高三第一学期期中考试数学答案
- 格式:docx
- 大小:728.53 KB
- 文档页数:4
天津市部分区2024~2025学年度第一学期期中练习高三数学(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,练习用时120分钟。
使用答题卡的地区,将答案写在答题卡上:不使用答题卡的地区,将答案写在练习卷上。
第Ⅰ卷(共45分)注意事项:本卷共9小题,每小题5分,共45分。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}0,1,2,3,4,5U =,集合{}0,3M =,{}3,4N =,则()U M N = ð()A .{}0,2,3,5B .{}0,1,3,4C .{}0,1,2,3,5D .{}0,2,3,4,52.已知()1,2a =- ,()1,1b = ,则a b -=()A B .1C .D .53.若x ,y ∈R ,则“22x y =是“33xy=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知等差数列{}n a 的前n 项和为n S ,若918S =,则28a a +=()A .4B .3C .2D .15.函数()f x 的部分图象如下图所示,则()f x 的解析式可能为()A .()()e e sin x xf x x -=-B .()()e e cos x xf x x -=-C .()()e e sin xx f x x--=D .()()e e cos xx f x x--=6.已知cos cos sin ααα=+,则tan 4πα⎛⎫-= ⎪⎝⎭()A .1-B .12-C .1D .1-7.已知0.13a =,b =,3log 1.3c =,则a ,b ,c 的大小关系为()A .a b c<<B .c b a<<C .c a b<<D .a c b<<8.已知函数()()2ln 1f x x a x =+-有极值点,则实数a 的取值范围为()A .(],0-∞B .(),0-∞C .10,2⎛⎫ ⎪⎝⎭D .1,2⎛⎤-∞ ⎥⎝⎦9.已知函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭在区间,012π⎛⎫- ⎪⎝⎭上单调递增,且在区间()0,π上有且仅有2个零点,则ω的取值范围为()A .47,33⎛⎫⎪⎝⎭B .47,33⎛⎤⎥⎝⎦C .4,23⎛⎫⎪⎝⎭D .4,23⎛⎤⎥⎝⎦第Ⅱ卷注意事项:本卷共11小题,共105分。
2024-2025学年度上学期高三年级期中I 考试数学科试卷(答案在最后)命题人:第I 卷一、单选题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,复数1z 、2z在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为()A.15-B.15C.1i5- D.1i 52.等比数列{}n a 的公比为q ,前n 项和为n S ,则以下结论正确的是()A.“q >0”是“{}n a 为递增数列”的充分不必要条件B.“q >1”是“{}n a 为递增数列”的充分不必要条件C.“q >0”是“{}n a 为递增数列”的必要不充分条件D.“q >1”是“{}n a 为递增数列”的必要不充分条件3.函数()()e 1sin e 1xxx f x -=+,则=的部分图象大致形状是()A.B.C. D.4.某制药企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M (单位:mg /L )与时间t (单位:h )之间的关系为:0ektM M -=(其中0M ,k 是正常数).已知经过1h ,设备可以过速掉20%的污染物,则过滤一半的污染物需要的时间最接近()(参考数据:lg 20.3010=)A.3hB.4hC.5hD.6h5.若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A.718+-B.718- C.18-D.18-6.已知ABC V 是边长为点P 是ABC V 所在平面内的一点,且满足3AP BP CP ++=,则AP的最小值是()A.1B.2C.3D.837.已知4ln 3a π=,3ln 4b π=,34ln c π=,则a ,b ,c 的大小关系是A.c b a << B.b c a << C.b a c << D.a b c<<8.设函数()32||()e 1x f x x x=+-(44x -<<),若(21)(2)(12)f x f f x ++<-,则x 的取值范围是()A.31,22⎛⎫-- ⎪⎝⎭ B.31,22⎛⎫-⎪⎝⎭ C.1,2⎛⎫-∞-⎪⎝⎭D.3,2⎛⎫-+∞ ⎪⎝⎭二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知220,0,1a b a b ab >>+-=,下列不等式恒成立的是()A.112a b+≥ B.2a b +≥ C.332a b +≤ D.0323b <≤10.已知函数()()πsin 0,04f x A x B A ωω⎛⎫=++>> ⎪⎝⎭()A.若()f x 在区间π3π,44⎡⎤⎢⎥⎣⎦上单调,则0ω<≤B.将函数()y f x =的图像向左平移π2个单位得到曲线C ,若曲线C 对应的函数为偶函数,则ω的最小值为13C.若函数()y f x =在区间()0,π上恰有三个极值点,则91344ω<≤ D.关于x 的方程()22f x A B=+在()0,π上有两个不同的解,则522ω<≤11.已知()f x 是定义在R 上连续的奇函数,其导函数为()g x ,()()424f x f x =-,当[]2,1x ∈--时,()0g x '>,则()A.()g x 为偶函数B.()f x 的图象关于直线12x =对称C.4为()g x 的周期D.()g x 在2026x =处取得极小值第II 卷三、填空题:本题共3小题,每小题5分.12.已知向量()1,2a =-,()1,b λ= ,若a 与b 的夹角为锐角,则实数λ的取值范围是________.13.设实数x 、y 、z 、t 满足不等式1100x y z t ≤≤≤≤≤,则x zy t+的最小值为______.14.若存在正实数x ,使得不等式()2ln 2ln 00axa x a ⋅⋅-≤>成立,则a 的最大值为______.四、解答题:解答应写出文字说明、证明过程或演算步骤.15.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,5c 5c s os o a CA cb -=.(1)求c ;(2)若7b =,π3B =,点M 在线段BC 上,5AM =,求MAC ∠的余弦值.16.已知函数()()212ln 0af x x a x=-->.(1)当4a =时,求函数()f x 在点()()1,1f 处的切线方程;(2)设函数()f x 的极大值为()M a ,求证:()11M a a+≤.17.已知函数()()2ln 2f x x a x a x =+-+,()ln 1g x x x x a =--+,a ∈R .(1)讨论()f x 的单调性;(2)若()()1ln f x g x a x +≥+对任意1x ≥恒成立,求实数a 的取值范围.18.已知数列{}n a 满足递推关系,()2*1231n n n n a a ma n N a +++=∈+,又1=1a .(1)当1m =时,求数列{}n a 的通项公式;(2)若数列{}n a 满足不等式1n n a a +≥恒成立,求m 的取值范围;(3)当31m -≤<时,证明12111111112nn a a a +++≥-+++ .19.对于数列{}n a ,如果存在等差数列{}n b 和等比数列{}n c ,使得()n n n a b c n *=+∈N ,则称数列{}na 是“优分解”的.(1)证明:如果{}n a 是等差数列,则{}n a 是“优分解”的.(2)记()2*11ΔΔΔΔn n n n n n a a a a a a n ++=-=-∈N,,证明:如果数列{}na 是“优分解”的,则()2*Δ0n a n =∈N 或数列{}2Δn a 是等比数列.(3)设数列{}n a 的前n 项和为n S ,如果{}n a 和{}n S 都是“优分解”的,并且123346a a a ===,,,求{}n a 的通项公式.2024-2025学年度上学期高三年级期中I考试数学科试卷命题人:第I卷一、单选题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ACD【10题答案】【答案】CD【11题答案】【答案】ACD第II卷三、填空题:本题共3小题,每小题5分.【12题答案】【答案】1(,2)(2,)2∞--⋃-【13题答案】【答案】15##0.2【14题答案】【答案】1e ln 2四、解答题:解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)5;(2)1314.【16题答案】【答案】(1)690x y --=(2)证明见解析【17题答案】【答案】(1)答案见解析;(2)(,0]-∞.【18题答案】【答案】(1)21nn a =-;(2)3m ≥-;(3)证明见解析.【19题答案】【答案】(1)证明见解析(2)证明见解析(3)122n n a -=+。
北京市海淀区2024-2025学年高三上学期期中练习数学试题本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A={x|x ≤ 0或x>1},B={-2,0,1,2},则A ∩B=( ) A.{-2,2} B.{-2,1,2} C.{-2,0,2} D.{-2,0,1,2} 【分析]利用交集的定义可求得集合A ∩B.【解] 因为集合A={x|x ≤0或x >1},B={-2,0,1,2},则A ∩B={-2,0,2},故选:C. 2.若复数z 满足i ·Z=1-i ,则Z=( ) A. 1 + i B. -1 + i C. 1 -i D. -1 -i 【分析]根据给定条件,利用复数乘法运算计算即得. [解]由i ·z=1-i ,得-i ²∙z=(1-i)·(-i),所以z=-1-i.故选:D 3.若a<b<0,则下列不等式成立的是( ) A.a 2<b 2 B. a 2<ab C. ba >ab D.ba +ab ->2【分析]根据不等式的性质及基本不等式,逐项分析即可得解.【解]因为a<b<0,所以-a>-b>0,所以(−a)2>(−b)2,即a 2>b 2 ,故A 错误; 因为a<b<0,所以a 2> ab ,故B 错误;4. 已知 f(x) = sin xcos x ,则f'(π4) = ( ) A.1 B.2 C.-1 D.-2【分析]求出函数的导函数,计算得解. 【解]:因为f(x)= sin x cos x ,所以f'(π4) = 112=2.故选:B5. 下列不等式成立的是( )【分析]根据指数函数和对数函数的单调性判断各选项即可. 【解]因为函数y=log 0.3x 在(0,+∞)上单调递减,因为函数y=0.2x 在R 上单调递减,6. 若f(x)={x 2,x ≥a 2x +3,x <a在R 上为增函数,则a 的取值范围是( )A.[1,+∞)B.[3,+∞)C.[-1,3]D.(-∞,-1]U[3,+∞)【分析]根据分段函数的单调性列式运算得解.[解]因为f(x)是R 上单调递增函数所以{a ≥0a 2≥2a +3解得a≥3.所以实数a 的取值范围为[3,+∞),故选:B.画图像法:选B(7)已知向量a ⃗ = (x ,1),b⃗⃗=(-1,y),则下列等式中,有且仅有一组实数x ,y 使其成立的是 (A)a ⃗·b ⃗⃗=0 ( B) l a ⃗l+|b ⃗⃗| = 2 (C) |a ⃗| =|b ⃗⃗| (D) l a ⃗+b⃗⃗| = 2 解:分析A :a ⃗·b ⃗⃗=0,-x+y=0.x ,y 有无数组解. 分析B : l a ⃗l+|b ⃗⃗| = 2,a ⃗⃗⃗⃗·b⃗⃗=0,√x 2+1+√y 2+1=2,x=0,y=0, 有且仅有一组实数x ,y 使其成立的.故B 正确。
2024-2025学年度第一学期期中考试解析-高三上数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,i 为虚数单位,为z 的共轭复数,则( )A.B. 4C.D.2. 已知集合,,则( )A. B.C. D. 3. ( )A.B.D.24.已知向量,,其中,若,则( )A. 40B. 48C.D. 625. 已知的内角A ,B ,C 的对边a ,b ,c 成等比数列,则的最大值为( )A.B.C.D.6. 若定义在上的偶函数在上单调递增,则,,的大小关系为()A. B.C. D.7. 已知a ,且,,,则( )A.B. C.D. 8. 已知当时,恒成立,则实数a 的取值范围为( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.44i z =+z z i -=5(){}2024log 20250M x y x ==-<{}2026x N y y ==M N = (2024,2025)(,2025)-∞(0,)+∞(2025,)+∞4log 50.5=1215-()1,54a λ=+ ()2,8b λ=+ 0λ≥a b ∥ ()b a b ⋅-=34-ABC △B 6π3π2π23πR ()f x [)0,+∞1πf ⎛⎫- ⎪⎝⎭31f ⎛⎫- ⎪⎝⎭127f -⎛⎫⎪⎝⎭12117π3f f f -⎛⎫⎛⎫⎛⎫->>- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211π73f f f -⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211π73f f f -⎛⎫⎛⎫⎛⎫->-> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭121173πf f f -⎛⎫⎛⎫⎛⎫->>- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b ∈R 0b ≠1a b ≠-1sin 21a b a bα-=+ab =1cos 1cos αα-+πtan 4α⎛⎫+⎪⎝⎭1sin 1sin αα-+2πtan 4α⎛⎫+ ⎪⎝⎭0x >ln e ln x x ex x a -≥(],0-∞(20,e ⎤⎦(],1-∞[)e,+∞9. 已知且,则( )A. B. C.2D.10. 已知幂函数的图象经过点,下列结论正确的有( )A. B.是偶函数C. D.若,则11. 已知函数,则下列说法正确的有( )A. 的定义域为B. 有解C. 不存在极值点D. 三、填空题:本题共3小题,每小题5分,共15分.12. 曲线在点处的切线方程为______.13. 数列共有5项,前三项成等比数列,公比为q . 后三项成等差数列,公差为d ,且若第5项为1,第2项与第4项的和为18,第1项与第3项的和为35,则____________.14. 在中,若,,三点分别在边,,上(均不在端点上),则,,的外接圆交于一点O ,称为密克点.在梯形ABCD 中,,,M 为CD 的中点,动点P 在BC 边上(不包含端点),与的外接圆交于点Q (异于点P ),则BQ 的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知单位向量,满足.(1)求;(2)求在上的投影向量(用表示).16.(15分)0xy >21x y +=0y <102x <<42xy+≥22log log 0x y +<()f x 14,16⎛⎫⎪⎝⎭()00f =()f x ()12f '-=()()321f x f x ->+233,,4322x ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭()(1)log x f x x +=()f x ()0,+∞()2f x =()f x ()()()11f x f x x <+>21e x y x x -=-()1,0{}n a dq +=111A B C △1M 1N 1P 11A B 11B C 11C A 111A M P △111B M N △111C N P △60B C ∠=∠=︒22AB AD ==ABP △CMP △1e 2e121()23e e e ⋅+= 1232e e -125e e - 1e1e定义三阶行列式运算:,其中(i ,).关于x 的不等式的解集为M .(1)求M ;(2)已知函数在实数集单调递增,求a 的取值范围.17.(15分)函数(,,)的部分图象如图,和均在函数的图象上,且Q 是图象上的最低点.(1)求函数的单调递增区间;(2)若,,求的值.18. (15分)已知数列是首项为2,公比为4的等比数列,数列满足.(1)求数列和的通项公式;(2)求数列的前n 项和.19.(17分)已知函数(1)求的值;111213212223112233122331132132132231122133112332313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---ij a ∈R {}1,2,3j ∈10100001x x x->()()241,,e 22,x x a x x Mf x a x M⎧-+∈=⎨--∈⎩R ðR ()()sin f x A x ωϕ=+0A >0ω>π2ϕ<()1,0P ()4,2Q -()f x ()f x ()056f x =058,33x ⎡⎤∈⎢⎥⎣⎦0cos x π{}2na {}nb 321212222n n b b b b n -++++= {}n a {}n b n n a b ⎧⎫⎨⎬⎩⎭n S ()3f x x x =-()0f(2)设,当时,记在区间上的最大值为M ,最小值为m ,求的取值范围.高三期中考试题 数学参考答案1. D 【解析】由,可得.故选D.2. C 【解析】由可得,则;,故,则.故选C.3. C 【解析】由题意得.故选C 项.4. D 【解析】因为,,且,故,解得或(舍去),经检验当时,,故.故选D.5. B 【解析】由题意可得,由余弦定理可得,,,.故选B.6. .B 【解析】因为是定义在上的偶函数,所以,,又()()()ln 0g x a x x f f x =-+-(]1,3a ∈-()g x []1,e Mm -44i z =+45i z i -==-=()2024log 20250x -<020241x <-<()2024,2025M =20260x y =>()0,N =+∞()2024,2025M N = 444222log 5111log loglog log 5log 552510.522222-⎛⎫======⎪⎝⎭()1,54a λ=+ ()2,8b λ=+ a b ∥ ()()54218λλ++=⨯0λ=145-0λ=a b ∥ ()()()2,81,4124834b a b ⋅-=⋅--=-⨯-⨯=-2b ac =2222221cos 2222a cb ac b ac ac B ac ac ac +---=≥==0B π<< 03B π∴<≤()f x R 3113f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭11ππf f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭127-=,在上单调递增,所以.故选B 项.7. D 【解析】由题意可得,解得.故选D.8. A 【解析】由对恒成立,令,则,令,得,当时,,当时,,所以在上单调递减,在上单调递增,所以,即.令,,,当时,;当时,,所以在上单调递减,在上单调递增,所以,所以.故选A.9. BCD 【解析】由且,得,解得,同理得,故A 项错误,B 项正确;对于C 项,,当且仅当时,取等,故C项正确;对于D项,,故D 项正确.故选BCD 113π>>()f x [)0,+∞1211π73f f f -⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1sin 21a b a bα-=+22221sin 2sin cos 2sin cos 1sin 2sin cos 2sin cos a b αααααααααα+++==-+-()()()()22222sin cos 1tan πtan 4sin cos 1tan ααααααα++⎛⎫==+ ⎝--=⎪⎭ln e ln x x x x a -≥0x >()ln f x x x =()ln 1f x x ='+()0f x '=1ex =10e x <<()0f x '<1e x >()0f x '>()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()11e ef x f ⎛⎫≥=- ⎪⎝⎭1ln ex x ≥-ln tx x =()1e et g t et t ⎛⎫=-≥- ⎪⎝⎭()e t g t e '=-11e t -≤<()0g t '<1t >()0g t '>()g t 1,1e ⎡⎫-⎪⎢⎣⎭()1,+∞()()min 01g t g ==0a ≤0xy >210x y +=>(12)0x x ->102x <<01y <<422x y +==>…14x =12y =()22222222121log log log log log log 302822x y x y x y xy ⎡⎤⋅+⎛⎫+====-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦…项.10. BCD 【解析】设幂函数,由,得,所以,所以无意义,故A 项错误;,所以是偶函数,故B 项正确;由,得,故C 项正确;因为是偶函数,且在上单调递减,所以由,得,即且解得且,故D 项正确.故选BCD 项.11. ACD 【解析】对于A 选项,由函数的定义知的定义域为,故A 正确.对于B 选项,令,则,即,判别式,无实数解,故B 错误.对于C 选项,,可知,设函数,可知,令,解得,则在上单调递减,在上单调递增,且在上,则的图象为的图象向左平移一个单位长度,易得两者无交点,则无零点,即不存在极值点,故C 正确.对于D 选项,方法一:由的单调性可知,D 正确.方法二:作差有,且,故,D 正确.故选ACD.12. 【解析】,故时,,故曲线在点处()a f x x =()14416af ==2α=-()2f x x -==()0f ()()f x f x -=()f x ()32f x x -=-'()12f '-=()f x ()0,+∞()()321f x f x ->+321x x -<+22(32)(1)x x -<+320,10,x x -≠⎧⎨+≠⎩243x <<32x ≠()f x ()0,+∞(1)log 2x x +=2(1)x x +=2403x x +=+70∆=-<()(1)ln log ln(1)x x xf x x +==+()2211ln(1)ln (1)ln(1)ln 1ln 1)(1)ln )((1x xx x x x x x f x x x x x +-++-+==+++'()ln g x x x =()ln 1g x x ='+()0g x '=1e x =()g x 10,e ⎛⎫⎪⎝⎭1,e⎛⎫+∞ ⎪⎝⎭()0,1()0g x <()()1ln 1y x x =++()g x ()f x '()f x ()f x ()()()(1)21lo (1)g log x x x f x x f x ++-+=+-()()()2ln ln 2ln 1ln(2)ln 1x x x x x ⋅+-++⋅+=()()()()222ln ln 22ln 1ln ln 2ln 122x x x x x x ⎡⎤⎡⎤+++⋅+<<=+⎢⎥⎢⎥⎣⎦⎣⎦()()()11f x f x x <+>22y x =-()212e 1x y x x -'+-=1x =2y '=21e x y x x -=-()1,0的切线方程为.13. 5【解析】由题意得该数列的项可设为,,,,1,又即从而,即,即,解得所以.14.【解析】如图,延长BA ,CD 交于点E ,则为正三角形.由题设结论,,,的外接圆有唯一公共点,该公共点即为题中的点Q ,故点Q 在的外接圆上.由题意得,,则是直角三角形,故其外接圆半径.在中,由余弦定理可知,,当Q 在线段BD 上,且时,BQ 取得最小值.15. 解:(1).……6分(2)在上的投影向量为.……13分16.(15分)解:(1),(3分)所以,所以原不等式的解集.(6分)(2)由(1)知,所以(7分)22y x =-()212d q +()12d q +12d +1d +()()211218,121235,d d q d d q ⎧+++=⎪⎨+++=⎪⎩()()221217,2234,q d q q d q ⎧+=-⎪⎨+=-⎪⎩()()()()2212341722q q q q +-=-+232334682343422q q q q q q -+-=+--235700q q -=2,3,q d =⎧⎨=⎩5q d +=1-EBC △ABP △CMP △AME △AME △120BAD ∠=︒90BAM ∠=︒AME △1R AD ==ABD △BD ==1QD =11232e e -==125e e -1e ()121111352e e e e e e -⋅⋅=-()()1010110001x x x x x xx x x=-=->-1x >{|1}M x x =>{|1}M x x =>()()241,1e 22,1xx a x x f x a x ⎧-+>=⎨--⎩…在实数集上单调递增,,又因为当时,是单调增函数,所以当时,,解得(10分)综上,a 的取值范围是.17. 解:(1)由题得,,故,.由,得,,故,,,故,故.,即单调递增区间为,.……9分(2)由,即,又,则,故,.……15分18.解:(1)由题意得,(2分)所以.(3分)由,得当时,,(5分)所以,即.(6分)又当时,也符合,()f x R 4112a +∴≤14a ∴≤1x ≤()f x 1x =224e a a --≤-12ea ≤-,1(]2e -∞-2A =334T =4T =π2ω=2113f ⎛⎫=- ⎪⎝⎭π113π2π232k ϕ⨯+=+k Z ∈π2π3k ϕ=-+k Z ∈π2ϕ<π3ϕ=-()ππ2sin 23f x x ⎛⎫=- ⎪⎝⎭ππππ152π2π44223233k x k k x k -+≤-≤+⇒-+≤≤+()f x 154,433k k ⎡⎤-++⎢⎥⎣⎦k Z ∈()056f x =0ππsin 2335x ⎛⎫-= ⎪⎝⎭058,33x ⎡⎤∈⎢⎥⎣⎦0πππ,π232x ⎛⎫⎛⎫-∈ ⎪ ⎪⎝⎭⎝⎭04ππcos 235x ⎛⎫-=- ⎪⎝⎭0000ππππππ1ππcos cos cos sin 223323223x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+=-⋅--= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()22000ππcos cos(2c )2)1os (2(122x x x π=-∴=⨯=⨯-=1212422na n n --=⨯=21n a n =-32122222n b b b b n ++++= 2n …()31212222122n n b b b b n --++++=- 122nn b -=2n n b =1n =12b =所以.(7分)(2)设,则,(8分)(9分)两式作差得,(10分)即,(12分)所以.19.(17分)已知函数(1)求的值;(2)设,当时,记在区间上的最大值为M ,最小值为m ,求的取值范围.解:(1)由,(2分)所以,所以,(4分)所以.(5分)(2)由(1)可得,(6分)2nn b =()1212nn n n a c n b ⎛⎫==- ⎪⎝⎭()21221111()32221nn n S c c c n ⎛⎫⎛⎫=+++=⨯+⨯++- ⎪ ⎪⎝⎭⎝⎭ ()231111132112222n n S n +⎛⎫⎛⎫⎛⎫=⨯+⨯++-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()231111112211222222221nn n S n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()1121722222212111272111n n n n n S n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎛⎫⎣⎦=-+--=- ⎪⎝⎭-2277n nn S +=-()3f x x x =-+()0f ()()()ln 0g x a x x f f x =-++-(]1,3a ∈-()g x []1,e Mm -()3f x x x =-+()()332223031()2e f f x x e x -'-'=-+()()30012f f =-+''()02f '=()3f x x x =-()206f e =()32ln 6g x x a x e =-++,(7分)①当时,,, 在区间上单调递减, (8分)所以的最小值.(9分)的最大值,(10分),(11分)这时的取值范围为.(12分)②当时,,,在区间上,, 在区间上单调递减,(13分)所以的最小值.(14分)的最大值,(15分),这时的取值范围为.(16分)综上所述,当时,取值范围为;当时,取值范围为.(17分)变式:已知函数.(1)求曲线在处的切线方程;(2)设,当时,记在区间上的最大值为M ,最小值为m ,求的取值范围.()32333x a x a g x x x '⎛⎫- ⎪=-+=- ⎪ ⎪⎝⎭10a -<≤03a ->()0g x '≤()g x [1,]e ()g x ()326m g e a e e ==-++()g x ()2161M g e ==-()232333(1)6161(1,]M m g g e e a e e a e e e -=-=-+--=--∈-Mm -33(1,]e e -03a <≤013a<≤01<≤[1,]e ()0g x '≤()g x [1,]e ()g x ()326m g e a e e ==-++()g x ()2161M g e ==-()232333(1)6161[4,1)M m g g e e a e e a e e e -=-=-+--=--∈--Mm -33[4,1)e e --10a -<≤M m -33(1,]e e -03a <≤Mm -33[4,1)e e --()3f x x x =-+()y f x =0x =()()()20g x ax x f f x =+--10a -<<()g x []1,0-M m -解:(1)由,(2分)所以,所以,(4分)所以,所以.(5分)所以在处的切线方程为(6分)化为.(7分)(2)由(1)可得,(8分)所以,,两零点为 (9分)-+单调递减单调递增(11分)因为,(12分)所以时,,(13分)()3f x x x =-+()()3223031(1)2f f x x x -'-'=-+()()30012f f =-+''()02f '=()3f x x x =-+()06f =()y f x =0x =()620y x -=-260x y -+=()()()()22332006g x ax x f f x ax x f x x x ax =-++-⎛=-+--+ ⎝=-++()22323()3a g x x ax x x =-+=--'10a -<<1222,0,033a x x ⎛⎫=∈-= ⎪⎝⎭x 21,3a ⎡⎤-⎢⎥⎣⎦2,03a ⎡⎤⎢⎥⎣⎦()g x '()g x ()60g =()()7106g a g =+>=-[]1,0x ∈-()()max 17M g x g a==-=+(14分)所以设,(15分)(16分)所以在上单调递增,因为,所以的取值范围为.(17分)()n 33mi 3238462742769a m g x g a a a ⎛⎫== ⎪⎝=-++=+⎭()33472741276h a M m a a a a -=-==+--++10a -<<()22449433'1()()()0994922h a a a a a =-+=--=-+->()h a 10a -<<()4127h -=()01h =M m -4,127⎛⎫⎪⎝⎭。
2024~2025学年度第一学期期中教学质量检测高三数学试题(答案在最后)2024.11本试卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的考场、座号、姓名、班级填(涂)写在答题卡上,将条形码粘贴在“贴条形码区”.2.做选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再改涂其它答案标号.3.非选择题须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡中各题目指定的区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.否则,该答题无效.4.考生必须保持答题卡的整洁;书写要求字体工整,符号规范,笔迹清楚.一、选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{P x y ==,{Q y y ==,则()R P Q =ð()A.∅B.[)1,+∞C.(),0-∞ D.(],1-∞-2.若复数12i=-z (i 为虚数单位),则z =()A.21i 55- B.21i 55+ C.33i 55- D.33i 55+3.已知角α的顶点与原点重合,始边与x 轴正半轴重合,终边经过点()1,2--,则tan 2α=()A.34B.43C.34-D.43-4.已知函数()f x 的定义域为R ,满足()()()2024f x y f x f y +-+=⎡⎤⎣⎦,则下列说法正确的是()A.()f x 是偶函数B.()f x 是奇函数C.()2024f x +是奇函数D.()2024f x +是偶函数5.向量()1,2a = ,()1,1b =- ,则a 在b上的投影向量是()A.2-B.5-C.11,22⎛⎫-⎪⎝⎭D.12,55⎛⎫--⎪⎝⎭6.已知函数()21,11,11x x f x x x ⎧-≤⎪=⎨>⎪-⎩,则()()3f f =()A.8B.34-C.109-D.127.已知πcos 5a =,πsin 4b =,3log 2c =,则()A.b a c<< B.b c a<< C.c a b<< D.c b a<<8.如图,在ABC V中,AC =,AB =,90A ∠=︒,若PQ 为圆心为A 的单位圆的一条动直径,则BP CQ ⋅的最大值是()A.2B.4C.D.1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.命题“x ∀∈R ,210x x ++>”的否定形式是“x ∃∈R ,210x x ++≤”B.当()0,πx ∈时,4sin sin y x x=+的最小值为4C.tan 25tan 20tan 25tan 201︒+︒+︒︒=D.“ππ4k θ=±(k ∈Z )”是“π4k θ=(k ∈Z )”的必要不充分条件10.已知函数()cos f x x x =+,则()A.函数()f x 在π2,6π3⎡⎤⎢⎥⎣⎦上单调递减B.函数()f x 的图象关于点5π,06⎛⎫⎪⎝⎭对称C.函数()f x 的图象向左平移m (0m >)个单位长度后,所得的图象关于y 轴对称,则m 的最小值是π3D.若实数m 使得方程()f x m =在[]0,2π上恰好有三个实数解1x ,2x ,3x ,则1238π3x x x ++=11.设数列{}n a 前n 项和为n S ,满足()()214100n n a S -=-,*N n ∈且10a >,10n n a a -+≠(2n ≥),则下列选项正确的是()A.223n a n =-B.数列n S n ⎧⎫⎨⎬⎩⎭为等差数列C .当10n =时,n S 有最大值D.设12n n n n b a a a ++=,则当8n =或10n =时,数列{}n b 的前n 项和取最大值三、填空题:本题共3小题,每小题5分,共15分.12.已知a ,b 都是正数,且230a b ab +-=,则a b +的最小值为______.13.已知函数()21ln 22xf x x ax =-+在区间()2,+∞上没有零点,则实数a 的取值范围是______.14.已知函数e 1()e 1x x f x -=+,()(1)2g x f x =-+,则()g x 的对称中心为______;若12321()()()()n n a g g g g n n n n-=+++⋅⋅⋅+(*n ∈N ),则数列{}n a 的通项公式为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知在ABC V 中,角A ,B ,C ,所对的边分别为a ,b ,c,)2cos cos cos b B a C c A =+.(1)求角B ;(2)过点A 作AD BC ∥,连接CD ,使A ,B ,C ,D 四点组成四边形ABCD ,若AB =,2AC =,CD =,求AD 的长.16.已知数列{}n a 的前n 项和为n S ,22n n a S =+,(*n ∈N ).(1)求数列{}n a 的通项公式;(2)记2log n n c a =,数列n n c a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若关于n 的不等式()()221n n n T n λ+-≤+恒成立,求实数λ的取值范围.17.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩(1)请在网格纸中画出()f x 的简图,并写出函数的单调区间(无需证明);(2)定义函数()()2241,2012,022f x x x xg x x x ⎧--+-≤≤⎪=⎨-<≤⎪⎩在定义域内的0x ,若满足()00g x x =,则称0x 为函数()g x 的一阶不动点,简称不动点;若满足()()00g g x x =,则称0x 为函数()g x 的二阶不动点,简称稳定点.①求函数()g x 的不动点;②求函数()g x 的稳定点.18.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色,如图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为1~48号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动min t 后距离地面的高度为m H ,转一周需要24min.(1)求在转动一周的过程中,H 关于t 的函数解析式;(2)若甲、乙两人分别坐在1号和9号座舱里,在运行一周的过程中,求两人距离地面的高度差h (单位:m )关于t 的函数解析式,并求t 为何值时高度差h 最大.(参考公式:sin sin 2cossin 22θϕθϕθϕ+--=,cos cos 2sin sin 22θϕϕθθϕ+--=)19.已知a ∈R ,函数()ln af x x x=+,()ln 2g x ax x =--.(1)当()f x 与()g x 都存在极小值,且极小值之和为0时,求实数的值;(2)若()()()12122f x f x x x ==≠,求证:12112x x a+>.2024~2025学年度第一学期期中教学质量检测高三数学试题2024.11本试卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的考场、座号、姓名、班级填(涂)写在答题卡上,将条形码粘贴在“贴条形码区”.2.做选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再改涂其它答案标号.3.非选择题须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡中各题目指定的区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.否则,该答题无效.4.考生必须保持答题卡的整洁;书写要求字体工整,符号规范,笔迹清楚.一、选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC 【10题答案】【答案】BCD 【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】13+【13题答案】【答案】[)2,-+∞【14题答案】【答案】①.(1,2)②.42n a n =-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)π6B =(2)1AD =或2.【16题答案】【答案】(1)2n n a =(2)3,2⎡⎫+∞⎪⎢⎣⎭.【17题答案】【答案】(1)作图见解析,单增区间为[]1,0-,()0,∞+,()f x 的单减区间为(],1-∞-(2)①23-;②32-,23-和1.【18题答案】【答案】(1)π5545cos12H t=-,[]0,24t∈.(2)π2π45cos123h t⎛⎫=-⎪⎝⎭,[]0,24t∈;8mint=或20mint=【19题答案】【答案】(1)1(2)证明见解析。
顺义一中2024-2025学年度第一学期高三年级期中考试数学试卷本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡交回。
一.选择题(本大题共10小题,共40分)1.设集合{}10A x x =−>,集合{}03B x x =<≤,则A B =( ) A .()1,3B .(]1,3C .()0,∞+D .()1,+∞2.若复数z 满足(1)2i i z ,则z 的共轭复数=z ( )A .1i −B .1i +C .i −D .1i −+3.如图所示,直线123,,l l l 的斜率分别为123,,k k k ,则下列结论正确的是( ) A .123k k k >> B .213k k k >> C .231k k k <<D .312k k k >>4.已知角α的终边经过点()3,4−,则()cos πα+=( )A .45−B .35 C .35D .455.下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的是( ) A .3y x =B .cos y x =C .2x y =D . 21lny x = 6.在ABC 中,若7a =,8b =,1cos 7B =,则A ∠的大小为( ) A .π6B .π3C .5π6 D .π3或2π37.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC AB AC +>−”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件8.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若30m,10m AB BC AD ===,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD 的夹角的正切值均为5,则该五面体的所有棱长之和为( ) A .100mB .112mC .117mD .132m9.函数()sin2f x x =图象上存在两点(),P s t ,()(),0Q r t t >满足6r s π−=,则下列结论成立的是( )A .6f s π⎛⎫−= ⎪⎝⎭B .162f s π⎛⎫−=− ⎪⎝⎭C .6f s π⎛⎫+= ⎪⎝⎭D .162f s π⎛⎫+= ⎪⎝⎭10.已知函数()22,,x ax x af x x a x a ⎧−+≥⎪=⎨+<⎪⎩,若对于任意正数k ,关于x 的方程()f x k =都恰有两个不相等的实数根,则满足条件的实数a 的个数为( )A .0B .1C .2D .无数二.填空题(本大题共5小题,共25分) 11.函数2ln(12)y x x=−+的定义域是 . 12.首项为1的等比数列{}n a 中,14a ,22a ,3a 成等差数列,则公比q = .13.能说明“若sin cos αβ=,则36090k αβ+=⋅+,其中Z k ∈”为假.命题的一组α,β的值是 .14.如图,这个优美图形由一个正方形和以各边为直径的四个半圆组成,若正方形ABCD 的边长为4,点P 在四段圆弧上运动,则AP AB ⋅的取值范围为 .15.如图,在棱长为2的正方体1111ABCD A B C D −中,点M ,N 分别在线段1AD 和11B C 上. 给出下列四个结论:①MN 的最小值为2; ②四面体NMBC 的体积为43;③有且仅有一条直线MN 与1AD 垂直; ④存在点M ,N ,使MBN △为等边三角形. 其中所有正确结论的序号是 .三、解答题(本大题共6小题,共85分。
屯溪2024-2025学年度第一学期期中质量检测高三数学试题(答案在最后)命题人:(考试时间:120分钟满分:150分)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若全集{}{}{}0,1,2,3,4,0,1,4,1,3U A B ===,则()U A B =ð()A.{}2,3 B.{}1,3,4 C.{}1,2,3 D.{}0,1【答案】C 【解析】【分析】根据给定条件,利用补集、并集的定义直接求解即可.【详解】由{}{}0,1,2,3,4,0,1,4U A ==,得{2,3}U A =ð,而{}1,3B =,所以{}3()1,2,U B A = ð.故选:C2.已知命题2:1,1p x x ∀<->,则p ⌝是()A.21,1x x ∃<-≤B.21,1x x ∀≥->C.21,1x x ∀<->D.21,1x x ∃≤-≤【答案】A 【解析】【分析】运用全称命题的否定,否定结论,全称量词换成存在量词即可解题.【详解】全称命题的否定,否定结论,全称量词换成存在量词.则G ∀<−1,2>1,则p ⌝是21,1x x ∃<-≤.故选:A.3.设各项均为正数的等比数列{}n a 满足41082a a a ⋅=,则()2121011log a a a a 等于()A.102B.112 C.11D.10【答案】C 【解析】【分析】等比数列中若+,,,N m n p q ∈,m n p q +=+,则m n p q a a a a ⨯=⨯.我们先根据此条性质和已知条件求出6a 的值,最后运用对数性质计算即可.【详解】在等比数列{}n a 中,8462108a a a a a ==⋅,得62a =.根据等比数列性质,2211121039485762a a a a a a a a a a a ======.所以1210111112103948576()()()()()a a a a a a a a a a a a a a a = 5116262()a a ==⨯,1121210112log ()log (2)11a a a a == .故选:C.4.若()()220,cos 2,cos 2m n m n αβαβ-≠-=+=,则tan tan αβ=()A.2m nm n +- B.m n m n +-C.2m n m n-+ D.m n m n-+【答案】D 【解析】【分析】由两角和差的余弦展开式求出cos cos ,sin sin m n m n αβαβ=+=-,再由同角的三角函数关系求解即可;【详解】因为()()cos cos cos sin sin 2,cos cos cos sin sin 2m n αβαβαβαβαβαβ-=+=+=-=,所以cos cos ,sin sin m n m n αβαβ=+=-,所以sin sin tan tan cos cos m nm nαβαβαβ-==+.故选:D.5.已知函数()f x 与其导函数()f x '的图象的一部分如图所示,则关于函数()()e xf xg x =的单调性说法正确的是()A.在(1,1)-单调递减B.在(0,2单调递减C.在[2单调递减 D.在[1,2]单调递减【答案】B 【解析】【分析】根据图象判断出过点()2,0的为()f x 的图象,过点()1,0的为导函数()f x '的图象,求导得到()()()exf x f xg x '-'=,()g x在(1,2x ∈-上单调递减,在2x ⎡⎤∈⎣⎦上单调递增,得到答案.【详解】从图象可以看出过点()2,0的为()f x 的图象,过点()1,0的为导函数()f x '的图象,()()()e xf x f xg x '-'=,当(1,2x ∈-时,()()0f x f x '-<,故()0g x '<,()()ex f x g x =在(1,2x ∈-上单调递减,当2x ⎡⎤∈-⎣⎦时,()()0f x f x '-≥,故()0g x '≥,()()ex f x g x =在2x ⎡⎤∈⎣⎦上单调递增,ACD 错误,B 正确,故选:B6.若对任意实数b ,关于x 的方程()212ax b x x ++-=有两个实根,则实数a 的取值范围是()A.02a <≤B.01a <≤ C.10a -≤< D.11a -≤≤且0a ≠【答案】B 【解析】【分析】根据方程有两个根,利用判别式可转化为关于实数b 的不等式恒成立,即可求解.【详解】关于x 的方程()212ax b x x ++-=有两个实根,即方程()2120ax b x b +-+-=有两个实根,所以()()210Δ1420a b a b ≠⎧⎪⎨=---≥⎪⎩,即()20212810a b a b a ≠⎧⎨-+++≥⎩对任意实数b 恒成立,所以()()220Δ4124810a a a ≠⎧⎪⎨=+-+≤⎪⎩,即200a a a ≠⎧⎨-≤⎩,得01a <≤.故选:B.7.直线1y =被函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象所截得线段的最小值为π,则ω=()A.13B.23C.32D.3【答案】B 【解析】【分析】由()π2sin 16f x x ω⎛⎫=+= ⎪⎝⎭,得到ππ2π,Z 66x k k ω+=+∈或π5π2π,Z 66x k k ω+=+∈,再结合条件,即可求解.【详解】由()π2sin 16f x x ω⎛⎫=+= ⎪⎝⎭,得到π1sin 62x ω⎛⎫+= ⎪⎝⎭,所以ππ2π,Z 66x k k ω+=+∈或π5π2π,Z 66x k k ω+=+∈,又直线1y =被函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象所截得线段的最小值为π,显然最小值在一个周期内取到,不妨取0k =,得到0x =或2π3x ω=,所以2ππ3ω=,解得23ω=,故选:B.8.已知定义在(0,)+∞上的函数()f x 满足(()()xf yf x xf y y=-,且当1x >时,()0f x >,则()A.2()2()f x f x ≥B.322()()()f x f x f x ≥C.2()2()f x f x ≤D.322()()()f x f x f x ≤【答案】D 【解析】【分析】应用赋值法构造出23(),(),()f x f x f x 的等量关系,再结合不等式性质判断即可.【详解】由题意,0,0x y >>,()()()x f yf x xf y y=-.赋值1x y ==,得1(1)(1(1)1(1)01f f f f ==⋅-⋅=;赋值1x =,得1(1)1()()f yf f y f y y ⎛⎫=-⋅=- ⎪⎝⎭,即1()f f x x ⎛⎫=- ⎪⎝⎭,当1x >时,()0f x >,当01x <<时,则11x >,所以1()0f f x x ⎛⎫=-> ⎪⎝⎭,即()0f x <;赋值2x y =,得()222()()y f f y yf y y f y y ⎛⎫==- ⎪⎝⎭,解得21()()f y y f y y ⎛⎫=+ ⎪⎝⎭,即21()()f x x f x x ⎛⎫=+⎪⎝⎭;AC 项,由21()()f x x f x x ⎛⎫=+⎪⎝⎭,0x >,得()212()2()f xf x x f x x ⎛⎫-=+- ⎪⎝⎭,其中由0x >,可知1220x x +-≥=,当1x >时,1()0,2()0f x x f x x ⎛⎫>+-≥ ⎪⎝⎭,即()22()f x f x ≥;当01x <<时,1()0,2()0f x x f x x ⎛⎫<+-≤ ⎪⎝⎭,即()22()f x f x ≤;故AC 错误;BD 项,21,x x y x ==,得232222111()()()()1x f f x f x x f f x x f x x x x x ⎛⎫ ⎪⎛⎫==-=+ ⎪ ⎪⎝⎭ ⎪⎝⎭;又21()()f x x f x x ⎛⎫=+ ⎪⎝⎭,所以3222211()()()1()f x f x x f x x f x x x ⎛⎫=+=++ ⎪⎝⎭,则322222222211()()()1()2()()0f x f x f x x f x x f x f x x x ⎛⎫⎛⎫-=++-++=-≤ ⎪ ⎪⎝⎭⎝⎭,故322()()()f x f x f x ≤,且()f x 不恒为0,故B 错误,D 正确.故选:D.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错或不选的得0分)9.给出下列四个关系式,其中正确的是()A.2024∈RB.0∈∅C.∈Z QD.∅{}【答案】AD 【解析】【分析】根据R,Z,Q 表示的数集,结合空集的性质、真子集的定义逐一判断即可.【详解】因为2024是实数,因此选项A 正确;因为空间集中没有元素,显然0∈∅不正确,因此选项B 不正确;因为所有的整数都是有理数,因此整数集是有理数集的子集,所以选项C 不正确;因为空集是任何非空集合的真子集,所以选项D 正确,故选:AD10.(多选)下列说法不正确的是()A.已知{}{}260,10A xx x B x mx =+-==-=∣∣,若B A ⊆,则m 组成集合为11,23⎧⎫-⎨⎩⎭B.不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<C.()f x 的定义域为()1,2-,则()21f x -的定义域为()3,3-D.不等式20ax bx c ++>解集为()(),23,-∞-⋃+∞,则0a b c ++>【答案】ACD 【解析】【分析】A 选项,考虑B =∅时,0m =,满足要求,可判断A ;B 选项,考虑0k =时,0k ≠两种情况讨论可得充要条件为30k -<≤,可判断B ;C 选项,由1212x -<-<,可求定义域判断C ;D 选项,根据不等式的解集得到0a >且2,3-为方程20ax bx c ++=的两个根,由韦达定理得到的关系,,a b c ,计算可判断D.【详解】A 选项,{}2,3A =-,又{}10B xmx =-=∣,当0m =时,B =∅,满足B A ⊆,当0m ≠时,1B m ⎧⎫=⎨⎬⎩⎭,当12m =时,{}2B =,满足B A ⊆,当13m =-时,{}3B =-,满足B A ⊆,综上,m 组成集合为110,,23⎧⎫-⎨⎬⎩⎭,A 说法不正确;B 选项,当0k =时,不等式为308-<恒成立,可得23208kx kx +-<对一切实数x 恒成立,当0k ≠时,由23208kx kx +-<对一切实数x 恒成立,可得20342()08k k k <⎧⎪⎨-⨯⨯-<⎪⎩,解得30k -<<,综上所述:不等式23208kx kx +-<对一切实数x 恒成立的充要条件是30k -<≤,所以不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<,故B 正确;C 选项,因为()f x 的定义域为()1,2-,所以1212x -<-<,解得302x <<,故()21f x -的定义域为30,2⎛⎫⎪⎝⎭,C 说法不正确;D 选项,不等式20ax bx c ++>解集为−∞,−2∪3,+∞,则0a >且2,3-为方程20ax bx c ++=的两个根,故23,23b c a a-+=--⨯=,则,6b a c a =-=-,故60a b c c a ++==-<,D 说法不正确.故选:ACD.11.如图,心形曲线22:()1L x y x +-=与y 轴交于,A B 两点,点P 是L上的一个动点,则()A.点,02⎛⎫⎪ ⎪⎝⎭和−1,1均在L 上B.点PC.O 的最大值与最小值之和为3D.PA PB +≤【答案】ABD 【解析】【分析】点代入曲线判断A ,根据曲线分段得出函数取得最大值判断B ,应用三角换元再结合三角恒等变换求最值判断C ,应用三角换元结合椭圆的方程得出恒成立判断D.【详解】令0x =,得出1y =±,则()()1,0,1,0,A B -对于A :2x =时,21122y ⎛⎫+-= ⎪ ⎪⎝⎭得0y =或y =,=1x -时,()2111y +-=得1y =,所以,02⎛⎫ ⎪ ⎪⎝⎭和()1,1-均在L 上,A 选项正确;对于B :因为曲线关于y 轴对称,当0x ≥时,()221x y x+-=,所以y x =+()()222221112y y x x x x =+=+-+≤++-=,所以2x =时,y 最大,最大值为22+=B 选项正确;对于C :OP =,因为曲线关于y 轴对称,当0x ≥时,设cos ,sin x y x θθ=-=,所以()2222222cos cos sin 2cos sin 2sin cos OP x y θθθθθθθ=+=++=++()1cos231351sin2cos2sin2sin 222222θθθθθϕ+=++=++=+,因为θ可取任意角,所以OP 12=,OP 512+=,C 选项错误;对于D :PA PB +≤等价为点P 在椭圆22132y x +=内,即满足()222cos sin 3cos 6θθθ++≤,即()()31+cos221sin 262θθ++≤,整理得4sin23cos25θθ+≤,即()sin 21θβ≤+恒成立,故D 选项正确.故选:ABD.【点睛】方法点睛:应用三角换元,再结合三角恒等变换化简,最后应用三角函数值域求最值即可.三、填空题(本题共3小题,每小题5分,共15分.)12.若()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =-+,则(2)f -=______.【答案】2-【解析】【分析】根据函数为奇函数,利用()()f x f x -=-求解.【详解】由题意得,(2)2222f =-=+.∵()f x 是定义在R 上的奇函数,∴(2)(2)2f f -=-=-.故答案为:2-.13.函数()sin cos f x x x =+在()0,2π上的极小值点为:__________.【答案】5π4【解析】【分析】法一,由辅助角公式得π()4f x x ⎛⎫=+ ⎪⎝⎭,利用函数()f x 与π4f x ⎛⎫- ⎪⎝⎭图象的平移关系可得所求;法二,利用导函数,求出导函数的零点按零点分区间,分析导函数符号与原函数单调性即可求解极值点.【详解】法一:()πsin cos 4f x x x x ⎫⎛=+=+ ⎪⎝⎭,()0,2πx ∈,由()f x 的图象向右平移π4个单位可得到函数π4f x x ⎛⎫-= ⎪⎝⎭,π9π,44x ⎛⎫∈ ⎪⎝⎭的图象.而函数y x =在π9π,44⎛⎫⎪⎝⎭的极小值点为3π2,故函数()f x 的极小值点即为3ππ5π244-=.法二:()sin cos f x x x =+,()0,2πx ∈,则π()cos sin 4f x x x x ⎛⎫'=-=+ ⎪⎝⎭,由()0,2πx ∈,则ππ9π,444x ⎛⎫+∈ ⎪⎝⎭,令()0f x '=,得ππ42x +=或3π2,解得π4x =或5π4x =.则(),()f x f x '的变化情况如下表:xπ0,4⎛⎫ ⎪⎝⎭π4π5π,44⎛⎫ ⎪⎝⎭5π45π,2π4⎛⎫ ⎪⎝⎭()f x '+0-0+()f x极大值极小值()f x 在()0,2π上的极小值点为5π4.故答案为:5π4.14.函数,0ky k x=>与ln yx =和e x y =分别交于11(,)A x y ,22(,)B x y 两点,设ln y x =在A 处的切线1l 的倾斜角为α,e x y =在B 处的切线2l 的倾斜角为β,若2βα=,则k =________.【答案】【解析】【分析】由对称性可得21ex x =,利用导数求切线1l 和2l 的斜率,得tan β和tan α,由2βα=解出1x ,再由11ln kx x =求出k 的值.【详解】函数,0ky k x=>与ln y x =和e x y =分别交于11(,)A x y ,22(,)B x y 两点,则111ln k y x x ==,222e x ky x ==,函数,0ky k x=>的图象关于直线y x =对称,函数ln y x =和e x y =的图象也关于直线y x =对称,所以11(,)A x y ,22(,)B x y 两点关于直线y x =对称,有221e xy x ==,函数ln y x =的导数为1y x'=,函数e x y =的导数为e x y '=,则11tan x α=,2tan e x β=,由2βα=,有22tan tan tan 21tan αβαα==-,即211212e 1x x x x ==-,由1>0x ,解得1x =所以11l n k x x ==.【点睛】关键点点睛:本题除了导数和倍角公式的运用,关键点在于运用函数的对称性或对数式的运算,得到21e x x =.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知数列{}n a 满足:11a =,()*12n n a a n +=+∈N ,数列{}n b 为单调递增等比数列,22b =,且1b ,2b ,31b -成等差数列.(1)求数列{}n a ,{}n b 的通项公式;(2)设2log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)21n a n =-,12n n b -=;(2)232n n n T -=【解析】【分析】(1)根据()*12n n a a n +=+∈N 得到{}na 为公差为2的等差数列,利用等差数列求通项公式求出21n a n =-,再设{}nb 的公比为q ,列出方程,求出2q =,得到通项公式;(2)化简得到32n c n =-,故{}n c 为公差为3的等差数列,利用等差数列求和公式得到答案.【小问1详解】因为()()**1122n n n n a a n a a n ++=+∈⇒-=∈N N ,故{}n a 为公差为2的等差数列,所以()()12112121n a a n n n =+-=+-=-,又1b ,2b ,31b -成等差数列,故21321b b b =+-,设{}n b 的公比为q ,其中22b =,则2421q q =+-,解得2q =或12,当2q =时,11b =,此时1112n n n b b q --==,为递增数列,满足要求,当12q =时,14b =,此时31112n n n b b q --⎛⎫== ⎪⎝⎭,为递减数列,舍去,综上,21n a n =-,12n n b -=;【小问2详解】212log 1322n n c n n -=+--=,则13n n c c +-=,故{}n c 为公差为3的等差数列,故()2121323143222n n n n n n T c c c n +--=+++=+++-== .16.记ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos 1.a C b =+(1)求证:2;C B =(2)若3cos 4B =,6c =,求ABC 的面积.【答案】(1)证明见解析(2)4【解析】【分析】(1)利用正弦定理以及两角和与差的正弦公式可证2C B =;(2)由正弦定理及三角形面积公式可得答案.【小问1详解】由正弦定理sin sin a b A B =,知sin sin a A b B =,所以2cos 1a C b =+,即为sin 2cos 1sin A C B =+,所以sin 2sin cos sin A B C B =+,即()sin 2sin cos sin B C B C B +=+,所以()sin sin cos cos sin sin .B BC B C C B =-+=-因为0πB <<,ππC B -<-<,所以B C B =-或()πB C B +-=,即2C B =或πC =(舍去);【小问2详解】由2C B =,得21cos cos22cos 18C B B ==-=,所以52cos 14a C b =+=,即5.4a b =由余弦定理,得2222cos c a b ab C =+-,即22225513621648b b b =+-⨯⨯,解得=4,所以 5.a =又由1cos 8C =,可得π0<2<C ,得37sin 8C ==,所以ABC V 的面积1137157sin 54.2284S ab C ==⨯⨯⨯=17.如图,在四棱锥P ABCD -中,底面四边形ABCD 是直角梯形,224,AD AB BC AB ===⊥,,AD AB BC E ⊥是AD 的中点,PC BE ⊥.(1)证明:BE ⊥平面PAC .(2)若PA PC ==B PA D --的正弦值.【答案】(1)证明见解析(2).7【解析】【分析】(1)连接CE ,通过四边形ABCE 是正方形,得到BE AC ⊥,进而可求证;(2)作BH PA ⊥,垂足为H ,连接,EH PE .先证明PA ⊥平面BEH ,得到BHE ∠是二面角B PA D --的平面角,在判断四棱锥P ABCE -为正四棱锥,求得2EH BH ==,再由余弦定理即可求解.【小问1详解】证明:连接CE .因为E 是AD 的中点,所以2AD AE =.分因为224AD AB BC ===,且,AB AD AB BC ⊥⊥,所以四边形ABCE 是正方形,则BE AC ⊥.因为,,PC BE PC AC ⊥⊂平面PAC ,且PC AC C ⋂=,所以BE ⊥平面PAC .【小问2详解】解:作BH PA ⊥,垂足为H ,连接,EH PE .由(1)可知BE ⊥平面PAC .又PA ⊂平面PAC ,所以PA BE ⊥.因为,BH BE ⊂平面BEH ,且BH BE B = ,所以PA ⊥平面BEH .因为EH ⊂平面BEH ,所以PA EH ⊥,则BHE ∠是二面角B PA D --的平面角.记AC BE O =I ,连接OP ,则O 是AC 的中点.因为PA PC =,且O 是AC 的中点,所以OP AC ⊥.因为BE ⊥平面PAC ,且OP ⊂平面PAC ,所以BE OP ⊥.连接PE .因为,AC BE ⊂平面ABCE ,且AC BE O =I ,所以OP ⊥平面ABCE ,则四棱锥P ABCE -为正四棱锥,故PA PB PE ===.因为PAB 的面积1122S AB PA BH ==⋅,即11222BH ⨯=⨯,所以2BH =.同理可得2EH BH ==.在BEH △中,由余弦定理可得2221cos 27BH EH BE BHE BH EH +-∠==-⋅,则sin 7BHE ∠=,即二面角B PA D --的正弦值为718.已知函数()e xx f x =.(1)求()f x 在区间[]22-,上的最大值和最小值;(2)若0x =是函数()()()sin g x f a f x x =⋅+的极值点.(ⅰ)证明:2ln20a -<<;(ⅱ)讨论()g x 在区间()π,π-上的零点个数.【答案】(1)最大值为1e -,最小值为22e -;(2)(ⅰ)证明见解析;(ⅱ)2【解析】【分析】(1)求导得到导函数,根据导函数的正负确定在[]22-,上的性,再计算最值得到答案;(2)(ⅰ)计算得到1()cos e ea x a x g x x -'=⋅+,确定e 0a a +=,设()e x F x x =+,根据函数的单调性结合()01F =,()2ln 20F -<得到证明;(ⅱ)求导得到导函数,考虑()π,0x ∈-,0x =,∈0,π三种情况,构造()e sin xF x x x =-,确定函数的单调区间,根据()00F =,()00F x >,()π0F <得到零点个数.【小问1详解】()e x x f x =,1()e xx f x -'=,令1()0e x x f x -'==得到1x =,当()2,1x ∈-时,′>0,函数单调递增,当()1,2x ∈时,′<0,函数单调递减,又()22222e e f ---==-,()1111e e f -==,()22222e ef -==,故()f x 在区间[]22-,上的最大值为1e -,最小值为22e -;【小问2详解】(ⅰ)()()()sin sin e e a xa x g x f a f x x x =⋅+=⋅+,1()cos e e a xa x g x x -'=⋅+,(0)10e a a g '=+=,故e 0a a +=,设()e x F x x =+,函数单调递增,()010F =>,()2ln 212ln 2e 2ln 2ln 404F --=-=-<.根据零点存在定理知2ln 20a -<<;(ⅱ)()sin e x x g x x =-+,()00g =,1()cos e x x g x x -'=+,设1()cos e x x h x x -=+,2()sin e xx h x x -'=-,当()π,0x ∈-时,20,sin 0e x x x -><,故()0h x '>,()g x '单调递增,()()0110g x g <=-+'=',故函数()g x 单调递减,()()00g x g >=,故函数在()π,0-上无零点;当∈0,π时,()1()sin e sin e e x x x x g x x x x =-+=-,设()e sin x F x x x =-,()()esin cos 1x F x x x =+-',设()()esin cos 1x k x x x =+-,则()2e cos x k x x '=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=>,当π,π2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=<故()k x 在π0,2⎛⎫ ⎪⎝⎭单调递增,在π,π2⎛⎫ ⎪⎝⎭上单调递减,()00k =,π2πe 102k ⎛⎫=-> ⎪⎝⎭,()ππe 10k =--<,故存在0π,π2x ⎛⎫∈ ⎪⎝⎭使()00k x =,当∈0,0时,()0k x >,单调递增;当()0,πx x ∈时,()0k x <,单调递减.()00F =,故()00F x >,()ππ0F =-<,故函数在()0,πx 上有1个零点.综上所述:()g x 在区间()π,π-上的零点个数为2.【点睛】关键点点睛:本题考查了利用导数解决函数的单调性和极值,根据极值求参数,零点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中分类讨论是解题的关键,三角函数的有界性和正负交替是经常用到的关键思路.19.设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为()2,3,4,n n =⋅⋅⋅阶“曼德拉数列”:①1230n a a a a +++=⋅⋅⋅+;②1231n a a a a +++⋅⋅⋅+=.(1)若某()*2k k ∈N 阶“曼德拉数列”是等比数列,求该数列的通项n a(12n k ≤≤,用,k n 表示);(2)若某()*21k k +∈N 阶“曼德拉数列”是等差数列,求该数列的通项n a (121n k ≤≤+,用,k n 表示);(3)记n 阶“曼德拉数列”{}n a 的前k 项和为()1,2,3,,k S k n =⋅⋅⋅,若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,试问:数列{}()1,2,3,,i S i n =⋅⋅⋅能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.【答案】(1)()1112n n a k -=-或()1112n n a k -=--(2)()()*1,211n n a n n k k k k ∴=-∈≤++N 或()()*1,211n n a n n k k k k =-+∈≤++N (3)不能,理由见解析【解析】【分析】(1)结合曼德拉数列的定义,分公比是否为1进行讨论即可求解;(2)结合曼德拉数列的定义,首先得120,k k a a d ++==,然后分公差是大于0、等于0、小于0进行讨论即可求解;(3)记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,进一步()11,2,3,,2k S k n ≤=⋅⋅⋅,结合前面的结论以及曼德拉数列的定义得出矛盾即可求解.【小问1详解】设等比数列()1232,,,,1k a a a a k ⋅⋅⋅≥的公比为q .若1q ≠,则由①得()21122101k k a q a a a q -++⋅⋅⋅+==-,得1q =-,由②得112a k =或112a k=-.若1q =,由①得,120a k ⋅=,得10a =,不可能.综上所述,1q =-.()1112n n a k -∴=-或()1112n n a k-=--.【小问2详解】设等差数列()12321,,,,1k a a a a k +⋅⋅⋅≥的公差为d ,123210k a a a a ++++⋅⋅⋅+= ,()()11221210,02k k dk a a kd +∴++=+=,即120,k k a a d ++=∴=,当0d =时,“曼德拉数列”的条件①②矛盾,当0d >时,据“曼德拉数列”的条件①②得,()23211212k k k k a a a a a a +++++⋅⋅⋅+==-+++ ,()1122k k kd d -∴+=,即()11d k k =+,由10k a +=得()1101a k k k +⋅=+,即111a k =-+,()()()()*1111,21111n n a n n n k k k k k k k ∴=-+-⋅=-∈≤++++N .当0d <时,同理可得()1122k k kd d -+=-,即()11d k k =-+.由10k a +=得()1101a k k k -⋅=+,即111a k =+,()()()()*1111,21111n n a n n n k k k k k k k ∴=--⋅=-+∈≤++++N .综上所述,当0d >时,()()*1,211n n a n n k k k k ∴=-∈≤++N ,当0d <时,()()*1,211n n a n n k k k k =-+∈≤++N .【小问3详解】记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,得12A =,12B =-,1122k B S A -=≤≤=,即()11,2,3,,2k S k n ≤=⋅⋅⋅.若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,由前面的证明过程知:10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-.若数列{}()1,2,3,,i S i n =⋅⋅⋅为n 阶“曼德拉数列”,记数列{}()1,2,3,,i S i n =⋅⋅⋅的前k 项和为k T ,则12k T ≤.1212m m T S S S ∴=++⋅⋅⋅+≤,又12m S =,1210m S S S -∴==⋅⋅⋅==,12110,2m m a a a a -∴==⋅⋅⋅===.又1212m m n a a a ++++⋅⋅⋅+=-,1m S +∴,2m S +,⋅⋅⋅,0n S ≥,123123n n S S S S S S S S ∴+++⋅⋅⋅+=+++⋅⋅⋅+,又1230n S S S S +++⋅⋅⋅+=与1231n S S S S +++⋅⋅⋅+=不能同时成立,∴数列{}()1,2,3,,i S i n =⋅⋅⋅不为n 阶“曼德拉数列”.【点睛】关键点点睛:第三问的关键是得到10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-,由此即可顺利得解.。
哈尔滨市2024—2025学年度高三上学期期中考试数学学科试卷(答案在最后)满分150分,考试时间120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合35,122M x x N x x ⎧⎫⎧⎫=>-=∈-<<⎨⎬⎨⎬⎩⎭⎩⎭Z ,则M N = ()A.312x x ⎧⎫-<<⎨⎬⎩⎭B.{}2,1,0-- C.{}1,0- D.{}0,12.若复数z 满足2025i 2i z =-,则z 的实部与虚部之和为()A.12i-+ B.12i-- C.1D.3-3.已知等差数列{}n a 的前6项和为60,且12315a a a ++=,则5a =()A.5B.10C.15D.204.在平面直角坐标系中,若α∠的终边经过点()2,1P ,则πcos 4α⎛⎫+ ⎪⎝⎭的值为()A.31010-B.10-C.1010D.105.如图,四边形O A C B ''''表示水平放置的四边形OACB 根据斜二测画法得到的直观图,2O A ''=,4B C ''=,O B ''=//O A B C '''',则AC =()A.B. C.6D.6.若曲线e x y a =+的一条切线方程是1y x =-,则a =()A.2- B.1C.1- D.e7.已知圆锥的侧面展开图是一个半径为43,面积为4π3的扇形,则该圆锥的外接球的表面积为()A.256π63B.4πC.9π2D.9π8.在学习完“错位相减法”后,善于观察的同学发现对于“等差×等比数列”此类数列求和,也可以使用“裂项相消法”求解.例如()()()112122nnn n a n n n +=+⋅=-+⋅--⋅,故数列{}n a 的前n 项和()()()()()1223112302121222122n n n n S a a a a n n +=++++=⨯--⨯+-⨯--⨯++-+⋅--⋅ 12n n +=⋅.记数列2{}2n n 的前n 项和为n T ,利用上述方法求306T -=()A.305132 B.305132-C.295132 D.295132-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知平面向量1e ,2e 的夹角为π3,且121e e == ,若122a e e =- ,12b e e =+ ,则下列结论正确的是()A.a b⊥B.a与b 可以作为平面内向量的一组基底C.a =D.a在b 上的投影向量为12b- 10.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 4:5:6A B C =,D 为线段AC 上一点,则下列判断正确的是()A.ABC V 为钝角三角形B.ABC V 的最大内角是最小内角的2倍C.若D 为AC 中点,则:BD AC =D .若ABD CBD ∠=∠,则:5BD AC =11.设数列的前n 项和为n S ,若nn S b n=,则称数列是数列的“均值数列”.已知数列是数列的“均值数列”,且21232482nn b b b b n n ++++=+ ,则下列结论正确的是()A.72364a =-B.设数列的前n 项积为n T ,则n T 有最大值,无最小值C.数列{}n S 中没有最大项D.若对任意*n ∈N ,2504n m m S --≥成立,则1m ≤-或94m ≥三、填空题:本题共3小题,每小题5分,共15分.12.若3sin 5α=,且α为第二象限角,则sin 2α=___________.13.已知函数2()()(2)f x x a x x =--在x a =处取得极大值,则a =_________.14.已知数列满足12,2,n n n a n a a n +⎧=⎨+⎩为奇数为偶数,10a =,则10a =______;设数列的前n 项和为n S ,则2024S =______.(第二个空结果用指数幂表示)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21cos sin cos 2f x x x x =+-.(1)求()f x 的最小正周期;(2)将()f x 的图象向左平移π4个单位长度,得到函数()y g x =的图象,求不等式()0g x 的解集.16.数列{}n a 满足1111,202n n n n a a a a a ++=+-=.(1)求数列{}n a 通项公式.(2)设()cos 1π2n nn b a +=+,求数列{}n b 的前n 项和n S .17.在ABC V 中,角,,A B C 的对边分别是,,a b c ,已知2cos ,3cos b c Ca a A-==.(1)求角A ;(2)若点D 在边AC 上,且1233BD BA BC =+,求BCD △面积的最大值.18.南宋的数学家杨辉“善于把已知形状、大小的几何图形的求面积,体积的连续量问题转化为求离散变量的垛积问题”.在他的专著《详解九章算法·商功》中,杨辉将堆垛与相应立体图形作类比,推导出了三角垛、方垛、刍薨垛、刍童垛等的公式.如图,“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球……第1n +层球数是第n 层球数与1n +的和,设各层球数构成一个数列.(1)求数列的通项公式;(2)证明:当0x >时,()ln 11x x x+>+(3)若数列满足2ln(2)2ln n n n b a n=-,对于*n ∈N ,证明:11232n n b b b b n +++++<⨯ .19.定义:如果函数()f x 在定义域内,存在极大值()1f x 和极小值()2f x ,且存在一个常数k ,使()()()1212f x f x k x x -=-成立,则称函数()f x 为极值可差比函数,常数k 称为该函数的极值差比系数.已知函数()1ln f x x a x x=--.(1)当52a =时,判断()f x 是否为极值可差比函数,若是求极值差比系数,若不是说明理由;(2)是否存在a 使()f x 的极值差比系数为2a -?若存在,求出a 的值;若不存在,请说明理由;(3)若522a ≤≤,求()f x 的极值差比系数的取值范围.哈尔滨市2024—2025学年度高三上学期期中考试数学学科试卷满分150分,考试时间120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】A【8题答案】【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BD【10题答案】【答案】BCD【11题答案】【答案】AD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】2425-##0.96-【13题答案】【答案】0【14题答案】【答案】①.60②.()1013322026-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)π(2)3πππ,π,Z 88k k k ⎡⎤-++∈⎢⎥⎣⎦【16题答案】【答案】(1)12n a n=(2)31,,n n n S n n +⎧=⎨⎩为奇数为偶数【17题答案】【答案】(1)π3(2)334【18题答案】【答案】(1)()12n n n a +=(2)证明见解析(3)证明见解析【19题答案】【答案】(1)()f x 是极值可差比函数,102ln 23k =-;(2)不存在,理由见解析;(3)102ln 2,23ln 23⎡⎤--⎢⎥⎣⎦。
七宝中学2024-2025学年高三上学期期中考试数学试题一、填空题(第1-6题每题4分,第7-12题每题5分,满分54分)1.函数的定义域为______.2.计算______.3.已知是1与9的等比中项,则正实数______.4.在的展开式中,的系数为______(用数字作答).5.在复平面内,复数对应的点位于第______象限。
6.已知,则______.7.已知集合,其中可以相同,用列举法表示集合中最小的4个元素所构成的集合为______.8.已知是函数的导函数,若函数的图象大致如图所示,则的极大值点为______(从中选择作答).9.已知函数.在中,,且,则______.10.如图,线段相交于,且长度构成集合,则的取值个数为______.11.抛物线的焦点为,准线为是拋物线上的两个动点,且满足.设线段y =(4log =a a =4(x -2x 2ii-π1sin 42θ⎛⎫+= ⎪⎝⎭πcos 4θ⎛⎫-= ⎪⎝⎭{}22,,A a a x y x y ==+∈N ,x y A ()f x '()f x ()f x y e '=()f x ,,,a b c d ()22cos 2xf x x =+ABC △()()f A f B =a b ≠C ∠=,AD BC O ,,,AB AD BC CD {}1,3,5,,90x ABO DCO ∠=∠=︒x 24y x =F ,,l A B π3AFB ∠=AB的中点在准线上的投影为,则的最大值是______.12.平面上到两个定点距离之比为常数的动点的轨迹为圆,且圆心在两定点所确定的直线上,结合以上知识,请尝试解决如下问题:已知满足,则的取值范围为______.二、选择题(本大题共4题,满分20分)13.已知是非零实数,则下列不等式中恒成立的是( )A .B .C .D14.已知直线,动直线,则下列结论正确的为()A .不存在,使得的倾斜角为B .对任意的与都不垂直C .存在,使得与重合D .对任意的与都有公共点15.一组学生站成一排.若任意相邻的3人中都至少有2名男生,且任意相邻的5人中都至多有3名男生,则这组学生人数的最大值是( )A .5B .6C .7D .816.若,有限数列的前项和为,且对一切都成立.给出下列两个命题:①存在,使得是等差数列;②对于任意的,都不是等比数列.则( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题三、解答题(本大题共有5题,满分76分)17.如图,为正方体,动点在对角线上(不包含端点),记.M l N MNAB(0,1)λλλ>≠,,a b c 1,2,1a c b a b ===⋅=1122c a c b ++-a 1a a>2211a a a a+≥+12a a+>-≥-1:10l x y --=()()2:10l k x ky k k +-+=∈R k 2l π21,k l 2l k 1l 2l 1,k l 2l 3n ≥12,,,n a a a k k S 1k k S S +>11k n ≤≤-3n ≥12,,,n a a a 3n ≥12,,,n a a a 1111ABCD A B C D -P 1BD 11D PD Bλ=(1)求证:;(2)若异面直线与所成角为,求的值.18.已知点是坐标原点.(1)若,求的值:(2)若实数满足,求的最大值.19.英语学习中学生喜爱用背单词"神器"提升自己的英文水平,为了解上海中学生和大学生对背单词“神器”的使用情况,随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款背单词“神器”,结果如下:百词斩扇贝单词秒词邦沪江开心词场中学生80604020大学生30202010假设大学生和中学生对背单词“神器”的喜爱互不影响.(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用“百词斩”的概率;(2)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X 为这3人中最喜爱使用“扇贝单词”的人数,求X 的分布列和数学期望;(3)记样本中的中学生最喜爱使用这四款背单词“神器”的频率依次为,其方差为;样本中的大学生最喜爱使用这四款背单词“神器”的频率依次为,其方差为的方差为.写出的大小关系.(结论不要求证明)20.在平面直角坐标系中,分别是椭圆的左右焦点,设不经过的直线与椭圆交于两个不同的点,焦点到直线的距离为.(1)求该粗圆的离心率;(2)若直线经过坐标原点,求面积的最大值;(3)如果直线的斜率依次成等差数列,求的取值范围.21.若斜率为的两条平行直线,曲线满足以下两条性质:(Ⅰ)分别与曲线至少有两个切点;(Ⅱ)曲线上的所有点都在之间或两条直线上.则称直线为曲线的一对“双夹线”,把“双夹线”之间的距离称为曲线在“方向上的宽度”,记为.已知曲线1AP B C ⊥AP 11D B π3λ()())1,1,1,1,,A B CO θθ-BC BA -=sin2θ,m n π,0,2mOA nOB OC θ⎛⎫+=∈ ⎪⎝⎭22(3)m n ++1234,,,x x x x 21s 1234,,,y y y y 2212341234;,,,,,,,s x x x x y y y y 23s 222123,,s s s 12,F F 22143x y +=1F l ,A B 2F l d l 2F AB △11,,AF l BF d k 12,l l ():C y f x =12,l l C C 12,l l 12,l l C C k ()d k.(1)判断时,曲线是否存在“双夹线”,并说明理由;(2)若,试问:和是否是函数的一对“双夹线”?若是,求此时的值;若不是,请说明理由.(3)对于任意的正实数,函数是否都存在"双夹线"?若是,求的所有取值构成的集合;若不是,请说明理由.2025届七宝中学高三(上)期中考试参考答案一、填空题1、; 2、; 3、3; 4.18; 5、四;6.;7、; 8、a ; 9、;10、4;11、1; 12、10、【答案】412、【答案】二、选择题13~16、BDBC三、解答题17、(1)证明:如图,连接.由已知可得,平面平面,所以,又是正方形,所以,又平面平面,所以平面,又动点在对角线上,所以平面,所以平面,所以.():sin C f x mx n x =+0,1m n ==C 1,1m n ==-1:1l y x =+2:1l y x =-()y f x =()d k ,m n ()y f x =()d k ()1,+∞3412{}0,1,2,4π311,BC AD AB ⊥111,BCC B B C ⊂11BCC B 1AB B C ⊥11BCC B 11B C BC ⊥1BC ⊂11,ABC D AB ⊂111,ABC D AB BC B = 1B C ⊥11ABC D P 1BD P ∈11ABC D AP ⊂11ABC D 1AP B C ⊥(2)以点为坐标原点,分别以所在的直线为轴,如图建立空间直角坐标系,设,则,则.由已知,可得,设点,则,所以,所以,即,所以,.又异面直线与所成角为,所以,即,解得或0,因为,所以满足条件.18、【答案】(1); (2)16.19、【答案】(1); (2); (3)20.【答案】(1); (2 (3).21、【答案】(1)存在;(2)是,3)是,C 1CD CB CC 、、x y z 、、1CD =()()()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,0,1,0,1,1,1,1,0C D B C D B A ()11111,1,0,D B D B =-=11D PD Bλ=11D P D B λ= ()000,,P x y z ()10001,,1D P x y z =-- 00011x y z λλλ-=-⎧⎪=⎨⎪-=-⎩00011x y z λλλ=-+⎧⎪=⎨⎪=-+⎩()1,,1P λλλ-+-+(),1,1AP λλλ=---+AP ==AP 11D B π311π1cos ,cos 42AP D B 〈==〉 11cos ,2AP D 1λ=01λ<<45λ=12-320[]34E X =222231s s s <<12()d k =()0)d k n =>。
2024—2025学年第一学期11月高三期中考试数学考试说明:1.本试卷共150分.考试时间120分钟.2.请将各题答案填在答题卡上.一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数的定义域为( )A .B .C .D .2.已知平面向量,且∥,则( )A .B .C.D .13.已知,若,则( )A .B .C .D .4.已知,则( )A .B .C .D .5.已知函数(其中,,)的部分图象如图所示,有以下结论:①②函数为偶函数③④在上单调递增所有正确结论的序号是( )A .①②④B .①②③C .②③④D .①③④6.若函数在(1,3)上不单调,则实数的取值范围是( )A .B .C .D .1()ln(22)1f x x x =++-(1,)+∞(0,1)(1,)-+∞ (,1)-∞(1,1)(1,)-+∞ (1,2),(1,1)a b λ=+()a b +a λ=12-1-123()2sin 2f x x x =-+()f m a -=()f m =4a-2a -2a +a-tan 3α=3cos 2sin 2cos 3sin αααα-=+511511-311311-()cos()f x A x B ωϕ=++0A >0ω>πϕ<23π()(6f x f ≤π(3f x +()()26f x f x π+-=()f x 4π13π[,]363()2ln f x x t x x=--7)(7,)+∞[7,)+∞7]7.将函数的图象向右平移个单位长度后得到函数的图象,且函数是奇函数,则的最小值是( )A .B .C .D .18.在锐角△中,、、分别是角、、所对的边,已知且,则的取值范围为( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知下列函数中,最小正周期为的是()A .B . C .D .10.在△中,,为线段上一点,且有,则下列命题正确的是( )A .B .C .的最大值为D .的最小值为911.过点(2,)可以作两条直线与曲线相切,则实数的可能取值为( )A .B .C .D .三、填空题:本题共3小题,每小题5分,共15分.12.已知复数(为虚数单位),若是纯虚数,则实数________.13.已知平面向量,,则在上的投影向量为________(结果用坐标表示)14.在等边三角形的三边上各取一点,满足,,°,则三角形的面积的最大值是________.π()sin()(0)6f x x ωω=+>π3()g x ()g x ω132312ABC a b c A B C 23cos cos b c C A-=3a =b c +(3,6)(3,6]6]6)πcos 2y x=π2sin(213y x =++sin 2y x =tan()4y x π=-ABC 14CD CA = P BD ,,(0,)CP CA CB λμλμ=+∈+∞41λμ+=41λμ+=λμ1911λμ+a xy xe =a e 26e -21e -2e 122,3z a i z i =+=-12z z a =(2,1)a = (1,3)b =-b a ABC ,,M N P MN =4MP =30PMN ∠=ABC四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)已知向量,满足.(1)求向量与夹角的余弦值;(2)求的值.16.(本题满分15分)(1)已知都是锐角,若,求的值;(2)已知,求的值.17.(本题满分15分)设函数.(1)当时,求函数的单调区间;(2)若函数有两个极值点,且,求的最小值.18.(本题满分17分)△的内角的对边分别为,已知.(1)求角的大小;(2)若是△边上的中线,且,求△面积的最大值.19.(本题满分17分)已知为坐标原点,对于函数,称向量为函数的相伴特征向量,同时称函数为向量的相伴函数.(1)记向量的相伴函数为,若当且时,求的值;(2)设,试求函数的相伴特征向量,并求出与同向的单位向量;(3)已知为函数的相伴特征向量,若在△中,,,若点为该△的外心,求的最大值.2024-2025学年第一学期11月高三期中考试数学答案1.D 2.D 3.A4.D5.B6.A7.C8.C9.ABD10.AD11.ABDa b 2,3,(2)a b a b b ==-⊥a b2a b -,αβ38sin ,cos()517ααβ=+=sin β1sin cos ,(0,π)3ααα-=∈πsin(26α-21()ln 1()2f x x x ax a R =+-+∈52a =()f x ()f x 12,x x 11(0,]2x ∈12()()f x f x -ABC ,,A B C ,,a b c cos sin 2A Cc b C +=B BE ABC AC 3BE =ABC O ()sin cos f x a x b x =+(,)OM a b =()f x ()f x OM(3,ON =()f x ()3f x =ππ(,33x ∈-x ππ())cos()()36g x x x x R =++-∈()g x OM OM(0,1)OA = ()h x ABC 2AB =πcos ()6C h =G ABC GC AB CA CB ⋅+⋅12. 13. 1415.【解析】(1)设与的夹角为,因为,所以,又,所以,所以所以向量与夹角的余弦值为;(2)由,所以.16.【解析】(1)∵已知、都是锐角,且,∴.∵,∴,∴.(2)因为,所以,即,所以,又,所以,故,故,故,所以,所以,,故17.【解析】(1),则定义域为(0,),23-21,55⎛⎫⎪⎝⎭a b θ(2)a b b -⊥2(2)20a b b a b b -⋅=⋅-=2,3a b == 223cos 90θ⨯⨯⨯-=3cos 4θ=a b 342223244442349224a b a a b b -=-⋅+=-⨯⨯⨯+⨯= 2a b -=αβ3sin 5α=4cos ,0π5ααβ==<+<8cos()17αβ+=15sin()17αβ+==1548336sin sin[()]sin()cos cos()sin 17517585βαβααβααβα=+-=+-+=⨯-⨯=1sin cos 3αα-=21(sin cos )9αα-=112sin cos 9αα-=4sin cos 9αα=(0,π)α∈sin 0α>cos 0α>π0,2α⎛⎫∈ ⎪⎝⎭22217(sin cos )sin cos 2sin cos 9αααααα+=++=sin cos αα+=8sin 22sin cos 9ααα==22cos 2cos sin (sin cos )(sin cos )ααααααα=-=-+-=81sin(2sin 2cos cos 2sin 66692πππααα-=-=+⨯=21()ln 12f x x x ax =+-+()f x +∞211()x ax f x x a x x-+'=+-=当时,,令,解得或,令,解得,所以的单调递增区间为,单调递减区间为(2)∵定义域为,由(1)可知当时有两个极值点等价于在上有两个不等实根,∴,∴ ∴设,则,∴在上单调递减,∴,即,∴的最小值为18.【解析】(1)在△中,由,根据正弦定理可得因为为△的内角可知,,且,所以,即因为为△的内角,,故;所以,即(2)由题知是边的中线,所以.两边平方得:52a =2511(2)(21)22()x x x x f x x x -+--'==()0f x '>2x >102x <<()0f x '<122x <<()0f x '>1(0,),(2,)2+∞1(,2)2()f x 211(0,),()x ax f x x a x x-+'+∞=+-=2a >()f x 12,x x 210x ax -+=(0,)+∞12,x x 1212,1x x a x x +==211x x =221211122211()()ln 1ln 122f x f x x x ax x x ax -=+-+--+-22211211112221111111111ln ln ()2ln 2222x x a x x x x x x x x x ==--+-=+-+-21121112ln 22x x x =-+22111()2ln 0222g x x x x x ⎛⎫=-+<≤ ⎪⎝⎭24223332121(1)()0x x x g x x x x x x---'=--==-≤()g x 1(0,]21115()2ln 222ln 2288g x g ⎛⎫≥=--+=-+ ⎪⎝⎭1215()()2ln 28f x f x -≥-+12()()f x f x -152ln 28-+ABC cos sin 2A Cc b C +=sin cos sin sin 2A CC B C+=C ABC sin 0C ≠A B C π++=πsin coscos sin 2222A C B B B +⎛⎫==-= ⎪⎝⎭2sin cos sin222B B B =B ABC sin02B ≠1cos 22B =π23B =2π3B =BE AC 2BE BA BC =+222(2)2cos BE c a ac B =++ 2236c a ac=+-又,故,当且仅当时等号成立.所以面积的最大值为19.【解析】(1)根据题意知,向量的相伴函数为当时,,又,则,所以,故(2)因为,故函数的相伴特征向量,则与同向的单位向量为(3)由题意得,,在△中,,,因此,设△外接圆半径为,根据正弦定理,,故所以,代入可得,所以当时,取得最大值14.222c a ac +≥2236c a ac ac =+-≥6a c ==11sin 3622ABC S ac B =≤⨯=V ABC (3,ON =π()3sin 6f x x x x =+=+π()36f x x ⎛⎫=+= ⎪⎝⎭πsin 6x ⎛⎫+= ⎪⎝⎭ππ,33x ⎛⎫∈-⎪⎝⎭πππ,662x ⎛⎫+∈- ⎪⎝⎭ππ63x +=π6x =ππππππ()cos cos cos sin sin cos cos sin sin363366g x x x x x x x ⎛⎫⎛⎫⎫=++-=-++ ⎪ ⎪⎪⎝⎭⎝⎭⎭sin x x =-+()g x (1,OM =-(1,OM =- 11(1,,22OM OM ⎛=-=- ⎝()cos h x x =ABC 2AB =ππcos (cos 66C h ===π6C =ABC R 24sin ABR C==2R =2GA GB GC ===()()()GC AB CA CB GC GB GA GA GC GB GC ⋅+⋅=⋅-+-⋅- =2GC GB GC GA GA GB GA GC GC GB GC⋅-⋅+⋅-⋅-⋅+ 228cos 4cos 4GC GA GA GB GC AGC AGB =-⋅+⋅+=-∠+∠+ πππ1,2,cos cos 6332C AGB C AGB =∠==∠==68cos GC AB CA CB AGC ⋅+⋅=-∠ πAGC ∠=GC AB CA CB ⋅+⋅。
成都2022级半期考试数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分;2.本堂考试时间120分钟,满分150分;3.答题前考生务必先将自己的姓名、学号填写在答题卡上,并用2B 铅笔填涂;4.考试结束后将答题卡交回.第Ⅰ卷(选择题部分,共58分)一、单项选择题:本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.2.若函数是周期为4的奇函数,且,则( )A.2B. C.3D.3.已知,,则为第几象限角( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.若向量,,且,,三点共线,则( )A. B. C. D.5.若,则( )A.3 B. C. D.66.为了得到函数的图象,只需将函数的图象( )A.向左平移个单位,再将所有点的横坐标伸长到原来的2倍(纵坐标不变)B.向左平移个单位,再将所有点的横坐标缩短到原来的(纵坐标不变)C.所有点的横坐标缩短到原来的(纵坐标不变),再将图象向左平移个单位D.所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象向左平移个单位7.已知关于的不等式在上有解,则实数的取值范围是( ){}2log 1A x x =≤{}04B x x =<≤A B = {}04x x <≤{}4x x ≤{}2x x ≤{}02x x <≤()f x ()13f =()3f =2-3-()sin π0θ-<()cos π0θ+>θ()2,5AB = (),1AC m m =+A B C m =23-2332-32tan 3θ=-sin cos sin cos 2θθθθ+=103-56-()sin 2cos 2f x x x =+()g x x =π4π41212π4π8x 2230ax x a -+<(]0,2aA. B. C. D.8.设,,且,则下列结论正确的个数为( )① ② ③ ④A.1B.2C.3D.4二、多项选择题:本题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对得部分分,有选错的得0分.9.下列说法不正确的是( )A.钝角三角形的内角是第一象限角或第二象限角B.若向量,满足且,同向,则C.若,,三点满足,则,,三点共线D.将钟表的分针拨快10分钟,则分针转过的角的弧度数为10.函数(,)的部分图象如图所示,则( )A. B.C.的图象关于点对称 D.在区间上单调递增11.已知函数的定义域为,为奇函数,为偶函数,且时,单调递增,则下列结论正确的为( )A.是偶函数 B.的图象关于点中心对称C. D.第Ⅱ卷(非选择题部分,共92分)三、填空题:本题共3个小题,每小题5分,共15分.12.已知角的终边经过点,则______.4,7⎛⎫-∞ ⎪⎝⎭⎛-∞ ⎝(],0-∞(),0-∞0a >0b >1a b +=22log log 2a b +≥-22a b +≥ln 0a b +<1sin sin 4a b <a b a b > a b a b>P A B 3OP OA OB =+P A B π3()()sin f x x ωϕ=+0ω>π2ϕ<2ω=π6ϕ=()f x π,012⎛⎫⎪⎝⎭()f x 5ππ,4⎛⎫⎪⎝⎭()f x R ()1f x +()2f x +[]0,1x ∈()f x ()f x ()f x ()1,0-()20240f =51044f f ⎛⎫⎛⎫+-<⎪ ⎪⎝⎭⎝⎭α()3,4P -sin α=13.设函数,则满足的的取值范围是______.14.若,则的最大值为______.四、解答题:本题共5个小题,共70分,其中15题13分,16、17题每题15分,18、19题每题17分,解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)已知数列为等差数列,,前项和为,数列为等比数列,,公比为2,且,.(1)求数列与的通项公式;(2)设数列满足,求数列的前项和.16.(本小题15分)在学校食堂就餐成为了很多学生的就餐选择.学校为了解学生食堂就餐情况,在校内随机抽取了100名学生,其中男生和女生人数之比为1:1,现将一周内在食堂就餐超过8次的学生认定为“喜欢食堂就餐”,不超过8次的学生认定为“不喜欢食堂就餐”.“喜欢食堂就餐”的人数比“不喜欢食堂就餐”人数多20人,“不喜欢食堂就餐”的男生只有10人.男生女生合计喜欢食堂就餐不喜欢食堂就餐10合计100(1)将上面的列联表补充完整,并依据小概率值的独立性检验,分析学生喜欢食堂就餐是否与性别有关;(2)用频率估计概率,从该校学生中随机抽取3名,记其中“喜欢食堂就餐”的人数为.事件“”的概率为,求随机变量的期望和方差.参考公式:,其中.0.10.050.010.0050.0012.7063.8416.6357.87910.82817.(本小题15分)已知锐角,内角,,所对的边分别为,,,面积为,.(1)求角;(2)若,求的取值范围.18.(本小题17分)已知抛物线:()经过点,直线:与的交()11,02,0x x x f x x -+≤⎧=⎨>⎩112f x ⎛⎫-> ⎪⎝⎭x ()()sin cos 2sin αβααβ+=-()tan αβ+{}n a 11a =n n S {}n b 11b >2354b S =3216b S +={}n a {}n b {}n c n n n c a b =+{}n c n n T 0.001α=X X k =()P X k =X ()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++αx αABC △A B C a b c S πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭B 2a =S E 22y px =0p >()1,2P l y kx m =+E点为,,且直线与倾斜角互补.(1)求抛物线在点处的切线方程;(2)求的值;(3)若,求面积的最大值.19.(本小题17分)设函数(),.(1)当时,判断在上的单调性;(2)当时,证明:;(3)设函数,若函数在上存在唯一极值点,求实数的取值范围.A B PA PB ()1,2P k 3m <PAB △()()cos sin f x a x x x =-a ∈R ()e x g x =1a =()f x ()0,2π0x >()2112g x x x >++()()()2112h x g x f x x x =----()h x ()0,πa成都2022级半期考试数学参考答案及评分标准一、单选题:1. A2. D3. C4. B5. C6. B7. B8.C二、多选题:9. BCD 10. ACD 11. ABD三、填空题:12.13.四、解答题15.(1)设等差数列的公差为,由题知,解得,,∴,.(2)∵,∴.16.(1)列联表见图,男生女生合计喜欢食堂就餐402060不喜欢食堂就餐103040合计5050100零假设:假设食堂就餐与性别无关,由列联表可得:,根据小概率的独立性检验推断不成立,即可以得到学生喜欢食堂就餐与性别有关,此推断犯错误的概率不超过0.001(2)由题意可知,抽取的3名学生,喜欢饭堂就餐的学生人数服从二项分布,453,2⎛⎫+∞ ⎪⎝⎭{}n a d ()11233544216b d b d ⎧+=⎨++=⎩13b =2d =()11221n a n n =+-⨯=-132n n b -=⋅()12132n n n n c a b n -=+=-+⋅()()2112132131222n n n T c c c n -⎡⎤=++⋅⋅⋅+=++⋅⋅⋅+-++++⋅⋅⋅+⎣⎦()()()21121213321212nn n n n ⨯-⎡⎤+-⎣⎦=+⨯=+--0H 0H ()221004030102016.66710.82850506040χ⨯-⨯=≈>⨯⨯⨯0.001α=0H X且喜欢饭堂就餐的频率为,则,故其期望,方差.17.(1)因为,由正弦定理可得,,且,且故,所以,.(2)由正弦定理可得,,且,则,由(1)知,则,且是锐角三角形,即,,所以,即,,..18.(1)由题意可知,,所以,所以抛物线的方程为;(),,则,则切线方程为.(2)如图:设,,将直线的方程代入,得,所以,,因为直线与倾斜角互补,所以600.6100=()3,0.6X B~() 1.8E X np ==()()10.72D X np p =-=πsin cos 6b A a B ⎛⎫=-⎪⎝⎭1sin sin sin sin 2B A A B B ⎫=+⎪⎪⎭1sin 0sin 2A B B ≠=cos 0B ≠tan B =π02B <<π3B =sin sin sin a b c A B C ==2a =2sin sin Cc A=π3B =2π3A C +=ABC △π02C <<2ππ032A <-<π2π63A <<ππ62A <<π113sin 22S ac B ⎫⎛⎫⎪⎪====⎪ ⎪⎝⎭ππ62A <<S <<42p =2p =E 24y x =y =0x >y '=11x k y ='==1y x =+()11,A x y ()22,B x y l 24y x =()222240k x km x m +-+=12242km x x k -+=2122m x x k=PA PB,即,所以,即,所以.(3)由(1)可知,所以,,则因为,所以,即,又点到直线的距离为所以因为,所以,即时,等号成立,所以19.(1)当时,,则,当时,;当时,,所以在上单调递减,在上单调递增.(2)证明:令(),则,令,则,21212121222201111PA PB y y kx m kx m k k x x x x --+-+-+=+=+=----()()()()122121211222201111x x k k m k k m x x x x ⎛⎫+-++-+=++-=⎪----⎝⎭()()()242222022km k k k m k m k m --++-=+-++2422442022km k k k k m k m --++==++++1k =-()22240x m x m -++=1242x x m +=+212x x m =AB ==()222440m m ∆=+->1m >-13m -<<P AB d 12S =⨯()()()()()213133222m m m m m -+=--+3133222562327m m m -+-++⎛⎫≤= ⎪⎝⎭S ≤322m m -=+13m =PAB △1a =()cos sin f x x x x =-()cos sin cos sin f x x x x x x x =--=-'()0,πx ∈()0f x '<()π,2πx ∈()0f x '>()f x ()0,π()π,2π()()22111e 122x G x g x x x x x ⎛⎫=-++=---⎪⎝⎭0x >()e 1x G x x =--'()e 1x k x x =--()e 1x k x '=-当时,,所以在上单调递增,即在上单调递增;所以,所以在上单调递增,所以,所以不等式成立.(3)由题可知:,则,令且,所以函数在上存在唯一极值点等价于在上存在唯一变号零点,又因为且,令,则且①当时,,(ⅰ)当时,在上单调递减,所以在上单调递增.又因为,,由零点存在性定理知:存在唯一,使得,所以当时,;当时,,(ⅱ)当时,,所以,所以由(ⅰ)(ⅱ)知:在上单调递减,在上单调递增,即在上单调递减,在上单调递增,所以当时,,又因为,0x >()0k x '>()k x ()0,+∞()G x '()0,+∞()()00G x G '>='()G x ()0,+∞()()00G x G >=()2112g x x x >++()()21e 1cos sin 2xh x x x a x x x =-----()e 1sin x h x x ax x =--+'()e 1sin x m x x ax x =--+()00m =()h x ()0,π()m x ()0,π()()e 1sin cos x m x a x x x =-++'()00m '=()()()e 1sin cos x n x m x a x x x =-+'=+()()e 2cos sin x n x a x x x =+-'()012n a '=+12a <-()0120n a =+<'π0,2x ⎛⎫∈ ⎪⎝⎭2cos sin y x x x =-π0,2⎛⎫⎪⎝⎭()()e 2cos sin x n x a x x x =+-'π0,2⎛⎫⎪⎝⎭π2ππe 022n a ⎛⎫=-> ⎪⎝⎭'()0120n a =+<'0π0,2x ⎛⎫∈ ⎪⎝⎭()00n x '=()00,x x ∈()0n x '<0π,2x x ⎛⎫∈ ⎪⎝⎭()0n x '>π,π2x ⎛⎫∈⎪⎝⎭2cos sin 0y x x x =-<()()e 2cos sin 0x n x a x x x '=+->()n x ()00,x ()0,πx ()m x '()00,x ()0,πx ()00,x x ∈()()00m x m '<='()ππe 1π0m a =-->'所以由零点存在性定理知:存在唯一,使得,所以当时,;当时,所以在上单调递减,上单调递增,所以当时,,又因为,由(2)知:,所以由零点存在性定理知:存在唯一,使得,当时,;当时,,即为在上唯一变号零点,所以符合题意;②当时,由时,得:,令且,则且,令,又因为,则在上单调递增,即在上单调递增,所以,所以在上单调递增,所以,所以当时,,即在上无零点,所以不符合题意.综上:,即实数的取值范围为.()10,πx x ∈()10m x '=()10,x x ∈()0m x '<()1,πx x ∈()0m x '>()m x ()10,x ()1,πx ()10,x x ∈()()00m x m <=()ππe π1m =--()π0m >()21,πx x ∈()20m x =()20,x x ∈()0m x <()2,πx x ∈()0m x >2x ()m x ()0,π12a <-12a ≥-()0,πx ∈sin 0y x x =>()1e 1sin e 1sin 2x x m x x ax x x x x =--+≥---()1e 1sin 2xM x x x x =---()00M =()()1e 1sin cos 2xM x x x x =--+'()00M '=()()()1e 1sin cos 2xx M x x x x ϕ=--+'=()01e cos sin e cos 0002x x x x x ϕ'=-+>-+=()x ϕ()0,π()M x '()0,π()()00M x M '>='()M x ()0,π()()00M x M >=()0,πx ∈()0m x >()m x ()0,π12a ≥-12a <-a 1,2⎛⎫-∞- ⎪⎝⎭。
2024北京高三(上)期中数学(答案在最后)本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,只收答题纸,不收试卷.一、单选题(本大题共10小题,共40分)1.设集合{}22M x x =<,{}13N x x =-≤≤,则M N ⋃=()A.{1x x -≤< B.{}12x x -≤<C.{}3x x <≤ D.{}23x x -<≤【答案】C 【解析】【分析】解不等式求集合M ,进而根据并集运算求解.【详解】因为22x <,解得x <<,即{|M x x =<<,且{}13N x x =-≤≤,所以{}3M N xx =<≤∣ .故选:C .2.曲线3113y x =+在点()3,8--处的切线斜率为()A.9 B.5C.8- D.10【答案】A 【解析】【分析】求导,根据导数的几何意义可得解.【详解】由已知3113y x =+,则2y x '=,当3x =-时,()239y '=-=,即切线斜率9k =,故选:A.3.在复平面内,复数z 1,z 2对应的点分别是()()2,1,1,3--,则21z z 的模是()A .5B.C.2D.【答案】D【解析】【分析】由复数的除法运算及模长公式即可求解.【详解】由题意知,12i z =-,213i z =-,所以()()()()2113i 2i 13i 55i 1i 2i 2i 2i 5z z -+--====---+所以21z z ==,故选:D.4.已知直线6x π=是函数()sin (08)6f x x πωω⎛⎫=+<< ⎪⎝⎭图像的一条对称轴,则ω的值为()A.3B.4C.2D.1【答案】C 【解析】【分析】根据正弦函数图象的对称性可得,Z 662k k πππωπ⋅+=+∈,由此可得答案.【详解】依题意得()sin()1666f πππω=⋅+=±,所以,Z 662k k πππωπ⋅+=+∈,即62,Z k k ω=+∈,又08ω<<,所以2ω=.故选:C.5.若0.5.43200.4,0.5,log 4a b c ===,则a b c ,,的大小关系是()A.a b c<< B.b c a<< C.c b a << D.c a b<<【答案】D 【解析】【分析】利用指数函数和幂函数的单调性比较大小可得答案.【详解】322log 40.45===c ,因为0.4x y =在R 上为减函数,所以10.50.40.40.40.4=<=<c a ,因为0.4y x =在()0,x ∈+∞上为增函数,所以0.40.40.50.4>=b ,所以a b <,所以c a b <<,故选:D.6.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点.则EB =()A.3144AB AC -B.3344AB AC -C.3144AB AC +D.3344AB AC +【答案】A 【解析】【分析】根据平面向量的线性运算即可求解.【详解】因为ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,所以()1113122244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-,故选:A .7.在长方体1111ABCD A B C D -的八个顶点任两点连线中,随机取一直线,则该直线与平面11AB D 平行的概率为A.314B.514C.328D.528【答案】C 【解析】【分析】由题意结合排列组合公式和古典概型计算公式即可求得满足题意的概率值.【详解】八个顶点任两点连线共有28C 28=条,其中直线与平面11AB D 平行的有BD ,1BC , 共有3条,所以该直线与平面11AB D 平行的概率为328P =.故选:C .8.已知,a b 都大于零且不等于1,则“log 1a b >”是“(1)(1)0a b -->”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】log 1ab >等价于1b a >>或01b a <<<,(1)(1)0a b -->等价于11a b >⎧⎨>⎩或0101a b <<⎧⎨<<⎩,然后可判断出答案.【详解】由log 1a b >可得log log a a b a >,所以可得1a b a >⎧⎨>⎩或01a b a <<⎧⎨<⎩,即1b a >>或01b a <<<(1)(1)0a b -->等价于11a b >⎧⎨>⎩或0101a b <<⎧⎨<<⎩所以“log 1a b >”是“(1)(1)0a b -->”的充分不必要条件故选;:A9.已知函数()22,,x x x mf x x x m⎧-≥=⎨<⎩在R 上单调递增,则实数m 的取值范围是()A.1m ≥B.3m ≥C.13m ≤≤D.1m ≤或3m ≥【答案】B 【解析】【分析】根据二次函数的单调性及断点处左侧的函数值不大于右侧函数值得到不等式,解得即可.【详解】因为()22211y x x x =-=--在[)1,+∞上单调递增,y x =在R 上单调递增,又()22,,x x x mf x x x m ⎧-≥=⎨<⎩在R 上单调递增,所以212m m m m ≥⎧⎨≤-⎩,解得3m ≥,即实数m 的取值范围是3m ≥.故选:B10.核酸检测分析是用荧光定量PCR 法,通过化学物质的荧光信号,对在PCR 扩增进程中成指数级增加的靶标DNA 实时监测,在PCR 扩增的指数时期,荧光信号强度达到阈值时,DNA 的数量n X 与扩增次数n 满足()0lg lg 1lg n X n p X =++,其中p 为扩增效率,n X 为DNA 的初始数量.已知某被测标本DNA 扩增10次后,数量变为原来的100倍,那么该样本的扩增效率p 约为()(参考数据:0.210 1.585≈,0.2100.631-≈)A.36.9% B.41.5%C.58.5%D.63.4%【答案】C 【解析】【分析】由题意,0100n X X =代入解方程即可.【详解】由题意可知,()00lg10010lg 1lg X p X =++,即002lg 10lg(1)lg X p X +=++,所以0.2110 1.585p +=≈,解得0.585p =.故选:C二、填空题(本大题共5小题,共25分)11.函数y =______.【答案】()0,2【解析】【分析】由函数特征得到不等式,求出定义域.【详解】由题意得240x x >⎧⎨->⎩,解得02x <<,故定义域为()0,2.故答案为:()0,212.已知等差数列{}n a 的前n 项和为13,1,18n S a S ==,则6S =______.【答案】81【解析】【分析】运用等差数列的性质公式计算即可.【详解】根据题意,知道131,18a S ==,则231417a a a a +==+,则416a =,若公差为d ,所以41315a a d -==,则5d =.故1234561,6,11,16,,21,26.a a a a a a ======则6161116212681S =+++++=.故答案为:8113.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,()226b a c =+-,23B π=,则ABC V 的面积是______________.【答案】332【解析】【分析】利用余弦定理求出ac 的值,再利用三角形的面积公式可求得ABC V 的面积.【详解】由余弦定理可得222222cos b a c ac B a c ac =+-=++,222a c b ac ∴+-=-,()2222626b a c a c ac =+-=++- ,可得222260a c b ac +-+-=,则260ac ac --=,解得6ac =,因此,ABC V的面积是11sin 62222ABC S ac B ==⨯⨯=△.故答案为:2.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.14.已知函数()()22log 2,014,03x x x a x f x x ⎧++≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩的值域是R ,则实数a 的最大值是______.【答案】8【解析】【分析】根据条件可得()f x 在[)0+∞,上的最小值小于或等于3,判断其单调性列出不等式得出a 的范围.【详解】当0x <时,1()43)(,3xf x ⎛⎫=- ∈-∞⎪⎝⎭.因为()f x 的值域为R ,则当0x ≥时,min ()3f x ≤.当0x ≥时,222(1)1y x x a x a =++=++-,故()f x 在[)0+∞,上单调递增,min ()=(0)3f x f ∴≤,即2log 3a ≤,解得08a <≤,即a 的最大值为8.故答案为:8.15.如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA =AB =4.E ,F ,H 分别是棱PB ,BC ,PD 的中点,对于平面EFH 截四棱锥P ABCD -所得的截面多边形,有以下三个结论:①截面面积等于;②截面是一个五边形;③直线PC 与截面所在平面EFH 无公共点.其中,所有正确结论的序号是_____.【答案】②③【解析】【分析】根据给定条件,作出平面EFH 截四棱锥P ABCD -所得的截面多边形,再逐一判断各个命题作答.【详解】在四棱锥P ABCD -中,PA =AB =4,取CD 中点,连接FG ,GH ,BD ,AC ,如图,因底面ABCD 为正方形,,,E F H 分别是棱,,PB BC PD 的中点,则////EH BD FG ,////EF PC GH ,EFGH 是平行四边形,令FG AC J ⋂=,有14CJ AC =,在PA 上取点I ,使14PI PA =,连接,,EI HI JI ,则////JI PC EF ,点J ∈平面EFH ,有JI ⊂平面EFH ,点I ∈平面EFH ,,EI HI ⊂平面EFH ,因此五边形EFGHI 是平面EFH 截四棱锥P ABCD -所得的截面多边形,②正确;因EF ⊂平面EFH ,PC ⊄平面EFH ,而//EF PC ,则//PC 平面EFH ,直线PC 与截面所在平面EFH 无公共点,③正确;PA ⊥底面ABCD ,FG ⊂平面ABCD ,有PA FG ⊥,而BD AC ⊥,//BD FG ,则AC FG ⊥,又PA AC A = ,,PA AC ⊂平面PAC ,因此FG ⊥平面PAC ,PC ⊂平面PAC ,于是得FG PC ⊥,有FG EF ⊥,而122FG BD ==,22112322EF PC PA AC ==+,矩形EFGH 面积等于6EF FG ⋅=,3334JI PC ==,而JI EH ⊥,则IE H 边EH 上的高等于3JI EF -=1362IEH S EH == ,所以截面五边形EFGHI 面积为56.故答案为:②③【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.三、解答题(共6题,共85分)16.已知函数()()22sin cos 2cos f x x x x =+-,(1)求函数()f x 的最小正周期和单调递减区间;(2)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,求()f x 的最大值和最小值【答案】(1)最小正周期π,单调递减区间3π7ππ,π88k k ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(2,最小值-1.【解析】【分析】(1)先根据二倍角公式与配角公式将函数化为基本三角函数,再根据正弦函数性质求最小正周期和单调递减区间;(2)先根据π0,2x ⎡⎤∈⎢⎥⎣⎦,确定正弦函数自变量取值范围,再根据正弦函数性质求最值.【小问1详解】()()()222πsin cos 2cos 12sin cos 2cos 1sin 21cos 224f x x x x x x x x x x ⎛⎫=+-=+-=+-+=- ⎪⎝⎭,∴最小正周期2ππ2T ==,由ππ3π22π,2π422x k k ⎡⎤-∈++⎢⎥⎣⎦,k ∈Z 得单调递减区间为3π7ππ,π88x k k ⎡⎤∈++⎢⎥⎣⎦,k ∈Z ;【小问2详解】由π0,2x ⎡⎤∈⎢⎥⎣⎦得ππ3π2,444x ⎡⎤-∈-⎢⎥⎣⎦,故当ππ242x -=时,()f x ;当ππ244x -=-时,()f x 的最小值为-1.17.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且___________.在下面的三个条件中任选一个补充到上面的问题中,并给出解答.①22cos a b c B -=,②1sin cos 62C C π⎛⎫+=+ ⎪⎝⎭,③(,)m a c b a =-- ,(,)n a c b =+ ,m n ⊥.(1)求角C ;(2)若c =,求ABC V 周长的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)3π(2)【解析】【分析】(1)选①由正弦定理结合和角公式得出角C ;选②由和角公式结合辅助角公式得出角C ;由数量积公式结合余弦定理得出角C ;(2)由余弦定理结合基本不等式得出ABC V 周长的取值范围.【小问1详解】选①由正弦定理及22cos a b c B -=,2sin sin 2sin cos A B C B -=,又sin sin()sin cos cos sin A B C B C B C =+=+,2sin cos sin B C B∴=sin 0B ≠ ,1cos 2C ∴=,又(0,)C π∈,3C π∴=.选②由1sin cos 62C C π⎛⎫+=+ ⎪⎝⎭,311sin cos cos 222C C C +=+,即311sin cos 222C C -=,1sin 62C π⎛⎫∴-= ⎪⎝⎭.(0,)C π∈ ,5,666C πππ⎛⎫∴-∈- ⎪⎝⎭,66C ππ∴-=,3C π∴=.选③(,)m a c b a =-- ,(,)n a c b =+ .m n ⊥.()()()0a c a c b a b ∴-⋅++-⋅=.化简得222a b c ab +-=,2221cos 22a b c C ab +-==.又(0,)C π∈ ,3C π∴=.【小问2详解】由余弦定理得2222222cos ()3c a b ab C a b ab a b ab =+-=+-=+-,又2a b+³Q 2()4a b ab +∴≤当且仅当a b =时等号成立.2233()3()4ab a b a b ∴=+-≤+,0a b ∴<+≤,当且仅当a b ==.a b c ∴++≤=又a b c +>,2a b c c ∴++>=ABC ∴周长的取值范围为.18.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,22PD DC AD ===,E 是PC 的中点.(1)求证:PA ∥平面EDB ;(2)求平面EDB 与平面PAD 夹角的余弦值;(3)在棱PB 上是否存在一点F ,使直线EF 与平面EDB 所成角的正弦值为3,若存在,求出求线段BF 的长;若不存在,说明理由.【答案】(1)证明见解析(2)66(3)存在;BF 的长为32或94【解析】【分析】(1)利用线面平行的判定定理证明即可;(2)建立空间直角坐标系,用空间向量数量积公式求解二面角;(3)假设棱PB 存在一点F 使得BF BP λ= ,且EF EB BF =+uu u r uur uu u r,即可求出EF ,利用向量的夹角公式列出关于λ的方程求解即可.【小问1详解】连接AC ,交BD 于点O ,连接OE ,点E 是PC 的中点,点O 是AC 的中点,所以PA ∥OE ,OE ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB ;【小问2详解】如图,以向量DA ,DC ,DP为,,x y z 轴的正方向建立空间直角坐标系,即()0,0,0D ,()1,2,0B ,()0,1,1E ,则()()1,2,0,0,1,1DB DE ==,设平面EDB 的法向量(),,m x y z = ,则20DB m x y DE m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1y =-得2,1x z ==,所以平面EDB 的法向量()2,1,1m =-,平面PAD 的一个法向量为()0,1,0n =,设平面EDB 和平面PAD 的夹角为θ,则6cos cos ,66m n m n m n θ⋅====,所以平面EDB 和平面PAD 的夹角的余弦值为66;【小问3详解】由(2)知()0,0,0D ,()1,2,0B ,()0,1,1E ,()0,0,2P ,()1,1,1EB =- ,()1,2,2BP =-- ,(),2,2(01)BF BP λλλλλ==--<<,()()()1,1,1,2,21,12,12EF EB BF λλλλλλ=+=-+--=---+,由(2)知平面EDB 的法向量()2,1,1m =-,设直线EF 与平面EDB 的夹角为α,则6sin cos ,,013EF m αλ===<<整理得281030λλ-+=,解得12λ=或3,4λ=故当12λ=时,32BF =;当34λ=时,94BF =则BF 的长为32或94.19.某市A ,B 两所中学的学生组队参加信息联赛,A 中学推荐了3名男生、2名女生.B 中学推荐了3名男生、4名女生.两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队参赛.(1)求A 中学至少有1名学生入选代表队的概率;(2)设X 表示A 中学参赛的男生人数,求X 的分布列和数学期望;(3)已知3名男生的比赛成绩分别为76,80,84,3名女生的比赛成绩分别为77,a ()*a ∈N,81,若3名男生的比赛成绩的方差大于3名女生的比赛成绩的方差,写出a 的取值范围(不要求过程).【答案】(1)99100(2)分布列见解析,期望为32(3){|738},5N a a a *<∈<【解析】【分析】(1)A 中学至少有1名学生入选代表队的对立事件是A 中没有学生入选代表队,那3名男生和3名女生都是B 中学的学生,计算概率后,求对立事件的概率即可;(2)6名男队员中有A ,B 中学各3人,所以选3人来自A 中学的人数X 可能取值为0,1,2,3,根据超几何分布计算其概率,列出分布列,求期望;(3)根据平均数与方差的计算公式,结合题意即可得出a 的取值范围.【小问1详解】由题意知,参加集训的男、女生各有6名.参赛学生全部从B 中学中抽取(等价于A 中学没有学生入选代表队)的概率为33343366C C 1C C 100=.因此,A 中学至少有1名学生入选代表队的概率为1991100100-=.【小问2详解】根据题意得,X 的可能取值为0,1,2,3.则()()031233333366,0C C C C 1901C 20C 2P X P X ⋅⋅======,()213336C C 92C 20P X ⋅===,()330363C C 13.C 20P X ⋅===所以X 的分布列为:X 0123P120920920120因此,X 的数学期望()199130123202020202E X =⨯+⨯+⨯+⨯=.【小问3详解】3名男生的比赛成绩分别为76,80,84,平均值为80,方差为2224)043233-++=(,3名女生的比赛成绩为77,a ()*a ∈N,81,平均值为1583a +,所以222158158158327781333a a a a +++⎛⎫⎛⎫⎛⎫>-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()()()()()()222222329732158857347985a a a a a a ⨯>-+-+-=-+-+-,代入检验,可知a 最小为74,最大84,故7385a <<,N a *∈即a 的取值范围{|738},5N a a a *<∈<.20.已知函数()211ln22f x a x x =--+(a ∈R 且0a ≠).(Ⅰ)当a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(Ⅱ)若0a >,讨论函数()f x 的单调性与单调区间;(Ⅲ)若()y f x =有两个极值点1x 、2x ,证明:()()129ln f x f x a +<-.【答案】(Ⅰ)10x y +--=;(Ⅱ)详见解析;(Ⅲ)证明见解析.【解析】【分析】(Ⅰ)求出()1f 和()1f '的值,利用点斜式可得出所求切线的方程;(Ⅱ)求得()2x af x x-+-'=,由20x a -+-=,分0∆>和0∆≤两种情况讨论,分析()f x '的符号变化,可得出函数()y f x =的单调递增区间和递减区间;(Ⅲ)由题意可知,方程()0f x '=有两正根1x 、2x ,利用韦达定理得出12x x +=,12x x a =且()0,3a ∈,将所证不等式转化为ln ln 20a a a a --+>,构造函数()ln ln 2x x g x x x =--+,利用导数证明出当()0,3x ∈时,()0g x >即可.【详解】由题可知:函数()f x 的定义域为 t h(Ⅰ)因为a =时,()21122f x x x =--+,所以()f x x x'=--,那么()11f '=-,()1f =,所以曲线()y f x =在()()1,1f 处的切线方程为:()1y x -=--,即10x y +-=;(Ⅱ)因为()2a x af x x x x-+-'=--=,由20x a -+-=可得:①当1240a ∆=->,()0,3a ∈,时,有1x =+,2x =120x x >>,()20,x x ∈和()1,x x ∈+∞时()0f x '<,即函数()y f x =在(和)+∞上为减函数;()21,x x x ∈时,()0f x '>,即函数()y f x =在上为增函数;②当3a ≥时,0∆≤,()0f x '≤恒成立,所以函数()y f x =在 t h 为减函数.综上可知:当0<<3a 时,函数()y f x =在(和)+∞上为减函数,在上为增函数;当3a ≥时,函数()y f x =在 t h 上为减函数;(Ⅲ)因为()y f x =有两个极值点1x 、2x ,则()20x af x x-+-'==有两个正根1x 、2x ,则有1240a ∆=->,且12x x +=,120x x a =>,即()0,3a ∈,所以()())()()22121212121ln 1ln 72f x f x x x a x x x x a a a +=+--++=-++若要()()129ln f x f x a +<-,即要ln ln 20a a a a --+>,构造函数()ln ln 2x x g x x x =--+,则()1ln g x x x'=-,易知()y g x '=在()0,3上为增函数,且()110g '=-<,()12ln 202g '=->,所以存在()01,2x ∈使()00g x '=即001ln x x =,且当()01,x x ∈时()0g x '<,函数()y g x =单调递减;当()0,2x x ∈时,()0g x '>,函数()y g x =单调递增.所以函数()y g x =在()1,2上有最小值为()00000001ln ln 23g x x x x x x x ⎛⎫=-++=-+ ⎪⎝⎭,又因为()01,2x ∈则00152,2x x ⎛⎫+∈ ⎪⎝⎭,所以()00g x >在()01,2x ∈上恒成立,即()()129ln f x f x a +<-成立.【点睛】本题考查利用导数求函数的切线方程、利用导数求解含参函数的单调区间以及利用导数证明不等式,考查分析问题和解决问题的能力,属于中等题.21.设n 为正整数,集合(){}{}12|,,,,0,1,1,2,,.n n i A a a a a i n αα==∈= 对于()12,,,n n a a a A α=∈ ,设集合(){}01,,1,2,,i t i P a t t n a a i n t +=∈≤≤-==⋯-N .(1)若()()0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0αβ==,写出集合()(),P P αβ;(2)若()12,,,n n a a a A α=∈ ,且(),s t P α∈满足s t <,令()12,,,n s n s a a a A α--∈'= ,求证:()t s P α-∈';(3)若()12,,,n n a a a A α=∈ ,且(){}1212,,,,3m m P s s s s s s m α=<<<≥ (),求证:()1221,2,,2k k k s s s k m ++≥+=- .【答案】(1)(){}(){}0,3,5,0,5,8,10P P αβ==;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)由题意,即可直接写出(),()P P αβ;(2)由i s i a a +=可得j t j t s a a ++-=,结合j t j a a +=可得,1,2,,j t s j a a j n t +-==- ,即可证明;(3)若()t P α'∈且2t n s <-则2,1,2,,2i t i a a i n s t +==-- ,进而2()s t P α+∈,由(2)可知1()k k k s s P α+-∈,分类讨论12()k k k s s n s +-<-、12()k k k s s n s +-≥-时12k k s s +-与2k s +的大小关系,即可证明.【小问1详解】(){0,3,5},(){0,5,8,10}P P αβ==;【小问2详解】因为()s P α∈,所以,1,2,,i s i a a i n s +==- ,当1j n t ≤≤-时,1j t s n t t s n s <+-≤-+-=-,所以j t s s j t s a a +-++-=,即j t j t s a a ++-=,1,2,,j n t =- ,又因为()t P α∈,所以,1,2,,j t j a a j n t +==- ,所以,1,2,,j t s j a a j n t +-==- ,所以()t s P α'-∈;【小问3详解】对任意()s P α∈,令12(,,,)n s n s a a a A α--'=∈ ,若()t P α'∈且2t n s <-,则,1,2,,i t i a a i n s t +==-- ,所以2,1,2,,2i t i a a i n s t +==-- ,因为()s P α∈,所以1,1,2,,j j a a j n s +==- ,所以22,1,2,,2i i t i t s a a a i n s t +++===-- ,所以2()s t P α+∈.对1,()(1,2,,2)k k s s P k m α+∈=- ,因为1k k s s +<,由(2)可知,令12(,,,)k k n s a a a α-= ,则1()k k k s s P α+-∈.若12()k k k s s n s +-<-,因为()k s P α∈,所以12()()k k k s s s P α++-∈,即12()k k s s P α+-∈,又因为11112()k k k k k k s s s s s s ++++-=+->,所以122k k k s s s ++-≥.若12()k k k s s n s +-≥-,则122()k k k m k s s s n s s +++-≥>≥,所以122k k k s s s ++->.综上,122k k k s s s ++-≥即122(1,2,,2)k k k s s s k m ++≥+=- .【点睛】方法点睛:学生在理解相关新概念、新定义、新法则(公式)之后,运用学过的知识,结合已掌握的技能,通过推理、运算等解决问题.在新环境下研究“旧”性质.主要是将新性质应用在“旧”性质上,创造性地证明更新的性质,落脚点仍然是集合相关知识..。
菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}202,0M x x N x x x =∈<<=-≤Z ∣∣,则M N = ( )A. {}0,1 B. {}1 C. {}1,1- D. ∅2. 已知函数()21f x +的定义域为[]1,2,则函数()1f x -的定义域为( )A. []1,2 B. []4,6 C. []5,9 D. []3,73. 已知2025π1sin sin 22αα⎛⎫-+=⎪⎝⎭,则cos2sin cos ααα=+( )A. 12-B.12C. 0D. 14. “函数()32f x x ax =-在[]2,3-上单调递增”是“3a ≤”的( )A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分又不必要条件5. 过曲线9log =y x 上一点A 作平行于两坐标轴的直线,分别交曲线3log y x =于点,B C ,若直线BC 过原点,则其斜率为( )A. 1B.3log 22C.ln33D.2log 36.6. 函数()11ln sin 21x f x x x+=--的零点个数为( )A. 1B. 0C. 3D. 27. 自然界中许多流体是牛顿流体,其中水、酒精等大多数纯液体、轻质油、低分子化合物溶液以及低速流动的气体等均为牛顿流体;高分子聚合物的浓溶液和悬浮液等一般为非牛顿流体,非牛顿流体在实际生活和生产中有很多广泛的应用,如工业制造业常利用某些高分子聚合物做成“液体防弹衣”,已知牛顿流体符合牛顿黏性定律,即在一定温度和剪切速率范围内黏度值是保持恒定的:τηγ=,其中τ为剪切应力,η为黏度,γ为剪切速率;而当液体的剪切应力和剪切速率存在非线性关系时液体就称为非牛顿流体.其中宾汉流体(也叫塑性流体),是一种粘塑性材料,是非牛顿流体中比较特殊的一种,其在低应力下表现为刚体,但在高应力下表现为粘性流体(即粘度恒定),以牙膏为例,当我们挤压它的力较小时,它就表现为固体,而当力达到一个临界值,它就会变成流体,从开口流出.如图是测得的某几种液体的流变τγ-曲线,则其中属于牙膏和液体防弹衣所用液体的曲线分别是( )A. ①和④B. ③和④C. ③和②D. ①和②8. 已知函数()()1e xf x x =-,点(),m n 在曲线()y f x =上,则()()f m f n -( )A. 有最大值为1e -,最小值为1 B. 有最大值为0,最小值为1e-C. 有最大值为0,无最小值D. 无最大值,有最小值为1e-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 已知0c b a <<<,则( )A. ac bc <B. 333b c a +< C.a c ab c b+>+D.<10. 已知函数()21,2,5,2xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则( )A. 1a ≤- B. []1,4c ∈ C. ()20,5ad ∈ D. 222a b +=.11. 把一个三阶魔方看成是棱长为1的正方体,若顶层旋转x 弧度π02x ⎛⎫<<⎪⎝⎭,记表面积增加量为()S f x =,则( )A. π6f ⎛⎫=⎪⎝⎭B. ()f x 的图象关于直线π3x =对称C. S 呈周期变化D. 6S ≤-三、填空题:本题共3小题,每小题5分,共15分.12. 命题:“所有能被4整除的正整数能被2整除”的否定是______.13. 已知函数()sin2cos2f x x a x =+,将()f x 的图象向左平移π6个单位长度,所得图象与曲线()y f x =关于原点对称,则()0f =______.14. 已知22,e x ⎡⎤∈⎣⎦时,2log 2axx x ax ≥⋅,则正数a 的最大值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.15. 记ABC V 内角,,A B C 的对边分别为,,a b c ,已知πsin sin ,63C C b ⎛⎫+== ⎪⎝⎭,ABC V的面积为(1)求C ;(2)求ABC V 的周长.16. 已知函数()π2sin 43⎛⎫=- ⎪⎝⎭f x x .(1)求()f x 的单调递减区间;(2)若ππ,68x ⎡⎤∈-⎢⎥⎣⎦,求()()23-=+f x y f x 的最大值.17. 记锐角ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos c CA b B-=.(1)求B ;的(2)延长AC 到D ,使2,15AC CD CBD =∠= ,求tan A .18. 已知函数()()2e xf x x a =-.(1)求()f x 单调区间;(2)设12,x x 分别为()f x 的极大值点和极小值点,记()()()()1122,,,A x f x B x f x .证明:直线AB 与曲线()y f x =交于另一点C .19. 已知函数()()sin tan sin 2f x x x x =+-,其中01x <<,(1)证明:21cos 12x x >-;(2)探究()f x 否有最小值,如果有,请求出来;如果没有,请说明理由.的是菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABD 【10题答案】【答案】BCD 【11题答案】【答案】AD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】存在能被4整除的正整数不能被2整除【13题答案】【答案】【14题答案】四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.【15题答案】【答案】(1)π3C =(2)10+【16题答案】【答案】(1)π5ππ11π,224224k k ⎡⎤++⎢⎥⎣⎦,()k ∈Z (2)0【17题答案】【答案】(1)45B =(2)2+【18题答案】【答案】(1)单调增区间为()(),2,,a a ∞∞--+,单调减区间为(2,)a a - (2)证明见解析【19题答案】【答案】(1)证明见解析(2)没有,理由见解析。
上海(四校联考)2024学年高三数学第一学期期中考试试卷考试时间:120分钟满分:150分一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知集合{}265<0A x x x =-+,{}0,1,2B =,则A B ⋂=___________.【答案】:{}22.已知向量(1,2)a =- ,(3,2)b = ,则b 在a方向上的数量投影为_____________.【答案】:52.53.曲线xy e =在点(01),处的切线方程为_______.【答案】:1y x =+4.某老年健康活动中心随机抽取了6位老年人的收缩压数据,分别为120,96,153,146,112,136,则这组数据的40%分位数为__________.【答案】:1205.二项式6(3x 的展开式中,常数项为_______.【答案】:18-6.关于x 的方程100910152024x x x +++-=的解集为__________.【答案】:{}07.已知>0x ,>0y ,4x y xy +=,则x y +的最小值为________.【答案】:98.《九章算术》卷五《商功》中有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺.”(注:刍童为上下底面是相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),则《商功》中提及的这个刍童的外接球表面积为________平方尺.【答案】:41π9.意大利著名画家、自然科学家、工程师达芬奇在绘制作品《抱银貂的女人》时,曾仔细思索女人脖子上黑色项链的形状,这就是著名的悬链线形状问题.后续的数学家对这一问题不断研究,得到了一类与三角函数性质相似的函数:双曲函数.其中双曲正弦函数为2x xe e shx --=,并且双曲正弦函数为奇函数,若将双曲正弦函数的图象向右平移12个单位,再向上平移2个单位,得到函数()y f x =的图象,并且数列{}n a 满足条件(2025n na f =,则数列{}n a 的前2024项和2024S =________________.【答案】:202310.已知椭圆Γ:22143x y +=,点1F 和2F 分别是椭圆的左、右焦点,点P 是椭圆上一点,则12PF F △内切圆半径的最大值为__________.【答案】:404811.在ABC △中,a ,b ,c 分别是A ,B ,C 的对边,若2222024a b c +=,则2tan tan tan (tan tan )A BC A B =+________.【答案】:3312.若关于x 的方程2(ln )20x x e a x x a -⋅-+-=在(0,1]上有两个不等的实根,则实数a 的取值范围是________.【答案】:311(,]3e e二、选择题(本大题共有4题,满分18分,第13、14题每题4分,第15、16题每题5分)13.设z C ∈,则1z R z+∈是1z =的()条件.A .充分非必要B .必要非充分C .充分必要D .既不充分也不必要【答案】:B14.在ABC △中,10BC =,M 为BC 中点,4AM =,则AB AC ⋅= ().A .9-B .16-C .9D .16【答案】:14. A15.已知定义在R 上的函数()y f x =,其导数为()f x ',记()()g x f x '=,且()()4f x f x x --=,()(2)0g x g x +-=,则下列说法中正确的个数为().(1)(0)1g =;(2)()f x y x=的图象关于(0,2)对称;(3)()(2)0f x f x +-=;(4)21()nk g k n n==-∑.A .1个B .2个C .3个D .4个【答案】:B16.已知正项数列{}n a 满足1112ln n n n a a a ++=-,下列说法正确的是().A .当10<<1a 时,数列{}n a 单调递减B .当1>1a 时,数列{}n a 单调递增C .当10<<1a 时,存在正整数0n ,当0n n ≥时,01<2n n a D .当1>1a 时,存在正整数0n ,当0n n ≥时,0<2n n a 【答案】:D三、解答题(本大题共有5题,满分78分)17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某市数学竞赛初赛结束后,为了解竞赛成绩情况,从所有学生中随机抽取100名学生,得到他们的成绩,将数据分成五组:[50,60),[60,70),[70,80),[80,90),[90,100],并绘制成如图所示的频率分布直方图:(1)若只有前35%的学生能进决赛,则入围分数应设为多少分?(2)采用分层随机抽样的方法从成绩为[80,100]的学生中抽取容量为6的样本,再从该样本中随机抽取2名学生进行问卷调查,设X 为其中达到90分及以上的学生的人数,求X 的概率分布及数学期望.【解析】:(1)成绩在区间[80,100]的比例为:(0.0100.005)100.150.35+⨯=<;(2分)成绩在区间[70,100]的比例为:0.150.04100.550.35+⨯=>,因此65%分位数位于区间[70,80);(4分)因此入围分数为:0.40.27010750.4-+⨯=,因此入围分数应设为75分;(6分)(2)在这六个人中,有两人的分数在90分及以上,因此0,1,2X =,(0)P X =2426C C =25=(8分)1124268(1)15C C P X C ⋅===(10分)(2)P X =2226C C=115=,则X 的概率分布为:01228151515⎛⎫ ⎪ ⎪ ⎪⎝⎭;(12分)所以X 的数学期望为812[]1215153E X =⨯+⨯=.(14分)18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数()y f x =是定义在(1,1)-上的奇函数,并且当0x >时,()cos sin(223x x f x π=⋅+2cos 2x(1)求函数()y f x =的表达式;(2)求关于x 的不等式21(log 1)()(0)2f x f x f ++-<的解集.【解析】:(1)当01x <<时,()fx 1sin()234x π=-+;(2分)当0x =时,()0f x =;当10x -<<时,0x ->,()()f x f x -=-=1sin(234x π+-;(4分)因此1sin(1234()0, 0133sin()1 0234x x f x x x x ππ⎧-+⎪⎪⎪==⎨⎪⎪+--⎪⎩<<<<;(6分)(2)当(0,1)x ∈时,13336x ππππ---<<<,因此有()y f x =在(0,1)上严格增;(8分)而当0x =时1333sin()02342x π-+=>,因此有()y f x =在(1,1)-上严格增;原不等式可化为:21(log 1)()2f x f x +-<;(10分)而()y f x =是定义在(1,1)-上的严格增函数,所以221log 1111121log 12x x x x ⎧⎪-+⎪⎪--⎨⎪⎪+-⎪⎩<<<<<;(12分)因此不等式的解集为11(,42.(14分)19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,在三棱锥P ABC -中AC BC ⊥,平面PAC ⊥平面ABC ,2PA PC AC ===,4BC =,E ,F 分别是PC ,PB 的中点,记平面AEF 与平面ABC 的交线为直线l.(1)求证:直线EF ⊥平面PAC ;(2)若直线l 上存在一点Q (与B 都在AC 的同侧),且直线PQ 与直线EF 所成的角为4π,求平面PBQ 与平面AEF 所成的锐二面角的余弦值.【解析】:(1)证明:BC AC ⊥ ,平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC =BC ∴⊥平面PAC ;(2分)又E 、F 分别为PB 、PC 的中点,//BC EF ∴;(4分)EF ∴⊥平面PAC ;(6分)(2)BC AC ⊥ ,∴以C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,过C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,则(2,0,0)A ,(0,4,0)B,P,1(,0,)22E,1(,2,22F ,而//EF BC ,BC 不在平面AEF 上,EF ⊂平面AEF ,//BC ∴平面AEF ,//l BC ∴,设Q 点坐标为(2,,0)(0)y y ≥,(1,PQ y = ,(0,2,0)EF = ,cos ,PQ EF ∴=2=,即2y =,则Q 点坐标为(2,2,0);(8分)设平面PBQ 的法向量000(,,)n x y z = ,即0n PQ n BQ ⎧⋅=⎪⎨⋅=⎪⎩,即0000020220x y x y ⎧+=⎪⎨-=⎪⎩,取01x =,可得n = ;(10分)设平面AEF 法向量为111(,,)m x y z = ,则0m AE m EF ⎧⋅=⎪⎨⋅=⎪⎩,取11x =,可得m = ;(12分)cos ,5m n ∴== ,即平面PBQ 与平面AEF所成的锐二面角的余弦值为5.(14分)20.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知点G 是圆22:(1)16T x y ++=上一动点(T 为圆心),点H 的坐标为(1,0),线段GH 的垂直平分线交线段TG 于点R ,动点R 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的两个动点,O 是坐标原点,直线OM 、ON 的斜率分别为1k 和2k 且1234k k =-,则MON △的面积是否为定值?若是,求出这个定值;若不是,请说明理由;(3)设P 为曲线C 上任意一点,延长OP 至Q ,使3OQ OP =,点Q 的轨迹为曲线E ,过点P 的直线l 交曲线E于A 、B 两点,求AQB △面积的最大值.【解析】:(1)RH RG =,则42RT RH RT RG GT TH +=+===>,则曲线C 是以(1,0)-和(1,0)为焦点,4为长轴的椭圆;(2分)设椭圆方程为22221x y a b +=,则2,1a c ==,2223b a c =-=,曲线C :22143x y +=;(4分)(2)设(2cos )M ϕϕ,(2cos )N θθ,则123sin 3sin 2cos 2cos k k ϕθϕθ==⋅34-,即cos()0θϕ-=;(7分)12cos 2cos )2MON S ϕθθϕθϕ∴=-=-=△为定值;(10分)(3)设点(,)Q x y ,则点(,33x y P ,代入椭圆方程得到曲线E :2213627x y +=;当直线l 的斜率不存在时:设:([2,2])l x n n =∈-,代入E 中有223274y n =-,则2AQB AOB S S ==≤△△(12分)当直线l 斜率存在时:设:l y kx m =+,11(,)A x y ,22(,)B x y ,代入E 的方程:222(43)841080k x mkx m +++-=,则122843km x x k -+=+,2122410843m x x k -=+;(14分)122AQB AOBS S m x x ==-==△△;(16分)而l 与椭圆C 有公共点,代入得:222(43)84120k x kmx m +++-=,由0∆≥有2243k m +≥,记2243m t k =+,则AQB S =≤△,综上,AQB △面积的最大值为.(18分)21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()y f x =的表达式为()(2ln )()f x x ax x a R =-∈.(1)当1a =时,求()y f x =的单调增区间;(2)若当1x >时,()1f x >恒成立,求a 的取值范围;(3)证明:5740472ln1012233420232024+++⨯⨯⨯ >.【解析】:(1)1a =时,2()(2ln )2ln f x x x x x x x =-=-,则()2(ln 1)f x x x '=--(2分)令()ln 1g x x x =--,则1()1g x x'=-,则()g x 在(0,1)上严格减,(1,)+∞上严格增,则()(1)0g x g ≥=,即()f x 在(0,)+∞上严格增,因此函数()y f x =的增区间为(0,)+∞;(4分)(2)()22(1ln )2(ln 1)f x ax x ax x '=-+=--,记()ln 1h x ax x =--,则1()h x a x'=-,若1a ≥,则1a1≤,即1x >时()0h x >,()f x ∴在(1,)+∞上严格增,()(1)1f x f a >=>,满足要求;(6分)若(0,1)a ∈,则11a >,1(1,x a ∈时()0h x <,则1()(1,f x a 在上严格减,故当1(1,x a ∈时,()(1)1f x f a <=<,不满足要求;(8分)若(,0]a ∈-∞,则()0h x <,()f x 在(1,)+∞上严格减,则()(1)1f x f a <=<,不满足要求;综上,a 的取值范围是[1,)+∞.(10分)(3)由(2)可知1a =时2()2ln 1f x x x x =->,则12ln (1)x x x x <->,取21n x n +=+,则221232ln112(1)(2)n n n n n n n n n ++++<-=+++++,即2322ln (1)(2)1n n n n n ++>+++;(14分)20222022112323420242ln 2ln()2ln 2012(1)(2)1232023n n n n n n n ==++∴>=⨯⨯⨯=+++∑∑ ,即572334+⨯⨯40472ln101220232024++⨯ >.。
哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟 满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=( )A. ()0,2 B. ()1,2- C. (],4∞- D. (]1,4-2. 若复数z 满足i 2i z =+,则z 的共轭复数的虚部为( )A. 2iB. 2i- C. 2- D. 23. 在等差数列{}n a 中,若26510,9a a a +==,则10a =( )A. 20 B. 24C. 27D. 294. “26k πθπ=+,Z k ∈”是“1sin 2θ=”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题中,真命题的是( )A. 函数sin ||y x =的周期是2π B. 2,2x x R x ∀∈>C. 函数2()ln2x f x x +=-是奇函数. D. 0a b +=的充要条件是1ab=-6.设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A. B. 3C. 9D. 7. 已知ABC 中,5AB AC ==,6BC =,点D 为AC 中点,点M 为边BC 上一动点,则MD MC ⋅的最小值为( )A 27B. 0C. 716-D. 916-8. 在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设的.某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A. 35B. 42C. 49D. 56二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9. 数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是( )A. 数列1{}2n a +为等比数列 B. 11322n n a =⨯-C. 数列{}n a 是递减数列D. {}n a 的前n 项和115344n n S +=⨯-10. 下列说法中正确的是( )A. 在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B. 非零向量a 和b满足1a = ,2=+= b a b,则a b -= C. 已知()1,2a = ,()1,1b = ,且a 与a b λ+ 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D. 在ABC 中,若2350OA OB OC ++=,则AOC 与AOB 的面积之比为3511. 已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A. 若()0f =,则π3ϕ=B. 若函数()y f x =为偶函数,则2cos 1ϕ=C. 若()f x [],a b 上单调,则π2b a ω-≤D. 若2ϕπ=时,且()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,则30,2ω⎛⎤∈ ⎥⎝⎦12. 已知()[)()[]sin 0,6π3π1cos 6π,7πax xx f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是( )A. ()f x 的单调递增区间为()0,6πB. 方程()f x m =可能有三个实数根在C. 若函数()f x 在0x x =处的切线经过原点,则00tan x x =D. 过()f x 图象上任何一点,最多可作函数()f x 的8条切线Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13. 已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.14. 已知ABC的面积S =,3A π∠=,则AB AC ⋅=________;15. 若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.16. ()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.19. 已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 的通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .20. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.21. 已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .22. 已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.的的哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟 满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=( )A. ()0,2B. ()1,2- C. (],4∞- D. (]1,4-【答案】D 【解析】【分析】解不等式可得集合,A B ,根据集合的并集运算即得答案.【详解】因为{}(]2log 20,4A x x =≤=,{}()2201,2B x x x =--<=-,所以(]1,4A B =- ,故选:D.2. 若复数z 满足i 2i z =+,则z 的共轭复数的虚部为( )A. 2i B. 2i- C. 2- D. 2【答案】D 【解析】【分析】先求出复数z ,得到z 的共轭复数,即可得到答案.【详解】因为复数z 满足i 2i z =+,所以2i12i iz +==-,所以z 的共轭复数12i z =+.其虚部为:2.故选:D3. 在等差数列{}n a 中,若26510,9a a a +==,则10a =( )A. 20 B. 24C. 27D. 29【答案】D 【解析】【分析】求出基本量,即可求解.【详解】解:2642=10a a a +=,所以45a =,又59a =,所以544d a a =-=,所以510592029a d a +=+==,故选:D 4. “26k πθπ=+,Z k ∈”是“1sin 2θ=”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】26k πθπ=+,Z k ∈时,1sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,526k πθπ=+,Z k ∈时,551sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,所以“26k πθπ=+,Z k ∈”是“1sin 2θ=”的充分而不必要条件,故选:A .5. 下列命题中,真命题的是( )A. 函数sin ||y x =的周期是2π B. 2,2x x R x ∀∈>C. 函数2()ln 2x f x x +=-是奇函数. D. 0a b +=的充要条件是1ab=-【答案】C 【解析】【分析】选项A ,由sin ||sin |2|33πππ-≠-+可判断;选项B ,代入2x =,可判断;选项C ,结合定义域和()()f x f x -=-,可判断;选项D ,由1ab=-得0a b +=且0b ≠,可判断【详解】由于5sin |||2|sin()333ππππ-=-+==,所以函数sin ||y x =的周期不是2π,故选项A 是假命题;当2x =时22x x =,故选项B 是假命题;函数2()ln2x f x x+=-的定义域(2,2)-关于原点对称,且满足()()f x f x -=-,故函数()f x 是奇函数,即选项C 是真命题;由1a b =-得0a b +=且0b ≠,所以“0a b +=”的必要不充分条件是“1ab=-”,故选项D 是假命题故选:C6. 设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A. B. 3C. 9D. 【答案】C 【解析】【分析】根据等差中项的定义,利用对数的运算得到21a b +=,然后利用这一结论,将目标化为齐次式,利用基本不等式即可求最小值.【详解】解:0,a b >>Q 是lg 4a 与lg 2b 的等差中项,2lg4lg2,lg 2lg 2b a a b +∴=+∴=,即222a b +=,即21a b +=,则212122(2)559a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22a b b a=,即13a b ==时取等号.故选C .【点睛】本题主要考查利用基本不等式求最值中的其次化方法,涉及等差中项概念和对数运算,难度中等.当已知a b k αβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0m nm n a b+>,为常数)的最小值时常用()1m n m n a b a b k a b αβ⎛⎫+=++ ⎪⎝⎭方法,展开后对变量部分利用基本不等式,从而求得最小值;已知k abαβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0ma nb m n +>,为常数)的最小值时也可以用同样的方法.7. 已知ABC 中,5AB AC ==,6BC =,点D 为AC 的中点,点M 为边BC 上一动点,则MD MC⋅的最小值为( )A. 27 B. 0C. 716-D. 916-【答案】D 【解析】【分析】根据图形特点,建立直角坐标系,由题设数量关系得出A ,B ,C 的坐标,再设出点M 的坐标,将所求问题转化为函数的最小值即可.【详解】解:以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,如图所示 ,由题意可知,()0,4A ,()3,0C ,3,22D ⎛⎫⎪⎝⎭,设(),0M t ,其中[]3,3t ∈- ,则3,22MD t ⎛⎫=- ⎪⎝⎭,()3,0MC t =- ,故()22399993222416MD MC t t t t t ⎛⎫⎛⎫⋅=-⨯-=+=--⎪ ⎪⎝⎭⎝⎭ ,所以当94t = 时,MD MC ⋅ 有最小值916-.故选:D.8. 在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A. 35 B. 42C. 49D. 56【答案】B【解析】【分析】根据题意列出方程,利用等比数列的求和公式计算n 轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n 轮传染,则每轮新增感染人数为0nR ,经过n 轮传染,总共感染人数:1200000111n nR R R R R +-++++=- ,∵0R 3=,∴当感染人数增加到1000人时,113=100013n +--,化简得3=667n ,由563243,3729==,故得6n ≈,又∵平均感染周期为7天,所以感染人数由1个初始感染者增加到1000人大约需要6742⨯=天,故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得50分,部分选对的得2分.9. 数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是( )A. 数列1{}2n a +为等比数列 B. 11322n n a =⨯-C. 数列{}n a 是递减数列 D. {}n a 的前n 项和115344n n S +=⨯-【答案】AB 【解析】【分析】推导出1113()22n n a a ++=+,11322a +=,从而数列1{}2n a +为首项为32,公比为3的等比数列,由此利用等比数列的性质能求出结果.【详解】解: 数列{}n a 满足:11a =,1310n n a a +--=,*n ∈N ,131n n a a +∴=+,1113(22n n a a +∴+=+,11322a +=,为∴数列1{}2n a +为首项为32,公比为3的等比数列,故A 正确;113133222n n n a -+=⨯=⨯,∴11322n n a =⨯-,故B 正确;数列{}n a 是递增数列,故C 错误;数列1{}2n a +的前n 项和为:13(13)3132(31)313444n n n n S +-'==-=⨯--,{}n a ∴的前n 项和1111332424n n n S S n n +'=-=⨯--,故D 错误.故选:AB .10. 下列说法中正确的是( )A. 在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B. 非零向量a 和b满足1a = ,2=+= b a b,则a b -= C. 已知()1,2a = ,()1,1b = ,且a 与a b λ+ 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D. 在ABC 中,若2350OA OB OC ++= ,则AOC 与AOB 的面积之比为35【答案】BD 【解析】C 为钝角,从而否定A ;利用向量的和、差的模的平方的关系求得26a b -= ,进而判定B ;注意到a 与a b λ+ 同向的情况,可以否定C ;延长AO 交BC 于D ,∵,AO OD共线,利用平面向量的线性运算和三点共线的条件得到58BD BC = ,进而35CD DB =,然后得到35ODC ADC OBD ABD S S S S == ,利用分比定理得到35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,从而判定D.【详解】0a b ⋅> 即0BC CA ⋅> ,∴0CB CA ⋅< ,∴C 为钝角,故A 错误;2222222810a b a b a b -++=+=+= ,2224a b +== ,21046a b -=-=,a b -=B 正确;(1,2)a b λλλ+=++r r,当0λ=时,a 与a b λ+ 同向,夹角不是锐角,故C 错误;∵2350OA OB OC ++=,∴3522AO OB OC =+ ,延长AO 交BC 于D ,如图所示.∵,AO OD共线,∴存在实数k ,3522k k OD k AO OB OC ==+ ,∵,,D B C 共线,∴35122k k +=,∴14k =,∴3588OD OB OC =+ ,∴555888BD OD OB OB OC BC =-=-+= ,∴35CD DB =.∴35ODC ADC OBD ABD S S S S == ,∴35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,故D 正确.故选:BD.11. 已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A. 若()0f =,则π3ϕ=B. 若函数()y f x =为偶函数,则2cos 1ϕ=C. 若()f x [],a b 上单调,则π2b a ω-≤D. 若2ϕπ=时,且()f x在π3⎡-⎢⎣上单调,则30,2ω⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】将0x =代入()f x 求出函数值,根据ϕ的范围即可判断选项A ;根据偶函数的性质即可判断选项B ;根据()f x 在[],a b 上单调,则2Tb a ≥-即可判断选项C ;根据整体思想以及正弦函数的性质即可判断选项D.【详解】对于选项A ,若()0f =,则2cos ϕ=cos ϕ=,∵[]0,πϕ∈,∴π6ϕ=,则A错误;对于选项B ,若函数()y f x =为偶函数,则0ϕ=或πϕ=,即2cos 1ϕ=,则B 正确;对于选项C :若()f x 在[],a b 上单调,则π2T b a ω-≤=,但不一定小于π2ω,则C错误;在对于选项D :若2ϕπ=,则()2sin f x x ω=-,当ππ,34x ⎡⎤∈-⎢⎥⎣⎦时,ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦,∵()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,∴ππ32ππ42ωω⎧-≥-⎪⎪⎨⎪≤⎪⎩ ,解得30,2ω⎛⎤∈ ⎥⎝⎦,则D 正确.故选:BD .12. 已知()[)()[]sin 0,6π3π1cos 6π,7πax x x f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是( )A. ()f x 的单调递增区间为()0,6πB. 方程()f x m =可能有三个实数根C. 若函数()f x 在0x x =处的切线经过原点,则00tan x x =D. 过()f x 图象上任何一点,最多可作函数()f x 的8条切线【答案】ABC 【解析】【分析】A 选项,根据()0f x ≥,得到1a ≥,画出函数图象,可得单调区间;B 选项,结合函数图象得到方程()f m =的根的个数;C 选项,分[0,6π)x ∈和[]6π,7πx ∈两种情况,得到00tan x x =或0001cos sin x x x -=;D 选项,设()f x 上一点()111,sin M x ax x -,分M 为切点和不是切点,结合函数图象可得过()f x 图象上任何一点,最多可作函数()f x 的8条切线.【详解】A 选项,因为函数()0f x ≥,[6π,7π]x ∈时,由于1cos 0x -≥恒成立,故3π(1cos )y a x =-要想恒正,则要满足0a ≥,[0,6π]x ∈时,sin 0y ax x =-≥恒成立,cos y a x '=-,当1a ≥时,cos 0y a x '=-≥在[)0,6π恒成立,故sin y ax x =-在[)0,6π单调递增,又当0x =时,0y =,故sin 0y ax x =-≥在[)0,6π上恒成立,满足要求,当01a <<时,令cos 0y a x '=-=,故存0π0,2x ⎛⎫∈ ⎪⎝⎭,使得0cos a x =,当()00,x x ∈时,0'<y ,当0π,2x x ⎛⎫∈ ⎪⎝⎭时,0y '>,故sin y ax x =-在()00,x x ∈上单调递减,又当0x =时,0y =,故()00,x x ∈时,sin 0y ax x =-<,不合题意,舍去,综上:1a ≥,当6πx →时,sin 6πy ax x a =-→,(6)3π[1cos(6π)]0f a π=-=,且(7π)3π[1cos(7π)]6πf a a =-=,画出函数图象如下,故()f x 的单调递增区间为(0,6π),(6π,7π),A 错误;B 选项,可以看出方程()f x m =最多有两个实数解,不可能有三个实数根,B 错误;C 选项,当[)0,6πx ∈时,()cos f x a x '=-,则()00cos f x a x '=-,则函数()f x 在0x x =处的切线方程为()()()0000sin cos y ax x a x x x --=--,将()0,0代入切线方程得()()0000sin cos ax x x a x --=--,解得00tan x x =,当[]6π,7πx ∈时,()3πsin f x a x '=,则()003πsin f x a x '=,则函数()f x 在0x x =处的切线方程为()()0003π1cos 3πsin y a x a x x x --=-⎡⎤⎣⎦,将()0,0代入切线方程得,0001cos sin x x x -=,其中06πx =满足上式,不满足00tan x x =,故C 错误;D 选项,当[)0,6πx ∈时,设()f x 上一点()111,sin M x ax x -,()cos f x a x '=-,当切点为()111,sin M x ax x -,则()11cos f x a x '=-,在故切线方程为()()()1111sin cos y ax x a x x x --=--,此时有一条切线,当切点不为()111,sin M x ax x -时,设切点为()222,sin N x ax x -,则()22cos f x a x '=-,此时有()2211221sin sin cos ax x ax x a x x x ---=--,即12212sin sin cos x x x x x -=-,其中1212sin sin x x t x x -=-表示直线MN 的斜率,画出cos ,[0,6π)y x x =∈与y t =的图象,最多有6个交点,故可作6条切线,[]6π,7πx ∈时,当切点不为()111,sin M x ax x -时,设切点为()()22,3π1cos N x a x -,则()3πsin f x a x '=,()223πsin f x a x '=,()7π3πsin 7π0f a '==,()6π3πsin 6π0f a '==,13π13π3πsin 3π22f a a ⎛⎫⎪==⎭'⎝,结合图象可得,存在一个点()()22,3π1cos N x a x -,使得过点()()22,3π1cos N x a x -的切线过[)0,6πx ∈上时函数的一点,故可得一条切线,当M 点在[]6π,7πx ∈时的函数图象上时,由图象可知,不可能作8条切线,综上,过()f x 图象上任何一点,最多可作函数f(x)的8条切线,D 正确.故选:ABC【点睛】应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x =';(2) 已知斜率k 求切点()()11,A x f x ,即解方程()1f x k '=;(3) 已知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,A x f x ,利用()()()10010f x f x k f x x x -=='-求解.Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13. 已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.【答案】12n -【解析】【分析】当1n =时求得1a ;当2n ≥时,利用1n n n a S S -=-可知数列{}n a 为等比数列,利用等比数列通项公式可求得结果.【详解】当1n =时,1121a a =-,解得:11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,12n n a a -∴=,则数列{}n a 是以1为首项,2为公比的等比数列,11122n n n a --∴=⨯=.故答案为:12n -.14. 已知ABC 的面积S =,3A π∠=,则AB AC ⋅=________;【答案】2【解析】【分析】由三角形的面积可解得4bc =,再通过数量积的定义即可求得答案【详解】由题可知1sin 2S bc A =3A π∠= ,所以解得4bc =由数量积的定义可得1cos 422AB AC bc A ⋅==⨯= 【点睛】本题考查三角形的面积公式以及数量积的定义,属于简单题.15. 若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.【答案】19-【解析】【分析】由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案.【详解】2sin 63πα⎛⎫+= ⎪⎝⎭ ,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭,1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-16. ()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.【答案】21223n +-【解析】【分析】设n A 中有n c 项为0,其中1和1-的项数相同都为n b ,由已知条件可得()111222n n n b c n ---+=≥①,()112n n n b b c n --=+≥②,进而可得()1122n n n b b n --+=≥③,再结合12n n n b b ++=④可得()11122n n n b b n -+--=≥,分别研究n 为奇数与n 为偶数时{}n b 的通项公式,运用累加法及并项求和即可求得结果.【详解】因为()11,1A =-,依题意得,()21,0,0,1A =-,()31,0,1,1,1,1,0,1A =---,显然,1A 中有2项,其中1项为1-,1项为1,2A 中有4项,其中1项为1-,1项为1,2项为0,3A 中有8项,其中3项1-,3项为1,2项为0,由此可得n A 中共有2n 项,其中1和1-的项数相同,设n A 中有n c 项为0,所以22nn n b c +=,11b =,从而()111222n n n b c n ---+=≥①,因为()f A 表示把A 中每个1-都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,为则()112n n n b b c n --=+≥②,①+②得,()1122n n n b b n --+=≥③,所以12nn n b b ++=④,④-③得,()11122n n n b b n -+--=≥,所以当n 为奇数且3n ≥时,()()()324122411222122211143n n n n n n n n n b b b b b b b b ------+=-+-+⋅⋅⋅+-+=++⋅⋅⋅++=+=-,经检验1n =时符合,所以213n n b +=(n为奇数),当n 为偶数时,则n 1-为奇数,又因为()1122n n n b b n --+=≥,所以111121212233n n n n n n b b ----+-=-=-=,所以2+1,321,3n n n n b n ⎧⎪⎪=⎨-⎪⎪⎩为奇数为偶数,当n 为奇数时,+112121233n n n n n b b ++-+=+=,所以{}n b 的前2n 项和为21211352112345621222422()()()()2+2+2++2143n n n n n b b b b b b b b -+---⨯-++++++++===- .故答案为:21223n +-.【点睛】本题的解题关键是根据题目中集合的变换规则找到递推式,求出通项公式,再利用数列的特征采取分组求和解出.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值【答案】(I )6π(II )max 3()2f x =【解析】【详解】(1)由2a =x )2+(sin x )2=4sin 2x ,2b =(cos x )2+(sin x )2=1,及a b =r r,得4sin 2x =1.又x ∈0,2π⎡⎤⎢⎥⎣⎦,从而sin x =12,所以x =6π.(2) ()·=f x a b =x ·cos x +sin 2xsin 2x -12cos 2x +12=sin 26x π⎛⎫- ⎪⎝⎭+12,当x ∈0,2π⎡⎤⎢⎥⎣⎦时,-6π≤2x -6π∴当2x -6π=2π时,即x =3π时,sin 26x π⎛⎫-⎪⎝⎭取最大值1.所以f (x )的最大值为32.18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取PC 的中点M ,根据题意证得//AE MF 且AE MF =,得到四边形AEMF 为平行四边形,从而得到//AE ME ,结合线面平行的判定定理,即可得证;(2)以D 为坐标原点,建立空间直角坐标系,求得向量1,1)2PB =- 和平面PAD 的一个法向量n =,结合向量的夹角公式,即可求解.【小问1详解】证明:取PC 的中点M ,连接,MF EM ,在PCD 中,因为,M F 分别为,PC PD 的中点,可得//MF CD 且12MF CD =,又因为E 为AB 的中点,所以//AE CD 且12AE CD =,所以//AE MF 且AE MF =,所以四边形AEMF 为平行四边形,所以//AE ME ,因为ME ⊂平面PCE ,AF ⊄平面PCE ,所以//AF 平面PCE .【小问2详解】解:因为底面ABCD 是菱形,且60DAB ∠= ,连接BD ,可得ABD △为等边三角形,又因为E 为AB 的中点,所以DE AB ⊥,则DE DC ⊥,又由PD ⊥平面ABCD ,以D 为坐标原点,以,,DE DC DP 所在的直线分别为,x y 和z 轴建立空间直角坐标系,如图所示,因为底面ABCD 是菱形,且60DAB ∠= ,1PD AD ==,可得11(0,0,0),,0),,0),(0,0,1)22D A B P -,则11,1),,0),(0,0,1)22PB DA DP =-=-=,设平面PAD 的法向量为(,,)n x y z =,则1020n DA x y nDP z ⎧⋅=-=⎪⎨⎪⋅==⎩ ,取x =,可得3,0y z ==,所以n =,设直线PB 与平面PAD 所成的角为θ,则sin cos ,n PB n PB n PB θ⋅==== ,所以直线PB 与平面PAD19. 已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =- (2)1133n n n T -+=-【解析】的【分析】(1)利用累加法求出na n,进而得n a ;(2)求得1213n n n b --=,利用错位相减法可求出答案.【小问1详解】因为()1111111n n a a n n n n n n +-==-+++,所以11221111221n n n n n a a a a a a a a n n n n n ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 1111111121212n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-+=- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以21n a n =-.【小问2详解】因为312n n S -=,所以当1n =时,1111a S b ==,得11b =;当2n ≥时,1113131322n n n n n n n a S S b -----=-=-=,所以1213n n n b --=(1n =时也成立).因为012135333n T =++++ 所以12311352133333n nn T -=++++ ,所以1012111121222212133121333333313n n n nnn n T --⎛⎫- ⎪--⎝⎭=++++-=+⨯-- 112122112333n n nn n --+=+--=-,故1133n n n T -+=-.20. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.【答案】(1)2π3B = (2)[)8,12【解析】【分析】(1)选①时:利用面积和数量积公式代入化简即可;选②时:利用正弦定理代入,结合余弦定理得到;选③时:正弦定理进行边角转换,结合角度的范围即可确定角B .(2)结合(1)的角度,和边的大小,用余弦定理进行代换,结合基本不等式即可得到最终范围.【小问1详解】2ABC BC S ⋅=可得:1cos 2sin sin 2B ac B ac B =⋅=,故有sin tan cos BB B ==又∵()0,πB ∈,∴2π3B =;选②,∵()()()sin sin sin sin sin sin sin B A B A C C A +-=+,由正余弦定理得222c ac b a +=-,∴2221cos 22a cb B ac +-==-,又()0,πB ∈,∴2π3B =;选③,∵()2cos cos c a B b C +=-,由正弦定理可得()sin 2sin cos sin cos C A B B C +=-,∴()2sin cos sin cos sin cos sin sin A B B C C B C B A =--=-+=-,∵()0,πA ∈,∴sin 0A ≠,∴1cos 2B =-,又()0,πB ∈,∴2π3B =.【小问2详解】由余弦定理得2222cos 12c a b ac B ac +=+=-∵0ac >,∴2212a c +<.又有222222122c a c a ac c a +=++≤++,当且仅当2a c ==时取等号,可得228c a +≥.即22a c +的取值范围是[)8,12.21. 已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 的通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .【答案】(1)25n a n =或2n a n =(N n +∈) (2)当n 为正偶数时,1n nT n =-+,当n 为正奇数时,231n n T n +=-+【解析】【分析】(1)设出公差d ,根据已知条件列出相应的等式即可求解.(2)由题意可以先求出{}n b 的通项公式,再对n 进行讨论即可求解.【小问1详解】设等差数列{}n a 的公差为d ,∵2112a a a d ==+,∴1a d =,∵1a ,32a -,4a 成等比,∴()21432a a a =-,即()()2111322a a d a d +=+-,得()22432d d =-,解得25d =或2d =,∴当125d a ==时,25n a n =;当12d a ==时,2na n =;∴25n a n =或2n a n =(N n +∈).【小问2详解】因为等差数列{}n a 的公差为整数,由(1)得2n a n =,所以()()2212n n n S nn +==+,则()()112n S n n +=++,∴()()()()()()()12121111111111nn n n n n n b n n n n n n n ⎡⎤++-+⎛⎫=-=--=-++⎢⎥ ⎪+++⎝⎭⎢⎥⎣⎦.①当n 为偶数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++--+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111111111111223344511n n n n =---+++---+++----+++-+ 1111n =-++1n n =-+.②当n 为奇数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++-+++-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111111111111223344511n n n n =---+++---+++-+++----+ 1111111n n n =-+---+231n n +=-+.所以当n 为正偶数时,1n nT n =-+,当n 为正奇数时,231n n T n +=-+.22. 已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 的取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.【答案】(1)递增区间为10,3⎛⎫ ⎪⎝⎭,递减区间为1,3⎛⎫+∞ ⎪⎝⎭(2)1,2⎛⎤-∞- ⎥⎝⎦(3)证明见解析【解析】【分析】(1)求定义域,求导,由导函数的正负求出单调区间;(2)转化为1ln 0x m x x ⎛⎫+-< ⎪⎝⎭在()1,x ∈+∞上恒成立,令()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,分0m ≥和0m <两种情况,求导,结合导函数特征,再分类讨论,求出m 的取值范围;(3)在(2)基础上得到12ln x x x<-,赋值得到211212ln 1n n n n n n n n n +++<-=++,利用累加法得到结论.【小问1详解】当3m =-时,()ln 3,0f x x x x =->,则()1133x f x x x-'=-=,令()0f x ¢>,得103x <<;令()0f x '<,得13x >,所以()f x 的单调递增区间为10,3⎛⎫ ⎪⎝⎭,单调递减区间为1,3⎛⎫+∞ ⎪⎝⎭.【小问2详解】由()m f x x <,得1ln 0x m x x ⎛⎫+-< ⎪⎝⎭,设()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,当()1,x ∈+∞时,1ln 0,0x x x>->,所以当0m ≥时,()0g x >,不符合题意.当0m <时,()2111g x m x x ⎛⎫=++ ⎝'⎪⎭22mx x m x ++=,设()()2,1,h x mx x m x =++∈+∞,其图象为开口向下的抛物线,对称轴为12x m=-0>,当112m ->,即102m -<<时,因为()1210h m =+>,所以当11,2x m ⎛⎫∈-⎪⎝⎭时,()0h x >,即()0g x '>,此时()g x 单调递增,所以()()10g x g >=,不符合题意.当1012m <-≤,即12m ≤-时,()h x 在()1,+∞上单调递减,所以()()1210h x h m <=+≤,所以()0g x '<,所以()g x 在()1,+∞上单调递减,所以()()10g x g <=,符合题意.综上所述,m 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.【小问3详解】由(2)可得当1x >时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,即12ln x x x<-,令*1,n x n n+=∈N ,则211212ln 1n n n n n n n n n +++<-=++,所以22223351212ln ,2ln ,,2ln 111222n n n n n++<<⋅⋅⋅<+++,以上各式相加得22223135212lnln ln 121122n n n n n++⎛⎫++⋅⋅⋅+<++⋅⋅⋅+ ⎪+++⎝⎭,即22223135212ln 121122n n n n n ++⎛⎫⨯⨯⋅⋅⋅⨯<++⋅⋅⋅+⎪+++⎝⎭,所以()22235212ln 11122n n n n++<++⋅⋅⋅++++.【点睛】导函数证明数列相关不等式,常根据已知函数不等式,用关于正整数的不等式代替函数不等式中的自变量,通过多次求和(常常用到裂项相消法求和)达到证明的目的,此类问题一般至少有两问,已知的不等式常由第一问根据特征式的特征而得到.。
2024—2025学年度第一学期期中练习题(答案在最后)年级:高三科目:数学考试时间:120分钟,满分:150分一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选中,选出符合题目要求的一项.1.已知集合{}11A x x =-≤≤,{|0}2xB x x =≤-,则A B = ()A.{}01x x ≤≤B.{}12x x -≤≤C.{}12x x -≤< D.{}02x x ≤≤【答案】C 【解析】【分析】解不等式化简集合B ,再利用并集的定义求解即得.【详解】解不等式02xx ≤-,得(2)020x x x -≤⎧⎨-≠⎩,解得02x ≤<,则{|02}B x x =≤<,而{}11A x x =-≤≤,所以{}12A B x x ⋃=-≤<.故选:C2.命题“()0,x ∀∈+∞,e ln x x >”的否定为()A.()0,x ∃∈+∞,e ln x x >B.()0,x ∀∈+∞,e ln x x <C.()0,x ∀∈+∞,e ln x x ≤D.()0,x ∃∈+∞,e ln x x≤【答案】D 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得:命题“()0,x ∀∈+∞,e ln x x >”的否定为“()0,x ∃∈+∞,e ln x x ≤”.故选:D .3.已知复数z 满足i 1z -=,则z 的取值范围是()A.[]0,1 B.[)0,1 C.[)0,2 D.[]0,2【答案】D 【解析】【分析】利用i 1z -=表示以 馀य़为圆心,1为半径的圆,z 表示圆上的点到原点的距离可得答案.【详解】因为在复平面内,i 1z -=表示到点 馀य़距离为1的所有复数对应的点,即i 1z -=表示以 馀य़为圆心,1为半径的圆,z 表示圆上的点到原点的距离,所以最短距离为0,最长距离为112+=,则z 的取值范围是 馀h .故选:D .4.若双曲线22221x y a b-=()0,0a b >>的离心率为2,则该双曲线的渐近线方程为()A.0y ±= B.0x ±=C.0x y ±=D.y ±=【答案】A 【解析】【分析】根据公式b a ==.【详解】由题意可知,2e =,则b a ==,所以双曲线的渐近线方程为y =0y ±=.故选:A5.直线()1:31210l a x ay ++-=和直线2:330l ax y -+=,则“53a =”是“12l l ⊥”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由题意先求出12l l ⊥的充要条件,然后根据充分不必要条件的定义判断即可.【详解】由题设12l l ⊥()()31230a a a ⇔⨯++⨯-=,解得0a =或53a =.故1253a l l =⇒⊥,1253l l a ⊥⇒=/.所以“53a =”是“12l l ⊥”的充分不必要条件.故选:B.6.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是()A.该图象对应的函数解析式为()2sin 26f x x π⎛⎫=+ ⎪⎝⎭B.函数()y f x =的图象关于直线712x π=对称C.函数()y f x =的图象关于点5,012π⎛⎫-⎪⎝⎭对称D.函数()y f x =在区间2,36ππ⎡⎤--⎢⎥⎣⎦上单调递减【答案】B 【解析】【分析】先依据图像求得函数()f x 的解析式,再去代入验证对称轴、对称中心、单调区间的说法.【详解】由图象可知2,4312T A ππ==-,即T π=,所以22Tπω==,又212f π⎛⎫= ⎪⎝⎭,可得2sin 2212πϕ⎛⎫⨯+=⎪⎝⎭,又因为||2ϕπ<所以3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,故A 错误;当712x π=时,73sin 2sin 2sin 131232x ππππ⎛⎫⎛⎫+=⨯+==- ⎪ ⎪⎝⎭⎝⎭.故B 正确;当512π=-x 时,sin 2sin 1032x ππ⎛⎫⎛⎫+=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 错误;当2,36x ππ⎡⎤∈--⎢⎥⎣⎦时,则2[,0]3ππ+∈-x ,函数()f x 不单调递减.故D 错误.故选:B7.已知1F ,2F 是椭圆C :22221(0)x y a b a b +=>>的两个焦点,P 为C 上一点,且1260F PF ∠=,125PF PF =,则C 的离心率为()A.6B.22C.12D.23【答案】A 【解析】【分析】根据椭圆的定义分别求出21,PF PF ,在12PF F 中,利用余弦定理求得,a c 的关系,从而可得出答案.【详解】解:在椭圆C :22221(0)x y a b a b+=>>中,由椭圆的定义可得122PF PF a +=,因为125PF PF =,所以215,33a aPF PF ==,在12PF F 中,122F F c =,由余弦定理得222121212122cos F F PF PF PF PF F PF =+-∠,即222222552149999a a a a c =+-=,所以222136c a =,所以C 的离心率216c e a ==.故选:A .8.函数()2sin 41x x xf x =+的大致图象为()A.B.C.D.【答案】A 【解析】【分析】根据函数的奇偶性、特殊点的函数值来确定正确选项.【详解】()()sin ,22x xxf x f x -=+的定义域为R ,()()sin 22x xxf x f x ---==-+,()f x 为奇函数,图象关于原点对称,排除C 选项.143ππ<<,()sin12201sin115522f <==<+,排除BD 选项.所以A 选项符合.故选:A9.“打水漂”是一种游戏:按一定方式投掷石片,使石片在水面上实现多次弹跳,弹跳次数越多越好.小乐同学在玩“打水漂”游戏时,将一石片按一定方式投掷出去,石片第一次接触水面时的速度为30m/s ,然后石片在水面上继续进行多次弹跳.不考虑其他因素,假设石片每一次接触水面时的速度均为上一次的75%,若石片接触水面时的速度低于6m/s ,石片就不再弹跳,沉入水底,则小乐同学这次“打水漂”石片的弹跳次数为()(参考数据:ln 20.7,ln 3 1.1,ln 5 1.6≈≈≈)A.5B.6C.7D.8【答案】B 【解析】【分析】设这次“打水漂”石片的弹跳次数为x ,根据题意得300.756x ⨯<,即0.750.2x <,根据指数函数的单调性和对数换底公式求解即可.【详解】设这次“打水漂”石片的弹跳次数为x ,由题意得300.756x ⨯<,即0.750.2x <,得0.75log 0.2x >.因为0.751lnln0.2lg55log 0.2 5.33ln0.75ln32ln2ln 4-===≈-,所以 5.3x >,即6x =.故选:B.10.已知函数2,0,()ln ,0,x x x f x x x x ⎧+⎪=⎨>⎪⎩,()()g x f x ax =-,若()g x 有4个零点,则a 的取值范围为()A.20,e ⎛⎫ ⎪⎝⎭B.10,2e ⎛⎫ ⎪⎝⎭C.2,1e ⎛⎫ ⎪⎝⎭D.1,12e ⎛⎫⎪⎝⎭【答案】B 【解析】【分析】由题意可得x=0为1个零点,只需要x ≠0时,21,0a 0x x lnx x x +≤⎧⎪=⎨>⎪⎩,,即y=a 与y 21,00x x lnx x x +≤⎧⎪=⎨>⎪⎩有3个交点且交点的横坐标不为0,作出y 21,00x x lnx x x +≤⎧⎪=⎨>⎪⎩,的图象,即可得出结论.【详解】当x=0时,g(0)=f(0)-0=0,当x 0≠时,由题意可得21,0a 0x x lnx x x +≤⎧⎪=⎨>⎪⎩,,即y=a 与y 21,00x x lnxx x +≤⎧⎪=⎨>⎪⎩,有3个交点且交点的横坐标不为0,令h(x)=2x 0lnx x >,,令h′(x )=312l 0nxx -=,则x=12e ,所以h(x)在(0,12e)单调递增,在(12e ∞+,)上单调递减,∴y 21,00x x lnx x x +≤⎧⎪=⎨>⎪⎩的大致图像如图:又h(12e)=12e,若y=a 与y 21,00x x lnx x x +≤⎧⎪=⎨>⎪⎩,有3个交点且交点的横坐标不为0,则10a 2e <<,故选B.【点睛】本题考查分段函数的零点,考查了利用导数解决函数零点的问题,考查了分析转化问题的能力,属于中档题.二、填空题共5小题,每小题5分,共25分.11.已知向量()4,2b = ,若向量a 在b 上的投影向量为12b,且a 与b 不共线,请写出一个符合条件的向量a的坐标________.【答案】()1,3(答案不唯一)【解析】【分析】根据题意,得到12a bb b b b ⋅⋅=,求得10a b ⋅=,进而可写出一个向量,得到答案.【详解】由向量()4,2b =,可得向量b = ,因为向量a 在b 上的投影向量为12b,可得12a b b b b b ⋅⋅=,可得10a b ⋅= ,设(,)a x y =,可得4210x y +=,取1,3x y ==,此时向量a 与向量b 不共线,故()1,3a =.故答案为:()1,3(答案不唯一).12.已知(2)n x y +展开式中各项系数和为243,则展开式中的第3项为___________.【答案】3280x y ##2380y x 【解析】【分析】令1x y ==,即可求出展开式系数和,从而求出n ,再写出展开式的通项,即可得解.【详解】解:令1x y ==,得()21243n+=,解得5n =,所以5(2)x y +的展开式的通项()555155C 22C kkk k k k kk T x y x y ---+==,则展开式的第3项为323232352C 80T x y x y ==.故答案为:3280x y 13.已知抛物线24y x =上的点P 到抛物线的焦点F 的距离为6,则以线段PF 的中点为圆心,PF 为直径的圆被x 轴截得的弦长为________.【答案】4【解析】【分析】首先利用抛物线定义确定P 点坐标,进而可得以PF 的中点为圆心, ᬈ长度为直径的圆的方程,再代入计算可得弦长.【详解】抛物线24y x =的焦点(1,0)F ,准线为=1x -,由题意得6PF =,结合抛物线定义知P 点到准线的距离为6,则615p x =-=,代入横坐标可得p y =±(5,P ±,所以PF 的中点坐标为或(3,,6PF =,所以以PF 的中点为圆心, ᬈ长度为直径的圆的方程为(22(3)9x y -+-=或(22(3)9x y -++=,圆心到x ,所以与x 截得的弦长为4=,故答案为:4.14.印章是我国传统文化之一,根据遗物和历史记载,至少在春秋战国时期就已出现,其形状多为长方体、圆柱体等,陕西历史博物馆收藏的“独孤信多面体煤精组印”是一枚形状奇特的印章(如图1),该形状称为“半正多面体”(由两种或两种以上的正多边形所围成的多面体),每个正方形面上均刻有不同的印章(图中为多面体的面上的部分印章).图2是一个由18个正方形和8个正三角形围成的“半正多面体”(其各顶点均在一个正方体的面上),若该多面体的棱长均为1,且各个顶点均在同一球面上,则该球的表面积为__________.【答案】(5π+【解析】【分析】根据几何体的结构特征确定其外接球球心位置,根据已知求球体半径,进而求球体表面积.1的正方体的表面上,如图,设其外接球的球心为O ,正方形ABCD 的中心为1O ,则点O 到平面ABCD 的距离1212OO +=,又122O C =,所以该多面体外接球的半径r ===故该球的表面积为(24π5π⨯=+⎝⎭.故答案为:(5π+15.已知数列 中各项均为正数,且211(1,2,3,)n n n a a a n ++-== ,给出下列四个结论:①对任意的*N n ∈,都有1n a >;②数列 可能为常数列;③若102a <<,则当2n ≥时,12n a a <<;④若12a >,则数列 为递减数列,其中正确结论是______.【答案】②③④【解析】【分析】对于①,根据一元二次方程有解得情况,利用判别式可得首项的取值范围,可得答案;对于②,将数列每一项设成未知量,根据等式建立方程,可得答案;对于③④,由题意作函数()()0f x x x =≥与函数()()20g x x x x =-≥的图象,利用数形结合的思想,对应数列中项在图象上的位置,可得答案.【详解】对于①,将等式211n n n a a a ++-=看作关于1n a +的一元二次方程,即2110n n n a a a ++--=,该方程有解,则140n a ∆=+≥,所以当14n a ≥-时,方程2110n n n a a a ++--=有解,即当101a <<时,一定存在数列 满足211(1,2,3,)n n n a a a n ++-== ,故①错误;对于②,令n a x =,由题意可得2x x x -=,解得0x =(舍去)或2,常数列2,2,2, 满足211(1,2,3,)n n n a a a n ++-== ,故②正确;由题意作函数()()0f x x x =≥与函数()()20g x x x x =-≥的图象如下:由211(1,2,3,)n n n a a a n ++-== ,则点()1,n n a a +在函数()g x 的图象上,易知(),n n a a 在函数()f x 的图象上,对于③,当102a <<时,由()21,a a 在函数()g x 的图象上,则212a <<,由()11,a a 在函数()f x 的图象上,则122a a <<,当2n ≥时,102n a -<<,由()1,n n a a -在函数()g x 的图象上,则12n a <<,由()11,n n a a --在函数()f x 的图象上,则12n n a a -<<,综上所述,若102a <<,当2n ≥时,12n a a <<,故③正确;对于④,当12a >时,由()21,a a 在函数()g x 的图象上,且()11,a a 在函数()f x 的图象上,则122a a >>,当2n a >时,由()1,n n a a +在函数()g x 的图象上,且(),n n a a 在函数()f x 的图象上,则12n n a a +>>,故④正确.故答案为:②③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步摖或证明过程.16.在ABC V 中,222b c a bc +-=.(1)求A ∠;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使ABC V 存在且唯一确定,求ABC V 的面积.条件①:11cos 14B =;条件②:12a b +=;条件③:12c =.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.【答案】(1)π3(2)答案见解析【解析】【分析】(1)根据题意,利用余弦定理求得1cos 2A =,即可求解;(2)根据题意,若选择①②,求得sin B ,由正弦定理求得7,5a b ==,再由余弦定理求得8c =,结合面积公式,即可求解;若①③:先求得sin 14B =,由83sin sin()14C A B =+=,利用正弦定理求得212a =,结合面积公式,即可求解;若选择②③,利用余弦定理,列出方程求得0b =,不符合题意.【小问1详解】解:因为222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,又因为(0,π)A ∈,所以π3A =.【小问2详解】解:由(1)知π3A =,若选①②:11cos 14B =,12a b +=,由11cos 14B =,可得sin 14B ==,由正弦定理sin sin a bA B=353214=,解得7a =,则125b a =-=,又由余弦定理2222cos a b c bc A =+-,可得249255c c =+-,即25240c c --=,解得8c =或3c =-(舍去),所以ABC V的面积为113sin 58222S bc A ==⨯⨯⨯=.若选①③:11cos 14B =且12c =,由11cos 14B =,可得53sin 14B ==,因为πA BC ++=,可得()31115343sin sin 2142147C A B =+=⨯+⨯=,由正弦定理sin sin a cA C =34327=,解得212a =,所以ABC V 的面积为112153453sin 12222142S ac b ==⨯⨯⨯=.若选:②③:12a b +=且12c =,因为222b c a bc +-=,可得22212(12)12b b b +--=,整理得2412b b =,解得0b =,不符合题意,(舍去).17.已知三棱柱111ABC A B C -中,12AB BB ==,D 是BC 的中点,160B BA ∠=o,1B D AB ⊥.(1)证明:AB AC ⊥;(2)若侧面11ACC A 是正方形,求平面11ABB A 与平面1ADC 夹角的余弦值.【答案】(1)证明见解析;(2)55.【解析】【分析】(1)取AB 的中点O ,连接1AB 、OD 、1OB ,证明出AB ⊥平面1OB D ,//OD AC ,由此可证得AB AC ⊥;(2)以点O 为坐标原点,OB 、OD 、1OB 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得平面11ABB A 与平面1ADC 夹角的余弦值.【详解】(1)取AB 的中点O ,连接1AB 、OD 、1OB ,因为160B BA ∠=o,12AB BB ==,故1ABB 为等边三角形,因为O 为AB 的中点,则1OB AB ⊥,因为1AB B D ⊥,111OB B D B ⋂=,故AB ⊥平面1OB D ,OD ⊂ 平面1OB D ,所以,AB OD ⊥,O 、D 分别为AB 、BC 的中点,则//OD AC ,因此,AB AC ⊥;(2)112AA BB == ,则四边形11ACC A 是边长为2的正方形,O 、D 分别为AB 、BC 的中点,则112OD AC ==,由(1)可得11sin 60OB BB == ,//OD AC ,11//BB AA ,故OD 与1BB 所成角为190A AC ∠= ,即1OD BB ⊥,又因为OD AB ⊥,1AB BB B Ç=,OD ∴⊥平面11AA B B ,1OB ⊂ 平面11AA B B ,则1OD OB ⊥,所以,OD 、AB 、1OB 两两垂直,以点O 为坐标原点,OB 、OD 、1OB 所在直线分别为x 、y 、z轴建立空间直角坐标系,则()1,0,0A -、()0,1,0D 、()1,2,0C -、(1B 、()1,0,0B,(1BB =- ,()1,1,0AD =,()0,2,0AC =,(1111,AC AC CC AC BB =+=+=- ,设平面1ADC 的法向量为(),,n x y z =,则1020n AD x y n AC x y ⎧⋅=+=⎪⎨⋅=-++=⎪⎩,取1x =,则(1,n =-,易知平面11AA B B 的一个法向量为()0,1,0m =u r,cos ,5m n m n m n⋅<>==-=-⋅.因此,平面11ABB A 与平面1ADC夹角的余弦值为5.18.《中华人民共和国体育法》规定,国家实行运动员技术等级制度,下表是我国现行《田径运动员技术等级标准》(单位:m )(部分摘抄):项目国际级运动健将运动健将一级运动员二级运动员三级运动员男子跳远8.007.807.30 6.50 5.60女子跳远6.656.355.855.204.50在某市组织的考级比赛中,甲、乙、丙三名同学参加了跳远考级比赛,其中甲、乙为男生,丙为女生,为预测考级能达到国家二级及二级以上运动员的人数,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:):甲:6.60,6.67,6.55,6.44,6.48,6.42,6.40,6.35,6.75,6.25;乙:6.38,6.56,6.45,6.36,6.82,7.38;丙:5.16,5.65,5.18,5.86.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立,(1)估计甲在此次跳远考级比赛中成绩达到二级及二级以上运动员的概率;(2)设X 是甲、乙、丙在此次跳远考级比赛中成绩达到二级及二级以上运动员的总人数,估计X 的数学期望()E X ;(3)在跳远考级比赛中,每位参加者按规则试跳6次,取6次试跳中的最好成绩作为其最终成绩本次考级比赛中,甲已完成6次试跳,丙已完成5次试跳,成绩(单位:m )如下表:第1跳第2跳第3跳第4跳第5跳第6跳甲 6.50 6.48 6.47 6.51 6.46 6.49丙5.845.825.855.835.86a若丙第6次试跳的成绩为a ,用2212,s s 分别表示甲、丙试跳6次成绩的方差,当2212s s =时,写出a 的值.(结论不要求证明)【答案】(1)25(2)() 1.4E X =(3) 5.81a =或 5.87a =.【解析】【分析】(1)由已知数据计算频率,用频率估计概率;(2)由X 的取值,计算相应的概率,由公式计算数学期望()E X ;(3)当两人成绩满足()1,2,3,4,5,6i i y x b i =+=的模型,方差相等.【小问1详解】甲以往的10次比赛成绩中,有4次达到国家二级及二级以上运动员标准,用频率估计概率,估计甲在此次跳远考级比赛中成绩达到二级及二级以上运动员的概率为42105=;【小问2详解】设甲、乙、丙在此次跳远考级比赛中成绩达到二级及二级以上运动员分别为事件,,A B C ,以往的比赛成绩中,用频率估计概率,有()25P A =,()12P B =,()12P C =,X 是甲、乙、丙在此次跳远考级比赛中成绩达到二级及二级以上运动员的总人数,则X 可能的取值为0,1,2,3,()()3113052220P X P ABC ===⨯⨯=,()()()()2113113118152252252220P X P ABC P ABC P ABC ==++=⨯⨯+⨯⨯+⨯⨯=,()()()()2113112117252252252220P X P ABC P ABC P ABC ==++=⨯⨯+⨯⨯+⨯⨯=,()()2112352220P X P ABC ===⨯⨯=,估计X 的数学期望()38720123 1.420202020E X =⨯+⨯+⨯+⨯=;【小问3详解】甲的6次试跳成绩从小到大排列为:6.46,6.47,6.48,6.49,6.50,6.51,设这6次试跳成绩依次从小到大为()1,2,3,4,5,6i x i =,丙的5次试跳成绩从小到大排列为:5.82,5.83,5.84,5.85,5.86,设丙的6次试跳成绩从小到大排列依次为()1,2,3,4,5,6i y i =,当 5.81a =时,满足()0.651,2,3,4,5,6i i y x i =-=,2212s s =成立;当 5.87a =时,满足()0.641,2,3,4,5,6i i y x i =-=,2212s s =成立.所以 5.81a =或 5.87a =.19.已知椭圆2222:1(0)C b b x a a y +>>=的离心率是53,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】【分析】(1)根据题意列式求解,,a b c ,进而可得结果;(2)设直线PQ 的方程,进而可求点,M N 的坐标,结合韦达定理验证2M Ny y +为定值即可.【小问1详解】由题意可得222253b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.【小问2详解】由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段MN 的中点是定点()0,3.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.20.已知函数()()221ln ,f x x a x a x a =-++∈R .(1)若0a =,求曲线()y f x =在点()()2,2P f 处的切线方程.(2)若()f x 在1x =处取得极值,求()f x 的极值.(3)若()f x 在[]1,e 上的最小值为2a -,求a 的取值范围.【答案】(1)340x y --=(2)极大值15ln 224f ⎛⎫=-- ⎪⎝⎭,极小值()12f =-;(3)(1],-∞【解析】【分析】(1)根据导数的几何意义,即可求得答案;(2)根据()f x 在1x =处取得极值,求出a 的值,从而判断函数的单调性,求得极值;(3)分类讨论,讨论a 与区间[]1,e 的位置关系,确定函数单调性,结合函数的最值,即可确定a 的取值范围.【小问1详解】若0a =,则()2=-f x x x ,则()21f x x '=-,故()()22,23f f '==,故曲线()y f x =在点()()2,2P f 处的切线方程为23(2)y x -=-,即340x y --=;【小问2详解】()()221ln ,f x x a x a x a =-++∈R 定义域为(0),+∞,则()()221af x x a x'=-++,由于()f x 在1x =处取得极值,故()()12210,1f a a a '=-++=∴=,则()()()2211123123x x x x f x x x x x---+'=-+==,令()0f x '>,则102x <<或1x >,函数()f x 在10(1)2,,,⎛⎫+∞ ⎪⎝⎭上均单调递增,令()0f x '<,则112x <<,函数()f x 在1,12⎛⎫⎪⎝⎭上单调递减,故当12x =时,()f x 取到极大值11315ln ln 224224f ⎛⎫=-+=-- ⎪⎝⎭,当1x =时,()f x 取到极小值()1132f =-=-;【小问3详解】由于()()()()[],1,e 21221x x a a f x x a x x x--'=-++=∈,当1a ≤时,()0f x '≥,仅在1,1a x ==时等号取得,()f x 在[]1,e 上单调递增,则()min (1)2f x f a ==-,符合题意;当1e a <<时,则1x a <<时,()0f x '<,()f x 在[]1,a 上单调递减,e a x <<时,()0f x '>,()f x 在[],e a 上单调递增,故()min ()(1)2f x f a f a =<=-,不符合题意;当e a ≥时,()0f x '<,()f x 在[]1,e 上单调递减,故()min (e)(1)2f x f f a =<=-,不符合题意;综上,可知a 的取值范围为(1],-∞.【点睛】方法点睛:第三问根据函数的最小值求解参数范围,求出导数后,要分类讨论,讨论a 与区间[]1,e 的位置关系,从而确定最值,求得参数范围.21.已知有限数列12:,,,m A a a a 为单调递增数列.若存在等差数列121:,,,m B b b b + ,对于A 中任意一项i a ,都有1i i i b a b +≤<,则称数列A 是长为m 的Ω数列.(1)判断下列数列是否为Ω数列(直接写出结果):①数列1,4,5,8;②数列2,4,8,16.(2)若(,,)a b c a b c R <<∈,证明:数列a ,b ,c 为Ω数列;(3)设M 是集合{|063}x N x ∈≤≤的子集,且至少有28个元素,证明:M 中的元素可以构成一个长为4的Ω数列.【答案】(1)①数列1,4,5,8是Ω数列;②数列2,4,8,16是Ω数列;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)由数列的新定义,可直接判定,得到答案;(2)分当b a c b -=-,b a c b -<-和b a c b ->-三种情况讨论,结合数列的新定义,即可求解;(3)假设M 中没有长为4的Ω数列,先考虑集合{16,161,,1615}k M k k k =++L ,得到存在一个k ,使得k M 中没有一个元素属于M ,再考虑集合,{164,1641,k j M k j k j =+++1642,1643}k j k j ++++,得到存在一个j ,使得,k j M 中没有一个元素属于M ,进而证得集合M 中至多有27个元素,即可得到结论.【详解】(1)由数列的新定义,可得数列1,4,5,8是Ω数列;数列2,4,8,16是Ω数列.(2)①当b a c b -=-时,令1b a =,2b b =,3b c =,42b c b =-,所以数列1b ,2b ,3b ,4b 为等差数列,且1234b a b b b c b <<<≤≤≤,所以数列a ,b ,c 为Ω数列.②当b a c b -<-时,令12b b c =-,2b b =,3b c =,42b c b =-,所以数列1b ,2b ,3b ,4b 为等差数列,且1234b a b b b c b <<<≤≤≤.所以数列a ,b ,c 为Ω数列.③当b a c b ->-时,令1b a =,22a c b +=,3b c =,432c a b -=,所以数列1b ,2b ,3b ,4b 为等差数列,且1234b a b b b c b <<<≤≤≤.所以数列a ,b ,c 为Ω数列.综上,若a b c <<,数列a ,b ,c 为Ω数列.(3)假设M 中没有长为4的Ω数列,考虑集合{16,161,,1615}k M k k k =++L ,0k =,1,2,3.因为数列0,16,32,48,64是一个共有5项的等差数列,所以存在一个k ,使得k M 中没有一个元素属于M .对于其余的k ,再考虑集合,{164,1641,1642,1643}k j M k j k j k j k j =+++++++,0j =,1,2,3.因为164k j +,1644k j ++,1648k j ++,16412k j ++,16416k j ++是一个共有5项的等差数列,所以存在一个j ,使得,k j M 中没有一个元素属于M .因为,k j M 中4个数成等差数列,所以每个,k j M 中至少有一个元素不属于M .所以集合{|063}x x ∈N ≤≤中至少有16431937+⨯+⨯=个元素不属于集合M .所以集合M 中至多有643727-=个元素,这与M 中至少有28个元素矛盾.所以假设不成立.所以M 中的元素必能构成长为4的Ω数列.【点睛】1、数列新定义问题的特点:通过给出一个新的数列概念,或约定一种新运算,或给出几个新模型来创设全新的问题情境,要求考生再阅读理解的基础上,以及题目提供的信息,联系所学知识和方法,实现信息的迁移,达到灵活解题的目的;2、遇到数列的心定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使问题得以解决.。
2020-2021高三第一学期期中考试数学★答案★
一、选择题:
1-8AADCB,CBD,9.BCD 10.ABC 11.BD 12.ABC
第Ⅱ卷(非选择题 90分)
二、填空题:本题共4小题,每小题5分,共20分.
13.1 14. 14. 15.43-
16.16, 1; (本题第一空2分,第二空3分)
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(I )由题意2
11m x x x >--≤≤在恒成立,因为2
2
1124x x x ⎛
⎫-=-- ⎪⎝
⎭,所以
2122x x m -≤-≤>,即,所以实数m 的取值范围是()2,+∞…8分
(II )由q 得44a m a -<<+,因为q p ⇒,所以426a a -≥≥,即,所以实数a 的取值范围是[)6,+∞………………………………………………………………………10分
19.(12分
19. 解:(1)因为()11220n n n n S S S S +----=,2n ≥,*
n N ∈,
所以11
2
n n a a +=
,2n ≥,
因为11a =,2a ,1a ,2S 依次成等差数列,所以2212a =+,得212
a =, 所以2112a a =
,所以数列{}n a 是以1为首项,公比为12q =的等比数列,所以112
n n a -=. (2)由题意知:
11
2n n
a -=,所以11024n m --<≤, 所以12(1)22n m --≤,即12(1)n m ≤+-,所以21m
b m =-, 当m 为偶数时,2219254981121(23)(21)m W m m =-+-+-++
--+-,
所以2(888)2824408(1)22
m m
m W m m ⨯+-=++++-==,所以20800W =.
20.解:(1)
,,a b c 依次成等差数列,且公差为2,∴4,2a c b c =-=-,
又因23
MCN π∠=,即,
1
cos 2C =-,可得222122a b c ab +-=-, 恒等变形得:29140c c -+=,解得7,2c c ==或。
又4c >,∴7.
c =
(2)在△ABC 中,由正弦定理可得
sin sin sin AC BC AB
ABC BAC ACB
==∠∠∠,
3,2sin ,2sin()2sin 3
sin()sin 33
AC BC AC BC π
θθππθθ∴
====--即∴△ABC 的周长()|AC ||BC ||AB |2sin 2sin()33
f π
θθθ=++=+-+
,
,
当,即
时,()f θ取得最大值23+.
20.(1)∵AD AB ⊥,平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,
∴AD ⊥平面ABEF ,∴AD BE ⊥,
取EF 的中点记为G ,连接AG ,∵//BA EG ,BA EG =,∴四边形ABEG 为平行四边形,
即//BE AG ,在三角形AGF 中,2AG AF ==,22GF =,222
AF AG GF +=,所以
AG AF ⊥.即BE AF ⊥. AD
AF A =,∴BE ⊥平面ADF ,DF ⊂平面ADF ,∴BE DF ⊥.
(2)12233
C ABE ABE V S BC -=
⋅=. (3)21.解:(Ⅰ)依题意,知下潜时间分钟,返回时间分钟,
则有 (
), 整理,得
(
). (Ⅱ)由(Ⅰ)及题意,得
(
), ∴
().
当且仅当,即时“=”成立. ∴当时,;
又当
时,
;当
时,. 所以,总用氧量的取值范围是
22. 解:(1)()()ln x
f x e x ax a b =-++的导数为()1
'ln x f x e x ax b x
⎛⎫
=-++ ⎪⎝
⎭
,
由已知可得()12e f eb ==
,()()'112e f e b a =-+=,解得1a =,12
b =; (2)由(1)可知,3()ln 2x
f x e x x ⎛
⎫=-+
⎪⎝⎭,则11'()ln 2x f x e x x x ⎛⎫=-++
⎪⎝
⎭, 令11
()ln 2
g x x x x =-++,则22
1'()0x x g x x -+=-<恒成立,∴()g x 在()0,+∞上单调递减,又∵()1
102
g =
>,()2ln 210g =-<,∴存在唯一的()01,2x ∈,使得()00g x =, 且当()00,x x ∈时,()0g x >,即()'0f x <,∴()f x 在()00,x 上单调递增,在()0,x +∞上单调递减,又∵当0x →时,()0f x <,()102e f =
>,21(2)ln 202f e ⎛
⎫=-> ⎪⎝
⎭,
()502e f e e e ⎛⎫
=-< ⎪⎝⎭
,
∴存在0k =或2,()y f x =在(),1k k +上有唯—零点.
感谢您的下载!
快乐分享,知识无限!。