力.二.教学重点和难点:教学重点:函数的奇偶性及其几何意义教学难点:判断函数的奇偶性的方法与格式三.教学用具 投影仪四.教学过程(一)复习回顾1.函数的奇偶性定义:注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ②由函数的奇偶性定义可知,函数具有奇偶性的一个前提条件是,对于定义域内的任意一个x ,则x -也一定是定义域内的一个自变量(即定义域关于原点对称). ③具有奇偶性的函数的图象的特征:偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.2. 利用定义判断函数奇偶性的步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定()()f x f x -与的关系;③作出相应结论:若()()()()0,()f x f x f x f x f x -=--=或则是偶函数;若()()()()0,()f x f x f x f x f x -=--+=或则是奇函数.(二)典型例题例1.判断下列函数是否是偶函数.(1)2()[1,2]f x x x =∈- (2)32()1x x f x x -=- 例2.判断下列函数的奇偶性(1)()2432x x x f += (2)()x x x f 23-=(3)()12+=x x f (4)()x x x f -++=44(5)()0=x f例3已知()x f 是定义在[]a a 2,1-上的奇函数,求a 的值. 例4设奇函数()x f 的定义域为[]5,5-,当[]5,0∈x 时,函数()x f y =的图象如图所示,则使函数值0<y 的x 的取值集合为例5.已知()f x 是偶函数,在(0,+∞)上是减函数,判断在(-∞,0)上是增函数还是减函数,并证明你的判断.如果()f x 是奇函数呢?偶函数在关于原点对称的区间上单调性相反; 奇函数在关于原点对称的区间上单调性一致.(三)课堂小结1.奇函数、偶函数的定义2.奇函数、偶函数图象的对称性3.判断函数奇偶性的步骤和方法(四)课后作业优化设计《奇偶性》章节练习题。
《1.3.2函数奇偶性》教学反思12月10日,我上了优质课《1.3.2函数的奇偶性》。
课后,对这节课做反思如下:一.思效果基本达到教学的目标,从形和数两方面引导,使学生从文字、图形、符号三种数学语言理解了奇偶性的概念,并会利用定义判断简单函数的奇偶性。
在奇偶性概念形成过程中,培养了学生的观察、类比、归纳问题能力,同时渗透数形结合思想、运用符号及变元表示的思想、以及从特殊到一般的数学思想方法。
设计情境,让学生感受数学美,同时激发他们学习的兴趣,培养学生乐于探索的精神。
本节课突出了教学重点:函数的奇偶性及其几何意义;利用多种手段,有效的突破了教学难点:和判断函数的奇偶性的方法与步骤。
二.思成功在教学中,自己对几个地方的处理还是比较满意的。
1.创设情境,激发学生学习的兴趣在现实的教学中,学生普遍对数学课缺乏兴趣,感到数学课枯燥、乏味、抽象,只是与数字、字母、公式打交道的学科。
如何挖掘教材的兴奋点、好奇点,以问题为教学出发点,激发学生的好奇心和学习兴趣呢?我想起初中课本在讲解对称的有关知识时,列举了大量的生活中的图片,这是可以借鉴的。
用多媒体展示生活中的图片,使学生感受到生活中的对称美,通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。
2.重视让学生经历奇偶性概念的形成过程新课程实施要求教师改变传统教学形态,强调教学要师生共同探讨,教师要关注教学和学生学习的过程。
认知活动要从重视结果教学向重视教学过程转变,而所谓重过程就是教师在教学中把教学的重点放在教学过程,放在揭示知识形成的规律上,让学生在感知、概括、应用的思维过程中去发现真理,掌握规律。
在函数的奇偶性概念的学习中,最让学生感到困惑的是:如何突破常量到变量的转化,从而达到由直观到抽象。
最容易让学生忽略的是:定义中“任意”一词使用的重要性。
教学中,如何突破这一教学难点,让学生经历概念的形成过程呢?我主要采用多媒体图形动态优势,利用图象的翻折后重合来判定图象关于y 轴对称,并从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律,处理方法是:先给出特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立概念。
§1.3.2 奇偶性审核:高一数学组 编号013 时间:2018.10理解函数的奇偶性及其几何意义;3. 学会运用函数图象理解和研究函数的性质. P 33~ P 36,找出疑惑之处)点(x 0,y 0)关于原点的对称点为(-x 0,-y 0),关于y 轴的对称点为(-x 0,y 0). 复习1:指出下列函数的单调区间及单调性. (1)2()1f x x =-; (2)1()f x x=复习2:对于f(x)=x 、f(x)=x 2、f(x)=x 3、f(x)=x 4,分别比较f(x)与f(-x).二、新课导学※ 学习探究:探究任务:奇函数、偶函数的概念 思考:在同一坐标系分别作出两组函数的图象:(1)()f x x =、1()f x x=、3()f x x =; (2)2()f x x =、()||f x x =.观察各组图象有什么共同特征?函数解析式在函数值方面有什么特征?新知:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ).试试:仿照偶函数的定义给出奇函数(odd function )的定义.反思:① 奇偶性的定义与单调性定义有什么区别?② 奇函数、偶函数的定义域关于 对称,图象关于 对称. 试试:已知函数21()f xx =在y 轴左边的图象如图所示,画出它右边的图象.※ 典型例题:例1 判别下列函数的奇偶性:(1)()f x = (2)()f x = (3)42()35f x x x =-+; (4)31()f x x . 小结:判别方法,先看定义域是否关于原点对称,再计算()f x -,并与()f x 进行比较.试试:判别下列函数的奇偶性:(1)f(x)=|x +1|+|x -1|; (2)f(x)=x +1x; (3)f(x)=21xx+; (4)f(x)=x 2, x ∈[-2,3]. 例1、判断下列函数的奇偶性:(1)f(x)=x 4; (2)f(x)=x 5; (3)f(x)=x+x1; (4)f(x)=21x. (5)f(x) = x 2,x ∈[–1,3]; (6)f(x) = 0. 活动:利用定义来判断其奇偶性.先求函数的定义域,并判断定义域是否关于原点对称,如果定义域关于原点对称,那么再判断f(-x)=f(x)或f(-x)=-f(x). 解:(1)函数的定义域是R ,对定义域内任意一个x ,都有f(-x)=(-x)4=x 4=f(x),偶函数.(2)函数的定义域是R ,对定义域内任意一个x ,都有f(-x)=(-x)5=-x 5=-f(x), 奇函数.(3)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有f(-x)=-x+x -1=-(x+x 1)=-f(x),所以函数f(x)=x+x1是奇函数.(4)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有f(-x)=)(12x -=21x =f(x),所以函数f(x)= 21x 是偶函数.(5)非奇非偶函数, (6)既奇又偶函数。
课题:1.3.2函数的奇偶性一、教材内容分析“奇偶性”是人教A版必修1第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节,本节的主要内容是研究函数的又一条重要性质---函数的奇偶性。
教材从学生熟悉的特殊函数入手,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又是为后续研究指数函数、对数函数、幂函数、三角函数的基础。
因此,本节课起着承上启下的重要作用。
学习函数的奇偶性,能使学生再次体会到数形结合的思想,培养了学生观察、分析、归纳的能力;初步学会用数学的眼光看待事物,感受数学的对称美。
二、学生学情分析学生是刚从初中进入高中的高一学生,虽然学生在初中已经学习了轴对称图形和中心对称图形,但由于这节课主要是将学生的直观认识提高为抽象理解,抽象的过程往往是高一学生感觉比较困难的地方。
我校是一所县城普通高中,学生基础非常薄弱,要让学生通过感官认识上升为概念的概括,这是一件很困难的问题,因此在教学设计上针对学生的特点,注意从特殊、直观方面出发,多角度引发学生的思考和探究。
三、教学目标知识目标:了解奇函数与偶函数的概念,会用函数的奇偶性定义来判断函数奇偶性。
能力目标:引导学生探究函数奇偶性的形式化定义的过程,培养学生抽象的概括能力和严谨的逻辑思维能力。
情感目标:通过自主探索,体会数形结合的思想,感受生活中的数学美。
教学重点形成函数奇偶性的形式化定义。
教学难点:利用函数的奇偶性定义判断函数的奇偶性。
四、教学策略设计在内容处理上,本节课充分利用画函数图像的过程(列表、描点、连线),让学生通过观察图像特征,结合函数值对应表,具体可分为三个步骤:第一,学生动手列表、画图;第二,观察描绘函数的图像特征;第三,结合函数值对应表,利用函数解析式来描述这种变化特征。
教学中重视从学生熟悉的函数入手,从特殊到一般性质的概括过程。
由于函数图像是发现函数性质的直观载体,因此本节课充分借助信息技术创设教学情境,以利于学生通过观察函数图像特征,探究出其定义。