高中数学必修一132函数的奇偶性
- 格式:ppt
- 大小:2.35 MB
- 文档页数:11
高中必修一数学教案《函数的奇偶性》教材分析函数的奇偶性是高中数学必修一人教版B版第三章第一单元第三节的内容,是函数的一条重要性质。
教材从学生熟知的函数入手,结合初中学生已经学习过的轴对称和中心对称,感受奇函数和偶函数的图象特征,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地学习函数的奇偶性。
从知识结构上而言,奇偶性既是函数概念的拓展和深化,又是后续研究基本初等函数的基础,起着承上启下的作用。
学情分析从学生的认知基础来看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。
同时,学生刚刚学习了函数的单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展来看,高一学生的思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题。
教学目标1、理解函数奇偶性的概念和图像特征,能判断一些简单函数的奇偶性。
2、经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
3、通过自主探索,体会数形结合的思想,感受数学的对称美;通过分组讨论,培养合作交流的精神,学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。
教学重点函数奇偶性的概念及其建立过程,判断函数的奇偶性。
教学难点对函数奇偶性的概念理解与认识。
教学方法讲授法、讨论法、练习法教学过程一、复习导入初中时我们学习过有关轴对称和中心对称的知识,而且已经知道,在平面直角坐标系中,点(x,y)关于y轴的对称点为(-x,y),关于原点的对称点为(-x,-y)。
例如,(-2,3)关于y轴的对称点(2,3),关于原点的对称点(2,-3)二、学习新知1、偶函数填写下表,观察指定函数的自变量x互为相反数时,函数值之间具有什么关系,并分别说出函数图象应具有的特征。
不难发现,上述两个函数,当自变量取为相反数的两个值x和-x,对应的函数值相等。
f(-x)= (-x)2 = x2 = f(x)g(-x)= 1|−x| = 1|x|= g(x)一般地,设函数y = f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且f(-x)= f(x)则称y = f(x)为偶函数。
3.2.2函数奇偶性的教学设计一、教材分析《奇偶性》位于高中数学人教A版(2019)必修第一册第三章3.3.2节。
本节课是在学生学习函数单调性之后,教材从学生熟悉的函数图象情境出发,让学生从形的角度认识函数的奇偶性,从数的角度探究函数奇偶性的本质,再通过数形结合来解决函数的相应问题。
二、学情分析本节课是面对普通班的学生进行讲解的,他们数学基础相对一般,但部分同学思维比较敏捷,大多数同学对数学比较热爱。
学生对函数及对称图形有一定的知识储备,在前面经历过探究和学习函数单调性的过程,对于根据函数的图象转化为数字特征并抽象为数学概念有了初步认识,但是由于初步接触,有一定的困难,为了让大部分学生掌握本节课的知识与方法,能够实现教学目标,突出重点、突破难点,我制定了后面的教学方案。
三、教学目标(一)学科目标1.知识与技能:了解函数的奇偶性的概念和几何意义;学会判断函数的奇偶性;学会运用奇偶性研究函数的图象。
2.过程与方法:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合、分类讨论的思想。
3.情感态度与价值观:展示优美的函数图象加强学生对数学美的体验。
(二)核心素养目标1.数学抽象:函数的奇偶性的定义及图象的对称性;2.逻辑推理:根据偶函数的探究过程,探究和总结奇函数的概念;3.数学运算:判断函数奇偶性过程中的运算;4.直观想象:根据函数解析式画出函数图象、根据函数关于y轴对称画出大致图像研究函数的性质。
5.数学建模:通过具体函数实例,培养学生发现问题解决问题的能力。
四、教学重难点(一)重点:函数奇偶性的概念、简单性质及应用。
(二)难点:感悟数学奇偶性含义的数学抽象过程。
五、教学策略分析(一).通过观察所展示的函数图象及动态图象演示,让学生形成对奇(偶)函数的直观认识;通过数量关系刻画函数的对称性,得出奇(偶)函数的定义。
是学生在函数奇偶性的数学抽象过程中在轻松愉快的环境下掌握,从而突破教学难点。
1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。
《3.1.3 函数的奇偶性》教学设计方案(第一课时)一、教学目标1. 理解奇偶性的概念,掌握判断函数奇偶性的方法。
2. 能够运用奇偶性性质,解决相关数学问题。
3. 提高学生对函数性质的理解和掌握,为后续函数学习打下基础。
二、教学重难点1. 教学重点:理解奇偶性的概念,掌握判断函数奇偶性的方法。
2. 教学难点:如何引导学生运用奇偶性性质解决实际问题。
三、教学准备1. 准备教学用具:黑板、白板、笔、函数图像等。
2. 制作PPT课件,包含概念引入、方法讲解、例题分析、练习题等环节。
3. 搜集相关数学问题,以便学生运用奇偶性性质进行解答。
4. 确定教学方法,采用讲授与讨论相结合,引导学生自主探究。
四、教学过程:1. 导入新课:教师展示一些函数图像(如:y=x^2, y=x^3, y=sinx等),引导学生观察图像特征。
随后,教师提出疑问:“对于这些函数,它们是否有某些共性?”以此引发学生对函数奇偶性的思考。
设计意图:通过直观的函数图像,引发学生对奇偶性的初步感知,为后续教学做好铺垫。
2. 探索奇偶性的定义:教师引导学生逐步推导奇偶性的定义,并解释其含义。
在此过程中,教师可借助具体函数进行说明,帮助学生理解。
例如,对于函数f(x),如果对于定义域内的任意x,都有f(-x)=-f(x),则称函数f(x)为奇函数;如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数。
设计意图:通过逐步推导,帮助学生理解奇偶性的定义,并强调定义中的关键条件。
3. 实例分析:教师展示一些具体的奇偶函数图像,引导学生观察并分析它们的性质。
学生可尝试用自己的语言描述奇偶函数的特征,如单调性、对称性等。
设计意图:通过实例分析,帮助学生加深对奇偶性概念的理解,并锻炼其分析能力。
4. 探究奇偶性的应用:教师引导学生思考奇偶性在数学及其他领域中的应用,如代数问题、几何问题等。
学生可分组讨论,交流想法,最后由教师进行总结。
函数的奇偶性知识提要》》》 1. 奇、偶函数的概念【注意】(1)函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.一个函数只有定义域关于原点对称,这个函数才有可能是奇函数(或偶函数),如果定义域不关于原点对称,一定不具有奇偶性。
反之,如果一个函数具有奇偶性,那么它的定义域一定关于原点对称.。
(2)是为奇函数的既不充分也不必要条件,但如果奇函数在处有定义,必有 (3)偶函数不一定与y 轴相交(4)函数既是奇函数也是偶函数; 常函数为偶函数.奇偶性定义图像特征定义域特点表达式的常见变形偶函数设函数定义域为D,如果,都有且,那么函数是偶函数图像关于 轴对称定义域关于原点对称;奇函数设函数定义域为D,如果,都有且,那么函数是奇函数图像关于 原点对称定义域关于原点对称;0)0(=f )(x f )(x f 0=x 0)0(=f 0)(=x f )0()(≠=c c x f )(x f D x ∈∀D x ∈-)()(x f x f =-)(x f y |)(|)()(x f x f x f =-=)(x f D x ∈∀D x ∈-)()(x f x f -=-)(x f 0)()(=-+x f x f2. 奇、偶函数的性质(1)若奇函数在处有定义,即有意义,则;(2)奇函数的图象关于原点对称,偶函数的图象关于轴对称,反之也成立.(3)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(4)在公共定义域内:①奇+奇=奇;②偶+偶=偶;③奇×奇=偶;④偶×偶=偶;⑤奇×偶=奇.方法提炼》》》》1.函数奇偶性的判断方法方法解读适合题型定义法确定定义域,判断是否关于原点对称。
若函数的定义域不是关于原点对称的区间,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判断与的关系函数解析式较简单,抽象函数等图像法奇(偶)函数的充要条件是它的图象关于原点(或轴)对称.函数图像容易确定、分段函数等性质法在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.组合函数、复合函数温馨提示(1)判断函数的奇偶性应树立“定义域优先的原则”;(2)对于较复杂的函数解析式,可先对其进行化简,在进行判断.)(xf0=x)0(f0)0(=fy)(xf)(xf-y2.函数奇偶性的应用技巧技巧解读求函数解析式中参数的值利用待定系数法求解,根据得到待求参数的恒等式,由系数的对等性得到系数的值或者方程(组),进而得出参数的值.求函数解析式抓住奇偶性,讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而求得的解析式.巧妙构造造奇偶函数求函数值若题设条件给出的函数不具备奇偶性,但通过变形转化为一个新的函数,进而能够确定奇偶性,便可利用此性质求解复杂式子的值,充分体现转化思想和构造技巧的应用.温馨提示(1)利用奇函数的性质求解函数的解析式需注意当时的情况,不能丢掉.(2)利用奇函数的性质求值可利用在定义域R上为奇函数,得到,或者是等特殊值,从而求得参数值.常考题型:题型一、函数奇偶性概念理解题型二、函数奇偶性的判定题型三、函数奇偶性求函数值题型四、函数奇偶性求参数题型五、函数奇偶性与单调性结合——比较大小题型六、函数奇偶性与单调性结合——解不等式题型七、利用函数奇偶性求对称区间上的函数解析式题型八、利用奇偶性构造方程组求解析式题型九、与函数奇偶性、单调性相关的综合解答题)()(=-±xfxf)(xf)(xf=x)(xf)0(=f0)1()1(=+-ff题型一、函数奇偶性概念理解 下列命题:①偶函数的图像一定与轴相交;②奇函数的图像一定通过原点; ③既是奇函数又是偶函数的函数只能是; ④偶函数的图像关于轴对称.⑤奇函数的图像关于原点对称 其中正确的是_______________ 题型二、函数奇偶性的判定 【例1】判断下列函数的奇偶性(1) (2)(3) (4)(5);(6)(7) (8);(9)【练习1】(1) ; (2)(3); (4) (5)(6)y ()()0R f x x =∈y 4)(x x f =5)(x x f =xx x f 1)(+=21)(x x f =122)(2++=x x x x f 232)(x x x f -=2211)(x x x f -+-=()2f x x =-⎩⎨⎧>+-<+=00)(22x x x x x x x f ,,2432)(xx x f +=y =()1xf x x =-()1,0,1,0.x x f x x x +>⎧=⎨-<⎩2532)(x x x f +=4212)(xx x f +=【例2】(1)(多选)下列函数是奇函数的是 ( )A .,()B .C .D . (2)下列函数是奇函数,且在定义域内单调递增是 ( ) A .B .C .D .(3)(多选)下列函数中,既是偶函数又在上单调递增的函数是 ( ) A . B . C . D .【练习2】(1)(多选)下列函数中,既是偶函数又在区间单调递增的是 ( )A . B. C . D . (2)(多选)下列函数是偶函数,且在上单调递增的是 ( )A .. C . D .【例3】设是R 上的任意函数,则下列叙述正确的是 ( )A.是奇函数B.C.是偶函数D.是偶函数【练习3】(1)(2014课标Ⅰ,理3)设函数的定义域都为R,且是奇函数,是偶函数,则下列结论中正确的是 ( )A )是偶函数 B.是奇函数 C.是奇函数 D.是奇函数(2)已知奇函数与偶函数的定义域、值域均为R ,则 ( ) A .是奇函数 B .是奇函数 C .是奇函数D .是偶函数题型y x =[0,1]x ∈23y x =3y x=||y x x =y =3y x x =-1y x=-y =(0,)+∞y x =||1y x =+2y x =21y x =-(0,)+∞22y x =+2y x =-1y x x=+1||-=x y ()0,x ∈+∞()f x =()f x x =()2f x x x =+()2(1)f x x =+)(x f )()(x f x f -|)(|)(x f x f -)()(x f x f --)()(x f x f -+)()(x g x f ,)(x f )(x g )()(x g x f )(|)(|x g x f |)(|)(x g x f |)()(|x g x f ()f x ()g x ()()f x g x +()()f x g x ()()f x g x ()f g x ⎡⎤⎣⎦题型三、函数奇偶性求函数值【例1】已知是上的奇函数,且时,,则. 【例2】若是定义在上的奇函数,当时,,则.【例3】已知,且,则 【例4】已知函数是上的偶函数,若,则_________ 【例5】已知为奇函数,则___________ 【练习】1.已知函数是定义域为的奇函数,当时,,则_____2.已知为定义在R 上的奇函数,当时,,则____________3.已知,(是常数),且,则的值为.4.已知是定义在上的奇函数,若 ,则___________ 题型四、函数奇偶性求参数 【例题剖析】1.已知奇函数的定义域为,则实数__________.2.已知函数是偶函数,则__________.3.已知是定义在上的偶函数,那么的值是______4.设是定义在上的奇函数,则_______5.已知函数是偶函数,则______.6.若函数奇函数,则=_________7.已知函数是奇函数,且,则_________ )(x f R 0>x 142)(2++-=x x x f _____)1(=-f ()f x R 0x >()258f x x x=+-()()05f f +-=2)(35++-=bx ax x x f 17)5(=-f ______)5(=f ()2y xf x =+R ()32f -=()3f =(1)1y f x =++()()02f f +=()f x R 0x >()231=-+f x x x ()3f -=)(x f 0<x 12)(2+-=x x x f =+)0()2(f f 5)(35+++=cx bx ax x f c b a ,,9)5(=f )5-(f ___3)2(-+=x f y R 4)1(=f =)3(f ()y f x =()2,1a a -a =()()21f x x a =++a =bx ax x f +=2)(]21[a a ,-b a +()()322f x x a x x =---+2,3b b b ⎡⎤---⎣⎦()f b =()()322x xx a f x -=⋅-=a ))(12()(a x x xx f -+=a 1)(2++=x b ax x f ()225f =12f ⎛⎫= ⎪⎝⎭8.已知函数的图象关于原点中心对称,则23)1()(x a x x f ++=______=a【练习】 1.已知定义在上的函数是奇函数,则实数的值为______. 2.若为偶函数,则实数3.已知函数是偶函数,定义域为,则. 5.已知定义在上的函数满足,且当时,,,则________6.若为奇函数,则__________7.若函数是定义在上的偶函数,则_________题型五、函数奇偶性与单调性结合——比较大小 【例题剖析】1.已知偶函数在上单调递减,则下列结论正确的是( )A .B .C .D .2.已知是奇函数,且在区间上单调递增,则,,的大小关系是( )A .B .C .D .【练习】1.设函数的定义域为R ,对于任意实数x 总有,当时,单调递增,则,,的大小关系是( )22,a a -⎡⎤⎣⎦()y f x =a )4)(()(-+=x a x x f ______=a b a bx ax x f +++=3)(2]21[a a ,-____)0(=f R ()f x ()()0f x f x -+=0x ≤()22xaf x bx =-+()10f =()3f =()()()211f x x a x a =+++-=a ()21f x x ax =++(,22)b b --2b f ⎛⎫= ⎪⎝⎭()f x (],0∞-()()()152f f f ->>()()()215f f f >->()()()125f f f ->>()()()521f f f >>-()f x [0,)+∞()0.5f -()1f -()0f ()()()0.501f f f -<<-()()()10.50f f f -<-<()()()00.51f f f <-<-()()()100.5f f f -<<-()f x ()()f x f x -=[)0,x ∈+∞()f x ()2f -()πf ()3f -A . B . C .D .()()()π32f f f >->-()()()2π3f f f ->->()()()3π2f f f -<-<()()()2π3f f f -<-<2.若偶函数在上单调递增,则,,的大小关系是( )A .B .C .D .3.若奇函数在上是减函数,则下列关系式中成立的是( )A .B .C .D .题型六、函数奇偶性与单调性结合——解不等式【例1】(1)设函数y =f (x )为上的偶函数,且对任意的均,则满足的实数的范围是____________(2)已知定义在上的偶函数在上为减函数,且,则实数的取值范围是__________(3)已知定义在上的奇函数在区间上是减函数,若,则实数的取值范围为__________.(4)定义在上的奇函数,当时,单调递增,则不等式的解集是__________(5)已知函数是定义在上的偶函数,当时,,则使得成立的的取值范围是__________]2,2[-)(x f ]2,0[)()1(m f m f <-m ()f x (0,)+∞(a f =π2b f ⎛⎫= ⎪⎝⎭23c f ⎛⎫= ⎪⎝⎭b ac <<b c a <<a c b <<c a b <<()y f x =(),0-∞523634f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭352463f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭532643f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭532643f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R (]()1212,,0x x x x ∞∈-≠()()()21210f x f x x x ⎡⎤--<⎣⎦()()121f x f x +<-x [4,4]-()f x [0,4](1)(2)f x f +>-x R ()f x [0,)x ∈+∞()f x ()()2110f x f ++≥()f x R 0x ≥()221f x x x =-+()()21f f x ->+x (6)已知函数是定义域为的奇函数,当时,.若,则的取值范围为__________()f x R 0x ≥()()2f x x x =+()()3370f m f m ++->m【练习1】(1)已知是定义在上的偶函数,且在区间单调递减,则不等式的解集为__________(2)定义在上的奇函数是减函数,若,实数的取值范围为__________.(3)奇函数在上单调递增,且,则满足的x的取值范围__________(4)已知函数,且,则实数的取值范围是_________(5)已知函数是定义在上的偶函数;且在上单调递增,若对于任意的,不等式恒成立,则的取值范围________________【例2】(1)已知是奇函数,且在内是减函数,又,则的解集______(2)定义在上的奇函数在上单调递减,且,则满足的x 的取值范围是________【练习2】(1)已知函数是偶函数,若在上单调递增,,则的解集为______(2)定义在上的奇函数满足对任意的,有,且,则不等式的解集为____________(3)定义在上的奇函数在上单调递增,且,则不等式的解集为____________()f x R [)0,+∞()()121f x f x ->+)1,1(-)(x f 0)31()1(<-+-a f a f a()f x [)0,+∞()23f =()313f x -≤-≤()()4f x x x =+()()2230f a f a +-<a ()y f x =R (],0-∞x ∈R ()()21f ax f x >+a ()f x (0,)+∞(1)0f =()0x f x ⋅<R ()f x (),0-∞()30f =()()10x f x +≥()f x ()0,∞+()10f =()0f x x<R ()f x ()()1212,0,x x x x ∈+∞≠()()12120f x f x x x ->-()20f =()()10x f x -≤R ()f x ()0,∞+103f ⎛⎫= ⎪⎝⎭()202f x x ≤-题型七、利用函数奇偶性求对称区间上的函数解析式 【例1】(1)已知函数是定义在上的奇函数,当时,.则当时,的解析式为________(2)函数是定义在上的奇函数,已知当时,,求函数的解析式________(3)已知函数是定义在上的偶函数,当时,,则函数在上的表达式为________.(4)已知函数是定义在上的偶函数,当时,,则当x ∈(0,+∞)时,_____________【练习1】(1)已知是定义在上的奇函数,当时,,求时,函数的解析式___________(2)已知函数是定义在上的奇函数,当时,,求的解析式.(3)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x (x ―4),则函数f (x )解析式为__________(4)是定义在R 上的奇函数,当时,,则的表达式为_____题型八、利用奇偶性构造方程组求解析式【例1】是奇函数,是偶函数,且,求,的解析式.【练习1】已知函数为奇函数,函数为偶函数,,则_______()f x R 0x ≥()()1f x x x =+0x <()f x ()f x R 0x >2()23f x x x =--()f x ()f x R 0x ≥()()24f x x x =+()f x R ()f x (),∞∞-+(),0x ∞∈-()2f x x x =-()f x =()y f x =R 0x ≥2()2f x x x =-+0x <()f x ()f x R 0x <()22f x x x=-()f x ()f x 0x ≥()22f x x x =-+()f x ()f x ()g x ()()11f xg x x +=-()f x ()g x ()f x ()g x 2()()1f x g x x x +=-+(2)f =题型九、与函数奇偶性、单调性相关的综合解答题 【例1】已知函数,且其定义域为. (1)判定函数的奇偶性;(2)利用单调性的定义证明:在上单调递减;(3)解不等式.【例2】已知函数是定义在上的奇函数,且. (1)求函数的解析式;(2)判断函数在上的单调性,并用定义证明;(3)解不等式.【例3】已知函数f(x)=x 2―1x. (1)判断函数f (x )的奇偶性,并证明;(2)证明f (x )在区间(0,+∞)上是增函数;(3)求函数f (x )在区间[―4,―2]上的最大值和最小值.【例4】已知函数是上的偶函数,当,,(1)求函数的解析式;(2)若,求实数的取值范围.2()1x f x x =-(1,1)-()f x ()f x (0,1)()2(1)10f m f m -+-<()21ax b f x x -=+[]1,1-()11f =-()f x ()f x []1,1-()()210f t f t +->()f x R 0x ≤2()43f x x x =-+-()f x (21)(1)f m f m -<+m【练习1】已知函数f (x )=ax +b 1+x 2是定义在(―1,1)上的奇函数,且f (12)=25. (1)求函数f (x )的解析式;(2)用定义法证明函数f (x )的单调性;(3)若f (m )+f (2m ―1)>0,求实数m 的取值范围.【练习2】已知函数是定义在上的奇函数,且. (1)求的值;(2)判断的单调性,并用定义法证明你的结论;(3)求使成立的实数a 的取值范围.()21mx n f x x +=+[]1,1-()11f =,m n ()f x ()2(1)10f a f a -+-<。
高中数学第二章《函数》第三节函数的奇偶性(第一课时)讲课稿德阳市中江城北中学 姚志华教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)一:情景设置提出问题:同学们,上一节我们学习了的函数的单调性,大家还记得我们是用什么方式来研究的吗?学生回答(众):数形结合教师分析:对,我们是“利用函数的图象来理解函数的性质”,是先从函数的图象看出“随着自变量的增大函数值随之增大或减小”,然后利用函数解析式(从数的角度)进行研究。
这一节我们继续学习函数的另一个性质。
请大家请观察一下站在你们面前的老师具有怎样的数学特征? 把老师画下来是个“轴对称图形”,左耳与右耳是对称的,左眼与右眼是对称的,左手与手耳是对称的,这是我们初中学过的对称图形知识,那么大家还记得什么叫轴对称图形?什么叫中心对称图形?学生回答:沿着一条直线对折后的两部分能够完全重合的图形叫轴对称图形。
图形围绕某一个点旋转1800得到的图形与原图形重合的图形叫中心对称图形。
大自然的物质结构是用对称语言写成的,生活中的对称图案、对称符号丰富多彩,十分美丽(演示4个图形)。
教师分析:这一章我们学习的是函数,函数的图象也是一种图形,当函数的图像也是轴对称图形或中心对称图形时,我们又如何利用函数的解析式来刻画函数图象的几何特征呢?二:基本知识(一)偶函数概念教师提问:请大家观察函数y=x 2与函数y=|x|-2的图像有什么特征?大家能否用对称的观点来研究函数的图象呢?(1)反映在形:函数图像是轴对称图形,对称轴是y 轴。
即若点(x ,f (x ))是函数y=x 2图像上的任意一点,则它关于y 轴的对称点(-x ,f (-x ))也在函数y=x 2的图像上,这样的函数称之为偶函数。
(2)反映在数上:对于函数y=x 2有x … -3 -2 -1 0 1 2 3 … f (x )=x 2…94 1 0 149…对于函数y=|x|-2有x … -3 -2 -1 0 1 2 3 … f (x )=|x|-2… -112 1 0 -1 …f (-21)=(-21)2=(21)2=f (21);……(不完全归纳法),这里的数是取之不完的,因此与函数单调性一样,利用字母x 代替。
函数的奇偶性知识集结知识元根据奇偶性求值知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲根据奇偶性求值例1.设y=f(x)是定义域为R的偶函数,若当x∈(0,2)时,f(x)=|x-1|,则f(-1)=()A.0B.1C.-1D.2例2.已知定义域为R的奇函数f(x)的图象关于直线x=1对称,且当0≤x≤1时,f(x)=x3,则=()A.B.C.D.例3.下列函数,既是偶函数,又在(-∞,0)上单调递增的是()A.f(x)=-(x-1)2B.C.f(x)=3|x|D.f(x)=cos x例4.已知函数f(x)和f(x+2)都是定义在R上的偶函数,当x∈[0,2]时,f(x)=2x,则=()A.2B.C.D.函数的奇偶性中的含参数问题知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲函数的奇偶性中的含参数问题例1.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=.例2.若f(x)=2x+a•2﹣x为奇函数,则a=.例3.设函数f(x)=为奇函数,则实数a=.根据函数的奇偶性求函数解析式知识讲解一、奇函数1、定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.2.点拨(1)如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;(2)若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;(3)已知奇函数大于0的部分的函数表达式,求它的小于0的函数表达式,如奇函数f (x),当x>0时,f(x)=x2+x,那么当x<0时,﹣x>0,有f(﹣x)=(﹣x)2+(﹣x)⇒﹣f(x)=x2﹣x⇒f(x)=﹣x2+x3.命题方向奇函数是函数里很重要的一个知识点,同学们一定要熟悉奇函数的概念和常用的解题方法,它的考查形式主要也就是上面提到的这两种情况﹣﹣求参数或者求函数的表达式.二、偶函数1.定义如果函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.2.点拨(1)运用f(x)=f(﹣x)求相关参数,如y=ax3+bx2+cx+d,那么a+c是多少?(2)结合函数图象关于y轴对称求函数与x轴的交点个数或者是某个特定的值,如偶函数f (﹣2)=0,周期为2,那么在区间(﹣2,8)函数与x轴至少有几个交点.3.命题方向与奇函数雷同,熟悉偶函数的性质,高考中主要还是以选择题或者填空题的形式考查对偶函数性质的灵活运用.例题精讲根据函数的奇偶性求函数解析式例1.设f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+)+1,则f(x)表达式为.例2.'已知函数y=f(x)为R上的奇函数,当x>0时,,求f(x)在R上的解析式.'例3.已知f(x)是R上的奇函数,且当x∈(0,+∞)时,,则f(x)的解析式为.备选题库知识讲解本题库作为知识点“函数奇偶性的定义”的题目补充.例题精讲备选题库例1.已知一个奇函数的定义域为{-1,2,a,b},则a+b=()A.-1B.1C.0D.2例2.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2-2x,则当x<0时,f(x)的解析式是()A.f(x)=-x(x+2)B.f(x)=x(x-2)C.f(x)=-x(x-2)D.f(x)=x(x+2)例3.若函数f(x)(f(x)≠0)为奇函数,则必有()A.f(x)∙f(-x)>0B.f(x)∙f(-x)<0C.f(x)<f(-x)D.f(x)>f(-x)例4.y=f(x)为奇函数,当x>0时f(x)=x(1-x),则当x<0时,f(x)=______。
《函数奇偶性》教学设计科目:数学教学对象:高一学生课时:第一课时提供者:杨瑞单位:开封市第二十五中学一、教学内容分析:奇偶性是既函数的单调性之后学生接触到的又一重要性质,在高考中占有重要的地位,也是高考中的热点,它常常会在和函数的单调性、周期性相结合的情况下出现在高考题中。
为了今后更加优化对本部分内容的教学,二、教学目标:1.了解函数的奇偶性及其含义;2.学会运用函数图象理解和研究函数的性质;3.了解函数奇偶性与图象的对称性之间的关系;三、学习者特征分析(说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。
最好说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等)四、教学策略选择与设计:多媒体辅助教学,合作探究的教学方法;五、教学重点及难点:教学重点:函数的奇偶性及其含义;教学难点:判断函数的奇偶性的方法;易混点:函数奇偶性与图象的对称性之间的关系。
六、教学过程:一、课堂引入“对称”是大自然的一种美,请大家欣赏一组图片,并判断图形是否具有对称性?四川曹家大院一景通过观察,同学们发现了这些图形有的关于一条直线对称,有的关于一个点对称,而这样的对称在数学中也有体现。
二、 新课探究观察下列两个函数图象并思考以下问题: (1)这两个函数图象有什么共同特征吗?(2)相应的两个函数值对应表是如何体现这些特征的?结论:这两个函数的解析式都满足:f(-3)=f(3); f(-2)=f(2); f(-1)=f(1). 可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内任意一个x ,都有f(-x)=f(x). 定义:1.偶函数一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.雪铁龙 奔驰观察函数f(x)=x 和f(x)=x1的图象,类比偶函数的推导过程,给出奇函数的定义和性质?2.奇函数一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.思考:偶函数与奇函数图象有什么特征呢?偶函数的图象关于y 轴对称, 反过来,如果一个函数的图象关于y 轴对称,那么这个函数为偶函数且()(||)f x f x =奇函数的图象关于原点对称;反过来,如果一个函数的图象关于原点对称,那么这个函数为奇函数.且f(0)=0注意:1、如果函数()y f x =是奇函数或偶函数,我们就说函数()y f x =具有奇偶性;函数的奇偶性是函数的整体性质;2、根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数也不是偶函数;3、由函数的奇偶性定义可知,函数具有奇偶性的一个先决条件是,对于定义域内的任意一个x ,则x -也一定是定义域内的一个自变量(即定义域关于原点对称).如果一个函数的定义域不关于“0”(原点)对称,则该函数既不是奇函数也不是偶函数;4、可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法 用定义判断函数奇偶性的步骤是(1)、先求定义域,看是否关于原点对称;(2)、再判断()()f x f x -=- 或 ()()f x f x -= 是否恒成立; (3)、作出相应结论.若()()()()0,()f x f x f x f x f x -=--=或则是偶函数; 若()()()()0,()f x f x f x f x f x -=--+=或则是奇函数 三、 巩固应用例1.根据下列函数图象,判断函数奇偶性例2.判断下列函数的奇偶性(1)2()[1,2]f x x x =∈- 为非奇非偶函数(2)32()1x x f x x -=-为非奇非偶函数(3)x x x f +=3)( 奇函数 常用结论:(1) . 两个偶函数相加所得的和为偶函数. (2) . 两个奇函数相加所得的和为奇函数.(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数. (4) . 两个偶函数相乘所得的积为偶函数. (5) . 两个奇函数相乘所得的积为偶函数.(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数. 四、知识小结• 奇偶性定义:对于函数f(x),在它的定义域内,把任意一个x 换成-x ,(x,-x 均在定义域内)xxx]2,1[,)(2-∈=x x x f x偶奇奇偶①若有f(-x)=-f(x), 则f(x)叫做奇函数;②若有f(-x)=f(x), 则f(x)叫做偶函数。
1.3.2函数的奇偶性教学设计一、 学习内容分析本节选自《一般高中课程标准数学教科书——数学必修1》(人教A 版)第一章集合与函数概念的第三节函数的基本性质其次小节内容,函数的奇偶性是继函数的单调性之后函数的其次大性质,它既是函数概念的连续和拓展,也是今后争辩三角函数、二次曲线等学问的重要铺垫,而且机敏的应用函数的奇偶性常使简单的不等式问题、方程问题、作图问题等变得简洁明白。
此外具有奇偶性的函数格外有美感,因此本节课是数学美的集中体现。
二、 教学目标1. 理解偶函数、奇函数的概念,会用奇偶函数的定义去推断一个函数是否具有奇偶性;2. 把握偶函数的图像关于y 轴对称,奇函数的图像关于原点对称的特性,了解函数具有奇偶性时,其定义域具有的特点;3. 通过函数奇偶性概念的形成过程,培育观看、比较、分析概括的力量和数形结合、从特殊到一般的数学思想方法;4. 通过函数奇偶性的学习,感受数学之美。
三、 教学重难点1. 教学重点:函数奇偶性的定义及图像特征。
2. 教学难点:函数奇偶性概念的形成。
四、 教学过程(一) 情境导航,引入新课呈现生活中具有轴对称、中心对称特点的事物的图片,让同学体会其美感,再让同学举例其它的具有轴对称和中心对称特点的事物。
预设:同学回答剪纸、蝴蝶、课桌、黑板…… 追问:什么是轴对称图形?什么是中心对称图形?预设:把一个图形沿着某一条直线对折,这条直线两侧的图形能完全重合,则是轴对称图形。
把一个图形围着某个点旋转180度,这个图形能和原来的图形重合,则是中心对称图形。
(二) 构建概念,突破难点数学中也有很多具有对称性的例子,下面我们观看2个函数图象,来看看它们的图象有什么特性。
① 2(),f x x x R =∈ ② ()2,f x x x R =-∈师生活动:同学观看函数图像,老师提问。
问题1:认真观看,这两个函数图象有什么共同特征? 问题2:相应的两个函数值表示如何体现这些特征的? 师生活动:同学思考、争辩后,老师请同学回答。
§1.3.2函数的奇偶性一.教学目标1.知识与技能:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;2.过程与方法:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.3.情态与价值:通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力.二.教学重点和难点:教学重点:函数的奇偶性及其几何意义教学难点:判断函数的奇偶性的方法与格式三.学法与教学用具学法:学生通过自己动手计算,独立地去经历发现,猜想与证明的全过程,从而建立奇偶函数的概念.教学用具:三角板 投影仪四.教学思路(一)创设情景,揭示课题“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性?观察下列函数的图象,总结各函数之间的共性.2()f x x = ()||1f x x =- 21()x x x=y yx 0 x 通过讨论归纳:函数()f x x =是定义域为全体实数的抛物线;函数()||1f x x =-是定义域为全体实数的折线;函数()f x 是定义域为非零实数的两支曲线,各函数之间的共性为图象关于y 轴对称.观察一对关于轴对称的点的坐标有什么关系?归纳:若点(,())x f x 在函数图象上,则相应的点(,())x f x -也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.(二)研探新知函数的奇偶性定义:1.偶函数一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.(学生活动)依照偶函数的定义给出奇函数的定义.2.奇函数一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x -也一定是定义域内的一个自变量(即定义域关于原点对称).3.具有奇偶性的函数的图象的特征偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.(三)质疑答辩,排难解惑,发展思维.例1.判断下列函数是否是偶函数.(1)2()[1,2]f x xx =∈- (2)32()1x x f x x -=- 解:函数2(),[1,2]f x x x =∈-不是偶函数,因为它的定义域关于原点不对称. 函数32()1x x f x x -=-也不是偶函数,因为它的定义域为}{|1x x R x ∈≠且,并不关于原点对称. 例2.判断下列函数的奇偶性(1)4()f x x = (2)5()f x x = (3)1()f x x x =+(4)21()f x x= 解:(略)小结:利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定()()f x f x -与的关系;③作出相应结论:若()()()()0,()f x f x f x f x f x -=--=或则是偶函数;若()()()()0,()f x f x f x f x f x -=--+=或则是奇函数.例3.判断下列函数的奇偶性:①()(4)(4)f x lg x g x =++- ②2211(0)2()11(0)2x x g x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩ 分析:先验证函数定义域的对称性,再考察()()()f x f x f x --是否等于或. 解:(1){()f x x x 的定义域是|4+>0且4x ->}0={|4x -<x <}4,它具有对称性.因为()(4)(4)()f x lg x lg x f x -=-++=,所以()f x 是偶函数,不是奇函数.(2)当x >0时,-x <0,于是 2211()()1(1)()22g x x x g x -=---=-+=- 当x <0时,-x >0,于是222111()()11(1)()222g x x x x g x -=-+=+=---=- 综上可知,在R -∪R +上,()g x 是奇函数.例4.利用函数的奇偶性补全函数的图象.教材P 35思考题:规律:偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.例5.已知()f x 是奇函数,在(0,+∞)上是增函数.证明:()f x 在(-∞,0)上也是增函数.证明:(略)小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.(四)巩固深化,反馈矫正.(1)课本P 36 练习1.2 P 39 B 组题的1.2.3(2)判断下列函数的奇偶性,并说明理由.①()0,[6,2][2,6];f x x =∈--②()|2||2|f x x x =-++③()|2||2|f x x x =--+ ④2()(1)f x lg x x =++(五)归纳小结,整体认识.本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.(六)设置问题,留下悬念.1.书面作业:课本P 44习题A 组1.3.9.10题2.设()f x R x 在上是奇函数,当>0时,()(1)f x x x =-试问:当x <0时,()f x 的表达式是什么?解:当x <0时,-x >0,所以()(1)f x x x -=-+,又因为()f x 是奇函数,所以()()[(1)](1)f x f x x x x x =--=--+=+.A 组一、选择题:1.已知函数2|2|4)(2-+-=x x x f ,则它是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数2.已知函数32)1()(2++-=mx x m x f 为偶函数,则f (x )在区间(-5,-2)上是( )A .增函数B .减函数C .部分为增函数,部分为减函数D .无法确定增减性3.函数)1(2-=x x y 的大致图象是( )4.如果奇函数()f x 在区间[]3,7上是增函数且最小值是5,那么()f x 在区间[]7,3--上A 、是增函数且最小值是—5B 、是增函数且最大值是—5C 、是减函数且最小值是—5D 、是减函数且最大值是—55.已知||1)(2x x x f +=在[—3,—2]上是减函数,下面结论正确的是( ) A .f (x )是偶函数,在[2,3]上单调递减B .f (x )是奇函数,在[2,3]上单调递减C .f (x )是偶函数,在[2,3]上单调递增D .f (x )是奇函数,在[2,3]上单调递增6.()f x 为奇函数,在()0,+∞上()()1f x x x =-,则它在(),0-∞上表达式 ( )A 、()()1f x x x =-B 、()()1f x x x =-+C 、()()1f x x x =+D 、()()1f x x x =--二、填空题:7.函数cx bx x x f ++=23)(是奇函数,函数5)2()(2+-+=x c x x g 是偶函数,则b=______,c=_______。
§1.3.2函数的奇偶性(1)教学目标:知识目标——理解函数的奇偶性并能熟练应用数形结合的数学思想解决、推导问题;能应用奇偶性的知识解决简单的函数问题。
能力目标——通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想;培养学生从特殊到一般的概括归纳问题的能力。
情感目标—— 通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学习积极性;养成积极主动,勇于探索,不断创新的学习习惯和品质。
教学分析:教学重点:函数的奇偶性的概念及其建立过程,判断函数的奇偶性的步骤; 教学难点:对函数奇偶性概念的理解与认识 教学方法:诱思引探鼓励法 教学工具:多媒体课件 教学过程一、 创设情景,激发兴趣(多媒体投放图片) 二、 实例引入,初步感知请比较下列两组函数图象,从对称的角度,你发现了什么 ?2()f x x = ||)(x x f =y 轴对称师:再观察表1和表2,你看出了什么? 表1x -3 -2 -1 0 1 2 3 f(x)=|x|321 0123表2生:当自变量x 取一对相反数时,相应的两个函数值相等。
三、实验体验,加以体会 【探究】图象关于轴对称的函数满足:对定义域内的任意一个,都有。
反之也成立吗?(超级链接几何画板演示)师:从以上的讨论,你能够得到什么?(师生讨论,共同完善,形成概念,老师板书偶函数定义)一般地,如果对于函数的定义域内的任意一个,都有,那么称函数是偶函数;师:仿此请观察下面两组图象,你能给出关于原点对称的函数图象与式子之间的关系,进而给出奇函数的定义吗?一般地,如果对于函数的定义域内的任意一个,都有,那么称函数是奇函数。
问题1:具有奇偶性函数的图象的对称如何?师:偶函数的图象关于y 轴对称,奇函数的图象关于原点对称。
问题2:函数的奇偶性是怎样的一个性质?与单调性有何区别?师:函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性 。