高分子材料研究方法5质谱
- 格式:ppt
- 大小:1.03 MB
- 文档页数:45
高分子材料的结构和性能研究高分子是由大量分子单元化合而成的材料,是众多材料之中使用最为广泛的一类材料,其中塑料是高分子材料中最常见和应用最广泛的一种。
随着科技的不断发展,人们对高分子材料的研究和应用也越来越深入,对高分子材料的结构和性能进行探究已成为重要的研究方向之一。
一、高分子材料的基本结构和组成高分子材料的基本结构是由大量简单分子单元通过共价键或离子键连接而成的长链分子。
这些长链分子可能包含数千上万个单元,其分子量也可达数百万至数千万不等。
除了长链分子,高分子材料中还可能存在支链分子、交错分子、网状分子等不同的形态。
高分子材料的组成不仅有单一的高分子,还可能由多种高分子组成的共混物或复合材料。
共混物由两种或以上的高分子混合而成,其组分可以均为同质高分子,也可以为不同种类的高分子。
而复合材料则是将高分子与其它材料混合而成,这些材料可以是同种的或不同种的。
复合材料的成分可以按照功能需求进行配比,形成满足不同使用需求的高性能材料。
二、高分子材料的性能及其研究方法高分子材料因其结构特点,在力学、光学、电学、化学、热学等方面表现出一系列独特的性能。
高分子材料的性能取决于分子结构、分子量、结晶度、形态结构、分子力学运动状态等因素。
其中,热性能、机械性能和流变性能等是高分子材料中最为重要和常见的性能。
研究高分子材料的性能需要运用多种方法和技术。
其中,常用的方法包括热分析、质谱分析、核磁共振、傅里叶变换红外光谱、拉伸测试、动态力学分析、热重分析等。
这些方法可以实现对高分子材料的性能进行定量描述,并能够揭示高分子材料的制备过程中的关键因素和作用机理。
三、高分子材料的应用及其发展趋势高分子材料由于其独特的性能和广泛的应用领域,成为了现代工业中不可或缺的材料之一。
塑料制品、纤维、色素、润滑剂、胶粘剂、电线电缆、医疗器械等领域均有广泛应用。
而在新能源、新兴材料、高效催化剂、生物医学领域等新兴领域,高分子材料也取得了许多创新和突破性的进展。
高分子材料成分分析高分子材料是一类由大量重复单元组成的材料,其主要成分是由碳、氢、氧、氮等元素组成的大分子化合物。
在工业、日常生活中,高分子材料被广泛应用于塑料、橡胶、纤维、涂料等领域。
对于高分子材料的成分分析,不仅可以帮助我们了解其基本结构和性质,还可以指导材料的合成、改性和应用。
本文将从高分子材料的成分分析方法、常见成分及其性质等方面进行探讨。
一、成分分析方法。
1. 元素分析法。
元素分析法是一种常用的高分子材料成分分析方法,通过分析样品中各种元素的含量,来推断高分子材料的组成。
常用的元素分析方法包括化学分析法、光谱分析法、质谱分析法等。
2. 分子量分析法。
分子量是高分子材料的重要指标之一,分子量分析可以帮助我们了解高分子材料的聚合程度和分子链的长度。
凝胶渗透色谱法、粘度法、光散射法等都是常用的分子量分析方法。
3. 结构分析法。
结构分析是对高分子材料分子链结构和侧链结构进行分析的方法,包括核磁共振、红外光谱、拉曼光谱等。
二、常见成分及其性质。
1. 聚乙烯。
聚乙烯是一种常见的高分子材料,其主要成分是碳和氢。
聚乙烯具有良好的耐磨、耐腐蚀性能,透明度高,具有良好的电绝缘性能,广泛应用于塑料制品、包装材料等领域。
2. 聚丙烯。
聚丙烯也是一种常见的高分子材料,其主要成分同样是碳和氢。
聚丙烯具有较好的耐热性、耐寒性和机械性能,被广泛应用于汽车零部件、纺织品、医疗器械等领域。
3. 聚氯乙烯。
聚氯乙烯是一种氯乙烯聚合而成的高分子材料,其主要成分是碳、氢、氯。
聚氯乙烯具有良好的耐酸碱、耐腐蚀性能,常用于管道、电线电缆、塑料门窗等领域。
4. 聚苯乙烯。
聚苯乙烯是一种常见的塑料,其主要成分是碳和氢。
聚苯乙烯具有良好的透明度、机械性能和加工性能,被广泛应用于电子产品外壳、食品包装等领域。
5. 聚醚。
聚醚是一类含氧的高分子材料,其主要成分是碳、氢、氧。
聚醚具有良好的柔软性、弹性和耐磨性,常用于弹簧、密封件、医疗器械等领域。
材料密度和表观密度的测定方法一、概述材料密度和表观密度是物质的重要物理性质之一,它对于材料的性能和应用具有重要的意义。
准确测定材料密度和表观密度对于材料科学和工程技术具有重要的意义。
本文将介绍材料密度和表观密度的测定方法,包括以下几个方面:水浮法、气体比法、吸附法和质谱法等。
二、水浮法测定材料密度水浮法是测定固体材料的密度的一种重要方法。
该方法的基本原理是利用浸没在水中的物体所受到的浮力与物体的重力相平衡的原理来测定材料的密度。
具体操作步骤如下:1. 将待测材料放入水中,通过测定浸没深度和水的密度来计算材料的密度。
2. 通过将待测材料与已知密度的标准物体进行比较,从而确定待测材料的密度。
三、气体比法测定表观密度气体比法是测定粉末、颗粒和多孔材料表观密度的一种重要方法。
基本原理是利用气体置换体积的方法来测定材料的表观密度,具体操作步骤如下:1. 将待测材料放入容器中,通过注入气体并测定容器的体积改变来计算材料的表观密度。
2. 通过测定材料干燥前后容器的体积和重量的改变来计算材料的表观密度。
四、吸附法测定表观密度吸附法是测定颗粒、多孔材料表观密度的一种常用方法。
具体操作步骤如下:1. 通过测定材料吸附气体前后的质量和体积的变化来计算材料的表观密度。
2. 通过计算材料的孔隙率和比表面积来间接确定材料的表观密度。
五、质谱法测定材料密度质谱法是测定材料密度的一种先进方法,它通过质谱仪对材料的分子质量和分子结构进行分析,从而确定材料的密度。
具体步骤如下:1. 将待测材料进行样品制备和装载,通过高分辨质谱仪对样品的质谱特征进行分析。
2. 通过质谱仪的数据处理和分析来确定材料的密度。
六、结论材料密度和表观密度的测定方法是物质研究领域的重要内容,不同的材料需要采用不同的测定方法。
水浮法适用于固体材料密度的测定,气体比法适用于颗粒和多孔材料表观密度的测定,吸附法适用于颗粒、多孔材料表观密度的测定,质谱法适用于高分子材料等密度的测定。
高分子成分定性及定量分析简介高分子是由重复单元组成的大分子化合物,广泛应用于塑料、橡胶、纺织品等领域。
高分子成分的定性及定量分析是确定高分子样品中各种成分的种类和含量的关键步骤。
本文将介绍几种常用的高分子成分定性及定量分析方法,并对其原理和应用进行详细阐述。
定性分析方法红外光谱法红外光谱法是一种常用的高分子成分定性分析方法。
它通过测量高分子样品在红外光谱范围内的吸收和散射情况,来判断样品中的各种成分。
每种化合物都有独特的红外吸收带,因此可以通过与已知标准样品的红外光谱对比,确定高分子样品中各种成分的存在与否。
核磁共振(NMR)法核磁共振法是一种高分子成分定性分析的精确方法。
NMR法通过测量高分子样品中核磁共振谱的特征,来确定样品中各种成分的种类。
NMR谱图可以提供高分辨率和高信噪比,可以准确识别高分子样品中的各种结构单元。
质谱(MS)法质谱法是一种高分子成分定性分析的灵敏方法。
它通过测量高分子样品中离子的质量-荷比,来确定样品中各种成分的种类。
质谱可以提供高分辨率和高灵敏度的分析结果,可以准确识别高分子样品中的各种成分。
定量分析方法色谱法色谱法是一种常见的高分子成分定量分析方法。
常用的色谱法有气相色谱(GC)和液相色谱(LC)。
色谱法基于样品分离原理,通过测量高分子样品中各种成分的峰面积或峰高,来确定其相对含量。
色谱法具有分离效率高、灵敏度高的特点,广泛应用于高分子成分定量分析。
热重分析(TGA)法热重分析法是一种高分子成分定量分析的热性能测量方法。
它通过加热高分子样品,测量其在不同温度下失重的情况,来确定各种成分的含量。
不同成分的失重温度和失重量不同,因此可以通过热重分析法来定量分析高分子样品中各种成分的含量。
标准曲线法标准曲线法是一种常用的定量分析方法。
它通过制备一系列已知浓度的标准样品,测量它们的响应值(如吸收光谱的吸光度),绘制标准曲线。
然后用待测样品测量得到的响应值在标准曲线上找到相应的浓度,从而确定高分子样品中各种成分的含量。
高分子分子量测定方法的研究高分子材料在生活中的应用越来越广泛,例如塑料、橡胶、纤维等。
因此,高分子材料的质量控制和研究变得越来越重要。
高分子材料的分子量是其物理、化学和力学性质的重要指标,因此分子量的精确测定是高分子材料研究的一个重要方面。
目前,已经开发了多种高分子分子量测定方法,包括粘度法、光散射法、凝胶渗透色谱法、质谱法等。
本文将介绍一些高分子分子量测定方法的原理、特点和应用。
一、粘度法粘度法是高分子分子量测定的最早的方法之一,其原理是:高分子在溶液中运动时,会与溶剂分子相互摩擦和撞击,产生阻力,导致溶液的整体粘度增加。
粘度与分子量成反比,因此可以用粘度法来测定高分子的分子量。
具体地,用天平称取不同浓度的高分子溶液,在特定的温度下,测量溶液的粘度。
将粘度数据与相应的浓度计算出粘度平均分子量,从而得到分子量的概略值。
粘度法的优点是操作简单、不需要复杂的仪器设备、测量时间短、成本低廉。
但是,粘度法在分子量高于10万时,其精度受到很大限制。
此外,不同高分子之间粘度测量结果的可比性较差,因此需要对不同高分子进行标准化处理。
二、光散射法光散射法是一种测量高分子分子量的准确方法,可以用来测量高分子的绝对分子量、分子量分布和形态结构等。
光散射测量的原理是: 测量高分子溶液中光线的散射强度,改变光线方向或波长,可以获得不同范围分子量的散射强度分布,从而测量高分子的分子量特性。
与粘度法相比,光散射法更适合于测量高分子的分子量分布宽泛和形态结构不规则的情况。
三、凝胶渗透色谱法凝胶渗透色谱(GPC)法是一种广泛应用的高分子分子量测定方法。
其原理是: 利用凝胶为分子分离提供渗透分子的溶剂黏度,嵌入凝胶内进行分子量分布测定。
凝胶作为一种多孔元素或分子网络,具有分子筛、分子导向、渗透、化学识别等作用。
当高分子涂布在凝胶表面时,由于凝胶中的分子间间隙比高分子分子大,高分子的长链会被凝胶筛选,而短链则可以穿过凝胶,在洗涤溶液中被洗出,使溶液分子量分布向小分子倾斜。
高分子材料剖析实用手册
(最新版)
目录
1.高分子材料的概述
2.高分子材料的分类
3.高分子材料的性能及应用
4.高分子材料的剖析方法
5.高分子材料的发展前景
正文
高分子材料剖析实用手册涵盖了高分子材料的概述、分类、性能及应用、剖析方法以及发展前景等内容,为高分子材料的研究与应用提供了实用的参考。
一、高分子材料的概述
高分子材料是由许多重复单元组成的大分子,其分子量高达几万至几十万,具有独特的物理、化学和生物性能。
高分子材料按照来源可分为天然高分子材料和合成高分子材料。
二、高分子材料的分类
高分子材料可分为橡胶、纤维、塑料、涂料、粘合剂等,根据结构和性能的不同,又可分为热塑性高分子材料、热固性高分子材料和弹性体等。
三、高分子材料的性能及应用
高分子材料具有质轻、耐磨、耐腐蚀、绝缘性好等优点,广泛应用于航空航天、电子、汽车、建筑、医疗等领域。
随着科技的进步,高分子材料在新能源、生物医学等领域的应用也日益广泛。
四、高分子材料的剖析方法
高分子材料的剖析方法主要包括红外光谱、核磁共振、质谱、X 射线衍射、透射电子显微镜等,通过这些方法可以对高分子材料的结构、组成、性能进行分析和评价。
五、高分子材料的发展前景
随着科学技术的进步和社会需求的变化,高分子材料在环保、节能、生物医学等领域的应用前景十分广阔。
新型高分子材料的研究与开发将成为未来材料科学的重要发展方向。
分子量及分子量分布检测高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。
它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。
也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。
根据不同材质,选用不同体系的测试方法来做分子量检测,测试材质包括塑料、橡胶、及相关的其他高分子材料,尤其超高分子量聚乙烯的分子量检测。
检测体系要水相体系、四氢呋喃(THF)体系、(DMF体系)。
【具体检测项目】1、数均分子量的测定在一个高聚物体系中,各种分子量的摩尔分数与其相应的分子量的乘积所得的总和。
2、光散射法测定重均相对分子量当一束光通过圆柱形样品管时,光的大部分在透射后继续前进,而此时其它方向也因为溶液中介质的折光而发出散射光。
由于介质的折光取决于介质的介电常数,是介质密度和浓度变化的结果(与渗透压有关),所以可根据Van-Hoff方程及维利展开式知道溶液光散色和聚合物分子量之间的关系。
3、粘度法测定聚合物相对分子量粘度法:由于高分子溶液的粘度与高分子物分子量间有一定的关系,利用粘度来测定出高分子物分子量的方法。
用粘度法所测出的分子量为粘均分子量。
4、凝胶渗透色谱(GPC)利用高分子溶液通过填充有特种凝胶的柱,在柱上按其分子体积(流体力学体积)的大小进行分离的一种方法,是新型的液相色谱。
【表征方法及原理】1.粘度法测相对分子量(粘均分子量Mη)用乌式粘度计,测高分子稀释溶液的特性粘数[η],根据Mark-Houwink公式[η]=kMα,从文献或有关手册查出k、α值,计算出高分子的分子量。
其中,k、α值因所用溶剂的不同及实验温度的不同而具有不同数值。
2.小角激光光散射法测重均分子量(Mw)当入射光电磁波通过介质时,使介质中的小粒子(如高分子)中的电子产生强迫振动,从而产生二次波源向各方向发射与振荡电场(入射光电磁波)同样频率的散射光波。
高分子材料的测试方法综述前言:高分子材料及其成品的性能与其化学,物理的组成,结构以及加工条件亲密相关;为了表征性能与组成,结构和加工参数之间的关系,分析测试技术将起到唯独的打算作用; 并为评定材料质量,改进产品性能和研制新材料供应依据;不管是基本的材料性质,仍是加工性质( 或加工参数) 以及产品性质,客观标准的评定都需要某种测试技术供应参数进行表征;摘要:DTA DSC 红外光谱1 差热分析和差示扫描量热法差热分析1,差热分析的定义差热分析是布程控温度下,测量物质和参比物之间的温度差与温度关系的技术;这种. 关系可用数学式表示为温度;TR 参比物温度;,式中Ts 为试样2,差热分析的测试原理与仪器组成根据热分析定义,全部热分析仪器,差热分析仪器也不例外,它们都是田三大部分组成:(1) 被测物质的物理性质检测装置部分;如图 1.} 虚线内组成一也称主体部分;(2) 温度程序掌握装置部分制和数据处理装置部分;;(3) 显示记录装置部分;此外,仍有气氛控差热分析仪器的组成如下列图,虚线内为其测里原理S为试样;UTC为由控温热电偶送出的微伏信一号;R 为参比吻;UT 为由试样的热电偶送出的毫伏信号;E 为电炉;U T 为由差示热散偶送出的毫伏信号l程序掌握器;2. 氛掌握;3. 差热放大器;4. 记录仪差示扫描量热法1,差示扫描量热法定义差示扫描量热法是在程控温度下,测量输入到物质和参比物之间的功率差与温度关系的技术,用数学式表示为2,外加热式的功率补偿型差示扫描量热仪器的结构组成1. 温度程序掌握器;2. 气氛掌握;3. 差热放大器;4. 功率补偿放大器;5. 记录仪由于扫描量热法是在差热分析基础上进展起来的,因此,差示扫描量热仪在仪器结构组成上与差热分析仪特别相像;热流型兼示扫描量热法,实际上就是定量差热分析;功率补偿型差示扫描量热仪与差热分析仪的主要区分是前者在试样S侧和参比物R侧/l 面分别增加一个功率补偿加热丝( 或称加热器) ,此外仍增加一个功率补偿放大器;而内加热式功率补偿型差示扫描量热仪结构组成特点是测温敏锐. 元件是用铂电阻处而不是热电偶;高分子材料讨论中的应用差热分析技术和差示扫描里热技术在高分子材料科学与工程中的详细应用;为了实际应用时到底采纳哪种技术更为有益,先将这两种技术作比较;DTA 和DSC的主要区分:DTA 测定的是试样和参比物之间的温度差; 而DAC 测定的是热流率dH/dt, 定量便利;因此,DSC主要优点是热量定里便利,辨论率高,灵敏度好;. 其缺点是使用温度低,以功率补偿型DSC为例,最高温度只能到725;对于DTA,目前超高温DTA可作到2400 C,一般高温炉也能作到1500;所以,需要用高温的矿物,冶金等领域仍只能用DTA.但是对于需要温度不高, 灵敏度要求很高的有机,高分子及生物化学领域,DSC就是一种很有用的技术,正因如此,其进展也特别快速;近年来,DTA和DSC在高分子方而的应用特殊广泛,如讨论聚合物的相转变,测定结晶温度T, 结晶度θ,熔点Tm,等温结晶动力学参数和玻璃化转变温度以及讨论聚合,同化,交联,氧化,分解等反应,并测定反应温度或反应温区,TR,反应热,反应动力学参数等;2 热重法和微商热重法热重法和微商热重法定义热重法:根据ICTAC命名,热重法是在程序掌握温度下,测量物质的质量与温度关系的一种技术;用数学表达式为W=f(T 或t )式中:W 为物质重量;T 为温度;t 为时间微商热重法: 将热重法得到的热重曲线对时间或温度一阶微商的方法;记录的曲线为微商热重曲线简称DTG曲线,纵坐标为质量变化速率,dm/dt 或dm/dT;横坐标为时间或温度;测试原理由上述TG(DTG 定)义,可知其简洁原理;粗略的说;热重分析技术就是把物质放在炉子里进行加热称量的技术;也可在降温下称量;能够进行这种测量的仪器就是热天平(Therrnobalanee} ;下图分别表示热天平简洁示意图(简易的热重分析技术的简洁原理)和近代热天平的原理图;热重法( 微商热重法) 在高分子材料讨论中的应用热重法的主要特点是定量性强,能准地测量物质的质量变化及变化的速率;然而热重法的试验结果与试验条件有关;但是,对商品化的热天平而言,只要选用相同的试验条件,同种样品的热重数据是能重现的;试验证明,热重法广泛地应用在化学及化学有关的领域中,20 世纪50 岁月,热重法曾有力地推动了无机分析化学的进展,到幼岁月,热重法又在聚合物科学领域发挥根大作用;近年来,可以说在冶金学,漆料及油墨科学,制陶学,食品工艺学,无机化学,有机化学,生物化学及地球化学等学科中,热重法都有广泛的应用,发挥重要的作用;随着高分子材料与工程的. 进展,人们广泛应用热重法来讨论其中包括评估高分子材料的热稳固性,添加剂对热稳固的影响,氧化稳固性的测定,含湿量和添加剂含量的测定,反应动力学的讨论和共聚物,共混物体系的定量分析,聚合物和共聚物的热裂解以及热老化的讨论,等等;热重法现已成为生产部门和讨论单位讨论高分子材料热变化过程的重要手段,生产中可直接用于掌握工艺过程,理论土就可讨论聚合物分子链的端基情形;通过反应动力学的讨论,可以求得降解反应的速度常数,反应级数,频率因子及活化能;由于热重法具有分析速度快,样品用量少的特点,因而在高分子材料热老化方面的讨论中也口益引人注目;3 红外吸取光谱法红外吸取光谱特点红外吸取光谱最突出的特点是具有高度的特点性,除光学异构体外,每神化合物都有自己的红外吸取光谱;因此,红外光谱法特殊适于鉴定有机物,高聚物,以及其它复杂结构的自然及人工合成产物;固态,液态,气态样品均可测定,测试过程不破坏样品,分析速度快,样品用量少,操作简便;由于红外光潜法具有这些优点,现已成为化学试验室必不行少的分析仪器;但红外光谱法在定量分析. 方面精确度不高;在对复杂的未知物进行结构鉴定上,由丁它主要的特点是供应关于官能团的结构信息;故尚须结合紫外,核磁,质谱(U V,NMR,MS)及其它理化数据. 进行综合判定;目前在我国航空二二业系统中已广泛使用红外光谱代替传统的化学分析方法,对各种非金属材料进行质量监控; 并已制定了相应的检验标准,在各单位推广应用,取得了明显的经济效益;红外光谱仪,特殊是配有衰减全反射(ATR)漫反射(DRS)和光声池(PAS)等附件的傅里叫‘变换红外光谱仪,在涂料,胶粘剂,工程塑料以及树脂基复合材料的讨论中发挥着越来越大的作用;红外光谱仪器目前生产和使用的红外光谱仪主要有两大类,即色散型红外分光光度计和于涉分光——傅里叶变换红外光谱仪;用激光做光源的激光红外光谱仪尚处于研制阶段;1,色散型双光束红外分光光度计色散型红外分光光度计是由光源,单色器,检测器和放大记录系统等几个基术部分组成的;下图是红外分光光度计的方块图2,傅里叶变换红外光谱仪( 简称FT-IR)博里叶变换红外光谱仪与上述的色散型红外光谱仪的工作原理有很大不同,FT-IR 主要是由光源,迈克尔逊干涉仪,探测器和运算机等几部分组成;其工作原理如下列图;光源发出的红外辐射,通过迈克尔逊千涉仪变成干涉图,通过祥品后即得到带有样品信息的干涉图,经放大器将信号放大,记录在磁带或穿孔卡片或纸带. 上,输入通用电子运算机处理或直接输入到专用运算机的磁芯储备体系中;当十涉图经模拟一数字转换器(A/D)) 进行运算后,再经数字模拟转换(D/A) ,由波数分析器扫描,便可由X 一Y 记录器绘出通常的透过率对应波数关系的红外光谱;R—红外. 光源;M1肯定镜:M2 一一动镜;B —光束分裂器;S—样品;D—探测器;A—放大器;F—滤光器;A/D 模数转换骼;D/A 一数模转换器3,傅里叶变换红外光谱仪与一般色散型红外分光光度计相比的优点:①具有很高的辨论力;②波数精度高;③扫描时闻快;④光谱范畴宽;⑤灵敏度高;高聚物方面的应用红外光谱是讨论高聚物的一个很有成效的工具;讨论内容也很广泛,不仅可以鉴定米知聚合物的结构,剖析各种高聚物中添加剂,助剂,定量分析共聚物的组成,而且可以考察聚合物的结构,讨论聚合反应,测定聚合物的结晶度,取向度,判别它的立休构型等;.。
高分子近代分析方法1. 引言高分子材料在现代工业中起着重要的作用,广泛应用于塑料、橡胶、纺织、涂料等领域。
随着高分子材料种类和应用的不断增加,对其品质和性能的要求也越来越高。
为了确保高分子材料的质量和性能达到预期,需要进行精确、可靠的分析。
本文将介绍几种常用的高分子近代分析方法。
2. 分子量分析高分子材料的分子量是其物理化学性质的重要指标之一。
常用的分子量分析方法包括凝胶渗透色谱(GPC)、质谱(MS)和凝胶电泳。
2.1 凝胶渗透色谱凝胶渗透色谱是一种基于分子在凝胶纳米孔中分离机理的色谱分析方法。
它通过测量溶液中高分子聚合物分子的渗透体积或渗透时间,计算出其准分子量。
2.2 质谱质谱是一种通过测量分子的质荷比(m/z)来确定其分子量的方法。
对于高分子材料的质谱分析,常用的方法是基于质谱/凝胶渗透色谱(MS/GPC)联用技术。
2.3 凝胶电泳凝胶电泳是一种利用电场将高分子材料分离的方法,通过测量样品在电泳过程中从起点到终点的迁移距离,可以推算出其分子量分布。
3. 结构分析高分子材料的结构对其性能有着重要的影响。
常用的高分子结构分析方法包括核磁共振(NMR)和红外光谱(IR)。
3.1 核磁共振核磁共振是一种利用原子核的磁性来分析物质结构的方法。
在高分子结构分析中,常用的是质子核磁共振(1H-NMR)。
通过观察质子信号的化学位移以及相对强度,可以确定分子结构。
3.2 红外光谱红外光谱是一种利用吸收红外光的能量来分析物质结构的方法。
在高分子结构分析中,红外光谱可以用来确定分子中的官能团和化学键。
4. 热性能分析高分子材料的热性能是其在使用过程中是否能够满足要求的重要指标之一。
常用的热性能分析方法包括差示扫描量热法(DSC)和热重分析(TGA)。
4.1 差示扫描量热法差示扫描量热法是一种通过测量材料在升温或降温过程中所吸收或释放的热量来分析其热性能的方法。
通过分析样品中的热峰,可以获得材料的玻璃化转变温度、熔点、热分解温度等信息。
第九章质谱法一.教学内容1.质谱分析法的基本概念、发展概况及特点2.由质谱仪器结合质谱法的基本质谱仪的工作流程各主要部件的基本结构、基本原理及性能掌握联用技术3.质谱峰的类型、离子碎裂途径及有机化合物的质谱4.质谱法的图谱解析及基本应用二.重点与难点1.各种离子源的基本原理、特点及适应性2.各种重量分析器的基本结构、分析原理、特点及适用性3.各类离子的碎裂机理及规律4.质谱法的基本应用(分子量、分子式、结构式的确定)三.教学要求1.较好地掌握质谱分析法的基本基本2.掌握掌握仪的基本结构、工作流程及性能指标3.在较深入掌握单、双聚焦质量分析器的基础上,比较其它质量分析器的基本原理及特点4.一般了建质谱联用技术5.掌握简单图谱的解析,进行较简单化合物分子量、分子式及结构式的分析四.学时安排3学时质谱法是通过将样品转化为运动的气态离子并按质荷比(m/z)大小进行分离记录的分析方法。
所获得结果即为质谱图(亦称质谱)。
根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。
质谱仪早期主要用于原子量的测定和定量测定某些复杂碳氢混合物中的各组分等。
1960年以后,才开始用于复杂化合物的鉴定和结构分析。
实验证明,质谱法是研究有机化合物结构的有力工具。
第一节质谱仪一、质谱仪的工作原理质谱仪是利用电磁学原理,使带电的样品离子按质荷比进行分离的装置。
离子电离后经加速进入磁场中,其动能与加速电压及电荷z有关,即z e U = 1/2 mν2其中z为电荷数,e为元电荷(e=1.60×10-19C),U为加速电压,m为离子的质量,ν为离子被加速后的运动速度。
具有速度ν的带电粒子进入质谱分析器的电磁场中,根据所选择的分离方式,最终实现各种离子按m/z进行分离。
根据质量分析器的工作原理,可以将质谱仪分为动态仪器和静态仪器两大类。
在静态仪器中用稳定的电磁场,按空间位置将m/z不同的离子分开,如单聚焦和双聚焦质谱仪。
高分子材料分子量高分子材料分子量是指高分子材料中分子的平均质量。
高分子材料是由长链分子组成的材料,其中的分子量可以从几万到几百万不等。
高分子材料的分子量对其性能和用途有着重要的影响。
高分子材料分子量的测定方法有多种,常用的包括凝胶渗透色谱法(GPC)和质谱法。
凝胶渗透色谱法是一种常见的分子量测定方法,通过溶液中分子在凝胶柱中的渗透行为来测定分子量分布。
质谱法则是通过测量高分子材料中的分子离子来确定其分子量。
高分子材料的分子量对其性能和应用有着重要的影响。
一般来说,高分子材料的分子量越大,其力学性能、热稳定性和化学稳定性越好。
较高的分子量可以使高分子材料具有较高的拉伸强度、抗断裂能力和耐磨性。
此外,高分子材料的分子量还可以影响其熔融流动性、溶解性和加工性能。
分子量越大,高分子材料的熔融温度和熔融粘度一般越高,溶解性和加工性能也相对较差。
高分子材料的分子量还对其应用领域有着重要的影响。
低分子量的高分子材料通常用于涂料、胶粘剂和填料等领域,而高分子量的高分子材料则多用于塑料、纤维和橡胶等领域。
高分子材料的分子量还可以影响其热塑性和热固性。
分子量较低的高分子材料通常是热塑性的,可以通过加热软化和成型;而分子量较高的高分子材料则多是热固性的,加热后会发生交联反应而固化。
高分子材料分子量的控制对于材料的制备和性能优化至关重要。
在高分子材料的合成过程中,可以通过调节反应条件、催化剂选择和单体配比等手段来控制分子量。
此外,还可以通过分子量分布的控制来调整高分子材料的性能。
分子量分布是指高分子材料中分子量的分布情况,可以分为窄分子量分布和宽分子量分布。
窄分子量分布的高分子材料通常具有相对均一的性能,而宽分子量分布的高分子材料则具有更广泛的应用领域。
高分子材料的分子量是决定其性能和用途的关键因素之一。
通过合适的测定方法和控制手段,可以实现对高分子材料分子量的精确测定和调控,从而优化材料的性能和应用。
高分子材料的分子量研究是高分子化学和材料科学领域的重要课题,对于推动材料科学的发展和应用具有重要意义。
高分子材料研究方法复习提纲题型:选择题(10分)填空题(20分)名词解释(20分)简答题(30分)谱图解析(20分)《聚合物结构分析》基础习题第一章绪论1、名词:一次结构,二次结构,三次结构,松弛时间2、当温度由低变高时,高聚物经历、、三种状态。
第二章红外光谱1、红外光谱试验中有哪几种制样方法?对于那些易于溶解的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法?2、红外光波长在范围,其分为三个区,即区、区、区。
3、产生红外吸收光谱的原理4、分子的振动模式包括振动和振动。
5、红外光谱图的表示方法,即纵、横坐标分别表示什么?6、记住书中p10表2-2中红外光谱中各种键的特征频率范围。
7、名词:红外光谱中基团的特征吸收峰和特征吸收频率,官能团区,指纹区,透过率,吸光度,红外二向色性,衰减全反射8、红外光谱图中,基团的特征频率和键力常数成______,与折合质量成______。
9、官能团区和指纹区的波数范围分别是和。
10、论述影响吸收谱带位移的因素。
11、在红外谱图中C=O的伸缩振动谱带一般在范围。
对于聚丙烯酸、聚丙烯酰胺、聚丙烯酸甲酯来说,按C=O的伸缩振动谱带波数高低,依次是。
12、如何根据红外光谱监测环氧树脂的固化反应。
13、共轭效应会造成基团的吸收频率降低。
14、叙述傅立叶变换红外光谱仪工作原理。
15、简述红外光谱定量分析的基础。
16、以乙酸乙烯酯接枝的聚丙烯膜为例,说明如何用红外光谱测定接枝聚合物的接枝率。
17、如何用红外光谱鉴别(1)PMMA和PS;(2)PVC和PP;(3)环氧树脂和不饱和聚酯。
第三章激光拉曼散射光谱法1、与红外光谱相比,拉曼光谱有什么优缺点?2、名词:拉曼散射,瑞利散射,斯托克斯线,反斯托克斯线,拉曼位移,互相排斥定则3、红外吸收的选择定则是;拉曼活性的选择定则是。
5、对多数吸收光谱,只有频率和强度两个基本参数,但对激光拉曼光谱还有一个重要参数,即。
高分子材料分析测试与研究方法引言高分子材料是一类重要的工程材料,公认为21世纪最具潜力的材料之一。
高分子材料的性能与结构密切相关,因此对其进行分析测试与研究是非常必要的。
本文将介绍常用的高分子材料分析测试方法及其研究方法,包括物理性能测试、化学结构分析、热性能分析、力学性能测试以及相关的表征技术。
一、物理性能测试物理性能是高分子材料的基本性能之一,常用的物理性能测试包括密度测量、吸水性能测试、熔融指数测试等。
1. 密度测量密度是衡量材料物理性能的重要指标之一,可以通过比重法、浮力法或压缩气体法等方法进行测量。
其中,比重法是最常用的方法,通过称量样品质量和体积来计算密度。
2. 吸水性能测试吸水性能是衡量材料对水分的吸收能力的指标,可以通过浸泡法、浸水法或密闭测量等方法进行测试。
这些测试方法可以帮助评估材料的耐水性能及吸水后的性能变化。
3. 熔融指数测试熔融指数是衡量高分子材料熔融流动性能的指标,常用的测试方法有熔体指数法、熔体流动速率法等。
通过测量熔融材料的流动性能,可以评估材料的加工性能以及与其他材料的相溶性。
二、化学结构分析化学结构分析是研究高分子材料化学特性的重要手段,常用的化学结构分析方法包括红外光谱分析、核磁共振分析、质谱分析等。
1. 红外光谱分析红外光谱分析是研究材料化学结构的重要手段,通过研究材料在红外波段的吸收谱图,可以确定材料中的官能团、键的类型以及化学环境等信息。
2. 核磁共振分析核磁共振分析是研究材料分子结构及动力学性质的重要方法,通过测量核磁共振信号,可以获得材料中原子的化学环境、相对数量以及分子间的相互作用信息。
3. 质谱分析质谱分析是研究材料分子结构及组成的关键分析方法,通过测量不同质荷比的离子的相对丰度,可以确定材料中的化学元素、分子量以及它们的相对含量等信息。
三、热性能分析热性能是衡量材料耐热性、热膨胀性等重要性能的指标,常用的热性能分析方法包括热重分析、差示扫描量热分析等。
高分子研究方法题库1 在对聚合物进行各种光谱分析时,红外光谱主要来源于分子振动-转动能级间的跃迁;紫外-可见光谱主要来源于分子的电子能级间的跃迁;核磁共振谱主要来源于置于磁场中的原子核能级间的跃迁,它们实际上都是吸收光谱。
2、SEM 和TEM的三要素是分辨率、放大倍数、衬度。
2、在有机化合物中,解析谱图的三要素为谱峰的位置、形状和强度。
2 苯、乙烯、乙炔、甲醛,其1H化学位移值最大的是甲醛,最小的是乙炔,13C的化学位移值最大的是甲醛最小的是乙炔。
4、紫外光谱主要决定于分子中发色和助色基团的特性,而不是整个分子的特性。
3 差示扫描量热仪分功率补偿型和热流型两种。
第107页4 产生核磁共振的首要条件是核自旋时要有磁距产生。
5 当原子核处于外磁场中时,核外电子运动要产生感应磁场,核外电子对原子核的这种作用就是屏蔽作用.6 分子振动可分为伸缩振动,弯曲振动7 傅里叶红外光声光谱英文简称为FTIR-PAS.P288 干预仪由光源,定镜,分束器,检测器等几个主要部分组成。
P199 高聚物的力学性能主要是测定材料的强度和模量以及变形.10 共混物的制样方法有流延薄膜法热压薄膜法溴化钾压片法P1111 光声探测器和红外光谱技术结合即为红外声光谱技术. P2712 核磁共振普与红外、紫外一样,实际上都是吸收光谱。
红外光谱来源于分子振动-转动能级间的跃迁,紫外-可见吸收光谱来源于分子的电子能级间的跃迁。
[P46]13 核磁共振谱图上谱峰发生分裂,分裂峰数是由相邻碳原子上的氢数决定的,假设分裂峰数为n,则邻碳原子氢数为n-1。
P5015 红外光谱在聚合物研究中占有十分重要的位置,能对聚合物的化学性质、立体结构、构象、序态、取向等提供定性和定量的信息。
P616 红外光谱中,波动的几个参数为波长、频率、波数和光速。
17 红外光谱中,在1300~1400cm,基团和频率的对应关系比较明确,这对确定化合物中的官能团很有帮助,称为官能团区.18 红外活性振动能引起分子偶极矩变化P819 红外区是电磁总谱中的一部分,波长在0.7~1000之间。