信号产生与变换电路的设计
- 格式:doc
- 大小:460.00 KB
- 文档页数:7
实验一数字基带信号的产生及波形变换实验一、实验目的(1)了解多种时钟信号的产生方法;(2)了解帧同步信号的产生过程;(3)了解几种常见的数字基带信号;(4)掌握AMI码的编码规则。
二、实验原理通信的根本任务是远距离传递消息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。
在数字传输系统中,其传输对象通常是二元数字信息,它可能来自计算机、电传打字机或其它数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。
对基带传输系统的要求就是选择一组有限的离散波形来表示数字信息。
其中未调制的电脉冲信号所占据的频带通常从直流和低频开始,因而称为数字基带信号。
数字基带信号实际上是消息代码的电波形,不同形式的数字基带信号具有不同的频谱结构。
在某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,但必须合理地设计数字基带信号以使数字信息变换为适合于给定信道传输特性的频谱结构。
通常把数字信息的电脉冲表示过程称为码型变换,在有线信道中传输的数字基带信号又称为线路传输码型。
对于数字基带信号的码型选择通常考虑的原则是:(1)对于传输频带低端受限的信道,其线路传输码型的频谱中应不含直流分量;(2)码型变换过程应对任何信源具有透明性,即与信源的统计特性无关;(3)便于从基带信号中提取位定时信息;(4)便于实时监测传输系统信号传输质量,即应能检测出基带信号码流中错误的信号状态;(5)对于某些基带传输码型,信道中传输的单个误码会扰乱一段译码过程,从而导致译码信息中出现多个错误,这种现象称为误码扩散。
希望这种情况越少越好;(6)当采用分组形式的传递码型时,在接收端不但要从基带信号中提取位定时信息,而且要恢复出分组同步信息,以便将接收到的信号正确地划分成固定长度的码组;(7)尽量减少基带信号频谱中的高频分量;(8)编译码设备应尽量简单。
数字基带信号在通信系统中占有比较重要的位置,本实验是整个通信实验系统的数字发送端,其原理框图如图 1-1 所示。
数字电子技术基础第一节预备知识RC电路在脉冲+V +充电放电+V DD+V充电+V第二节单稳态触发器(1)电路有一个稳态和一个暂稳态。
(2)在外来触发脉冲作用下,电路由稳态翻转到暂稳态。
(3)暂稳态是一个不能长久保持的状态,经过一段时间后,电路会自动返回到稳态。
暂稳态的持续时间与触发脉冲无关,仅决定于电路本身的参数。
112. 加负触发脉冲电路翻转为暂稳态 当t =t 1时,u I 产生负跳变,使u 01由低电平跳变为高电平, 由于电容两端电压u C 不能突变,因而使u R 产生同样的正跳变,G 2的输出u 02从高电平变为低电平,这是一个强列正反馈过程: 1 0 ► 0 ► 1 正反馈过程: u I ↓→u 01↑→u R ↑→u 02↓ ┗ ━ ━ ━ ━┛ 结果使得电路迅速进入G1门关闭、G2门打开的暂稳状态。
暂稳状态3. 电路自动返回稳态 电路在暂稳态期间,u 01为高电平,经R 到地不断对电容充电,使u C 按指数规律上升,u R 按指数规律下降,当u R 下降到G 2门的阈值电压时,电路将产生下列的正反馈过程: 1 1 ► 0正反馈过程:C 充电→u C ↑→u R ↓→u 02↑→u 01↓ ┗━━━━━┛ 结果使得电路自动返回到G 1打开、G 2关闭的稳态。
暂稳态的持续时间,即输出脉冲宽度t w 与充电时间常数RC 的大小有关,RC 越大,t W 越宽。
脉冲宽度:t W ≈0.7RC1 1t re =(3~5)RC fmax =1/(t w+t re)三、单稳态触发器的应用单稳态触发器在数字电路中一般用于整形(把不规则的波形转换成宽度、幅度都相等的波形)、定时(产生一定宽度的矩形波)、以及延时(把输入信号延迟一定时间后输出)等。
数字电子技术基础习题第三节多谐振荡器1. 第一暂稳态及其自动翻转的过程 假定在接通电源的瞬间,电路最初处于G 1关闭、G 2打开状态(设这时为电路的第一暂稳态),即u 01=1,u 02=0。
内蒙古工业大学信息工程学院课程学习报告设计题目:如何实现正弦波、方波与三角波信号之间的变换课程名称:模拟电子技术班级:通信10-1 班姓名:学号:成绩:指导教师:设计题目:如何实现正弦波、方波与三角波信号之间的变换一、课题设计任务与要求1、输出电压:0-1V之间2、频率范围:20Hz-20kHz之间3、信号频率:1KHz的正弦波、2KHz的方波和三角波任务如下:1KHz的正弦波2KHz2KHz的方波2KHz二、总体电路设方案(1)函数信号发生器设计思路①产生正弦波可以通过RC文氏电桥正弦波振荡电路,通过控制RC的值达到选频即控制频率大小的目的。
②产生的方波经RC积分电路后输出,得到三角波,为调节幅值,则用电压跟随器隔离三角波输出端,再用电位器接在运放输出端调节电压输出幅值。
③要先产生方波,就必须先用电压比较器和稳压管组成方波产生电路,为调节幅值,则用专用的电压跟随器隔离方波产生端,再用电位器接在运放输出端调节电压输出幅值。
(2)函数信号发生器原理函数信号发生器是一种用来产生特定需要波形信号的装置,比较常见的有方波、三角波、正弦波和锯齿波发生器。
本实验用来产生正弦波--方波--三角波信号。
正弦波发生器:采用RC桥式振荡电路实现输出为正弦波。
②正弦波转换成方波发生器:采用电压比较器与稳压管相结合,实现输出为方波。
③方波转三角波发生电路:将RC积分电路与运放结合,实现方波转三角波。
(图一)正弦波发生电路图(图二)正弦波转换成方波发生电路图(图三)方波转换成三角波发生电路图错误!未指定书签。
三、电路设计与原理说明1、正弦波发生电路的工作原理正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。
正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。
其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。
有源隔离型4-20mA信号变换电路的设计1、设计基本要求:1、电源供电24Vdc,输入电流4-20ma,输出电流4-20ma。
2、输出电流4-20ma带负载能力达到300欧姆。
3、电源供电24Vdc,输入电流4-20ma,输出电流4-20ma三者相互隔离。
4、输出电流跟踪输入电流变化,跟踪精度达到1%。
2、发挥部分:直接以PT100的电阻输入替代输入电流4-20ma电流,实现隔离型热电阻变送器功能。
即100欧电阻输入,输出4毫安,138.5欧姆电阻输入,输出20毫安。
具体电路请记笔记。
可参考:/more.asp?name=xinjihua&id=37300的相关资料提高题1:无源二线制隔离型4-20mA信号变换电路的设计1、无源供电,输入电流4-20ma负载能力达到500欧姆。
2、输入电流4-20ma,输出电流4-20ma。
3、输出电流4-20ma负载能力达到200欧姆。
4、输入电流4-20ma既作为信号传递,又作为设备供电电源。
5、输入电流4-20ma,输出电流4-20ma二者相互隔离。
下面是对“2009年全国大学生电子设计竞赛题目分析”请您参考。
这是北京理工大学一个电子竞赛组委会专家分析的情况,现跟您分享一下,如果需要什么资料可及时联系王浩。
首先,09年题目应该与往年差异不大。
无非是仪器类、电源类、放大器类、控制类等几大块。
所以现在老师用以前的训练模式给学生打基础应该没什么问题。
但有一下几点要注意:1、因为推荐全国都有笔试考核,笔试多数以电子基础、模电知识为主,所以09年全国题目应该会继续在模电题目上下功夫,而数字电路,因为现在出题难度、芯片功能等原因,可能会不再考。
2、频谱仪、信号发生器、相位仪等相关题目都基本出过,所以如果仪器类继续出题目的话,可能还是在原先的基础上加强功能或者增加难度,但是这类型题目出的次数都比较多,不怀疑换类型的可能。
仪器方面也要根据实验常用的仪器来判断哪些仪器在往年还没有涉及,而有可能当做新的方向来考核的,比如失真度仪什么的。
方波信号转正弦波信号的电路设计摘要:提出一种将单片机产生的方波信号转换成正弦波信号的方法。
对产生的方波信号先采用电路积分,再通过低通滤波的方法可实现需要的正弦波信号,其中信号的频率、幅度等参数由软件调节。
相关的试验结果证实该设计与理论比较相符。
该设计产生的信号频率较低,在某些实际的电路调试中可以作为信号发生器使用,也可以作为某些探头的信号激励源。
关键词:单片机;方波信号;正弦波;信号源在很多实际的电路应用中,正弦波信号并不能直接由单片机产生,因此常常需要将单片机输出的方波信号转换成正弦波信号,比如在石油行业的生产测井仪器中,有时为了作为激励源,所需的频率较低,并且波形为正弦波,因此常规的方波信号并不能满足实际的需要,且所需的频率有时是比较低的。
本文以生产测井仪器中电阻率仪为背景,通过波形变换以及移相电路和AD采样,检测生产井中的含水率大小,但是需要说明的是如果在含水率大于30%的情况下,该方法并不适用了。
另外,由于激励源的频率较低,因此在RC移相电路中移相角度也会相对比较明显。
1基本原理将方波信号转换成正弦波信号分两步:通过积分电路将方波转换成三角波,再将三角波信号通过低通滤波器转换成正弦波。
图1所示是使用运算放大器LM324组成的方波转换成三角波线路[1]。
图中电阻和电容的匹配构成积分电路,输入一个方波信号,输出就可得到一个三角波,设方波振幅为5 V,周期为13ms(即频率为77 Hz),脉冲占空比为50%的信号,输出就得到峰值为2.5 V的三角波。
仿真产生的三角波波形图如图2所示。
根据积分运算电路的有关理论,当给定一个方波信号时,通过求解某段时间内的积分值,所得的输出电压为:(1)R、C分别为输入电阻和积分电容。
从而可得输出的三角波的峰值大小。
将三角波转换成正弦波常用的手段有滤波法和折线法,滤波法也称幂级数展开法。
滤波法适用性比较强,可以适用于任何频率,而使用折线法适用的频率有一定的局限性。
北华航天工业学院《电子技术》课程设计报告报告题目:信号发生器设计电路作内容摘要本方案主要用集成运放LM324和UA741等元器件设计组成一个简易函数信号发生器。
该函数信号发生器主要由迟滞比较器、积分器电路、二阶RC有源低通滤波器电路等三部份组成。
迟滞比较器电路形成方波,经积分器电路输出三角波,再经二阶RC有源低通滤波器电路形成正弦波,通过电源实现1~12V可调,经过电位器实现频率调节。
由此构成了一个简易的函数信号发生器。
本实验主要通过使用Multisim、protel软件等完成电路的软件设计。
关键字:集成运放方波三角波正弦波目录一、概述 (1)二、方案设计与论证 (2)1.方案一 (2)2.方案二 (2)三、单元电路设计与分析 (2)1.迟滞比较器 32.积分器 (3)3.低通滤波器 (3)四、总原理图及元器件清单 (4)五、结论 (6)六、心得体会 (6)七、参考文献 (6)一、概述通过集成运放构成迟滞比较器、积分器和低通滤波电路,依次分别输出方波、三角波、正弦波。
通过调节电压源或滑动变阻器,可改变波形的幅值和频率。
二、方案设计与论证函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。
1.方案一采用分立器件实现电路组成,主要的部件有双运放uA741运算放大器、电压比较器、积分运算电路、二阶低通滤波电路、选择开关、电位器和一些电容、电阻组成。
该方案由三级单元电路组成的,第一级单元可以产生方波,第二级可以产生三角波,第三级可以产生正弦波。
XXXXXXXX学院课程设计说明书课程名称:电力电子技术设计题目:方波产生和波形变换电路班级:XXXXXXXXXXXXXXX姓名:XXXX学号:XXXXXXXXXXX指导老师:XXXX设计时间:XXXXXXXXXXXXX摘要波形发生器广泛地应用于各大院校和科研场所。
随着科技的进步,社会的发展,单一的波形发生器已经不能满足人们的需求,而我们设计的正是多种波形发生器。
本设计将介绍由集成运算放大器组成的方波-----三角波----正弦波函数发生器的设计方法,了解多功能集成电路函数信号发生器的功能及特点,进一步掌握波形参数的测试方法。
制作这种低函数信号发生器成本较低,适合学生学习电子技术测量使用。
制作时只需要个别的外部元件就能产生从1—10HZ,10—100HZ的低失真正弦波、三角波、矩形波等脉冲信号。
输出波形的频率和占空比还可以由电流或电阻控制。
其中比较器与积分电路和反馈网络(含有电容元器件)组成振荡器,其中比较器产生的方波通过积分电路变换成了三角波,电容的充,放电时间决定了三角波的频率。
最后利用差分放大器传输特性曲线的非线性特点将三角波转换成正弦波。
电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。
本设计就是利用Multisim软件进行电路图的绘制并进行仿真。
关键字:波形、比较器、积分器、MultisimAbstractWaveform generator is widely used in universities and scientific research. With the progress of science and technology, the development of the society, a single waveform generator has can't satisfy people's needs, and our design is a variety of waveform generator. This design introduces the integrated operational amplifier composed of square wave -- -- -- -- -- the design method of the triangle wave, sine wave function generator, understand the multi-function integrated circuit functions and characteristics of function signal generator, further grasp the waveform parameter test methods. To make this kind of function signal generator with low cost, suitable for students learning electronic technology measure. Need only when making individual external components can produce from 1-10 hz, 10-100 hz low distortion of sine wave, triangular wave and square wave pulse signal. The output waveform frequency and duty ratio can also be controlled by current or resistance. The comparator and integral circuit and the feedback network (containing the capacitance component) oscillator, the comparator of square wave by integrating circuit transformation becomes a triangle wave, capacitance charging, discharge time determines the frequency of the triangular wave. Finally using the nonlinear characteristics of the differential amplifier transmission characteristic curve of converting triangular wave into sine wave.Voltage comparator for the square wave output, and connect the integrator by triangle wave, and see the sine wave by triangle wave, sine wave conversion circuit, achieve the desired signal.NI Multisim software combines intuitive capture and functional simulation, can quickly, easily and effectively carried out on the circuit design and verification. This design is to use Multisim software to draw and carry on the simulation of circuit diagram.Key words: waveform, comparator, integrator, Multisim目录一、设计目的及要求 (4)1.1设计目的 (4)1..2设计内容与要求 (4)二、函数发生器的组成 (4)2.1原理框图 (4)2.2原理分析 (5)三、系统中各模块设计 (5)3.1 方波-三角波 (5)3.2三角波-正弦波转换电路 (8)3.3总电路图 (10)四、OPA2541的功能介绍 (10)五、结果分析 (11)六、课程设计中的收获和体会 (11)参考文献 (12)附录 (13)方波产生和波形变换电路一、设计目的及要求1.1设计目的1.了解集成运放电路的组成和使用;2.了解集成运放几种典型应用电路的工作原理;3.掌握利用运算放大器设计方波产生电路、波形变换电路和调试的方法。
正弦波、方波、三角波 信号电路设计本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,只需要个别的外部元件就能产生从0.001Hz ~30KHz 的低失真正弦波、三角波、矩形波等脉冲信号。
一、电源:根据设计所要求的性能指标,选择集成三端稳压器。
因为要求输出电压可调,所以选择三端可调式集成稳压器。
可调式集成稳压器,常见的主要有CW317、CW337、LM317、LM337。
317系列稳压器输出连续可调的正电压,337系列稳压器输出连可调的负电压,可调范围为1.2V~37V ,最大输出电流m ax O I 为1.5A 。
稳压内部含有过流、过热保护电路,具有安全可靠,性能优良、不易损坏、使用方便等优点。
其电压调整率和电流调整率均优于固定式集成稳压构成的可调电压稳压电源。
LM317系列和LM337系列的引脚功能相同,管脚图和典型电路如图4-5和图4-6。
图4-5 管脚 图4-6典型电路输出电压表达式为: ⎪⎭⎫ ⎝⎛+=11125.1R RP U o 式中,1.25是集成稳压块输出端与调整端之间的固有参考电压REF V ,此电压加于给定电阻1R 两端,将产生一个恒定电流通过输出电压调节电位器1RP ,电阻1R 常取值ΩΩ240~120,1RP 一般使用精密电位器,与其并联的电容器C 可进一步减小输出电压的纹波。
图中加入了二极管D ,用于防止输出端短路时10µF 大电容放电倒灌入三端稳压器而被损坏。
LM317其特性参数:输出电压可调范围:1.2V ~37V输出负载电流:1.5A输入与输出工作压差ΔU=U i -U o :3~40V能满足设计要求,故选用LM317组成稳压电路。
整体稳压电路原理图二、主电路〖方案一〗由文氏电桥产生正弦振荡,这一方案为一开环电路,结构简单,产生的正弦波和方波的波形失真较小文氏电桥振荡器正弦波发生器:又称文氏电桥振荡器,如图1-3-1所示,其中A 放大器由同相运放电路组成,图3-4-2,因此, )1(12R R V V A d o v +==图3-4-1图3-4-2F 网络由RC 串并联网络组成,由于运放的输入阻抗Ri 很大,输出阻抗Ro 很小,其对F 网络的影响可以忽略不计,从图3-4-3有RCj R C j R RC j RV V F o f v ωωω++++==111)1(3)1)(1(2CC R j R R R C j R RC j R ωωωω-+=+++=由自激振荡条件:T=AF=1有1)1(32=-+=CC R j R R A F A v v v ωω 所以上式分母中的虚部必须为零,即 012=-CC R ωω RC10=⇒ω振荡频率 上式的实部为1,即 13=⋅RR A v 3=⇒v A 起振条件对图3-4-2同相运放, 121R R A v += 须满足122R R = 以上分析表明:① 文氏电桥振荡器的振荡频率RC10=ω,由具有选频特性的RC 串联网络决定。
信号发生电路原理与实用设计◆ 240 ◆图8.4.1 全数字锁相环的组成框图DLF 的作用是消除鉴相器输出的相位误差信号中的高频成分,保证环路的性能稳定,实际上可用一变模可逆计数器(模数为K )来实现。
K 变模可逆计数器根据相差信号P 进行加减运算。
当P 为高电平时,计数器进行加运算,如果相加的结果达到预设的模值,则输出一个进位脉冲信号D 给脉冲加减电路;当P 为低电平时,计数器进行减运算,如果结果为零,只输出借位脉冲信号D 给脉冲加减电路。
当f o 等于f i 或只有随机干扰脉冲时,计数器加减的数目基本相等,计数结果在初始值处上下徘徊,不会产生进位和借位脉冲,滤除因随机噪声引起的相位抖动。
计数器根据输出结果生成控制DCO 动作的控制指令。
K 变模可逆计数器的模值K 对DPLL 的性能指标有很大的影响。
K 的取值可根据输入信号的相位抖动而定,加大模值K ,有利于提高DPLL 的抗噪能力,但是会导致较大的捕捉时间和较窄的捕捉带宽;减小模值K 可以缩短捕捉时间,扩展捕捉带宽,但是降低了DPLL 的抗噪能力。
适当选取K 值可以确定DPLL 的转换速度。
数控振荡器(DCO )在数字锁相环中所处的地位相当于模拟锁相环路中的电压控制振荡器。
在数字锁相环设计中使用的数控振荡器是一种可变模式分频器,它的输出是调整可变分频器的模值N ,该值的大小会随着每个f i 周期内(f i =1时)鉴相输出进行调整。
当其为高电平时,将可变分频模值N 增大,以调整分频输出使之相位滞后;当其输出为低电平时,将可变分频模值N 减小,以调整分频输出使之输出相位提前。
如果数字环路滤波器既没有控制脉冲信号D 输出,则分频模值N 将保持不变,经N 分频后的f o 信号相位和f i 信号相位处于同步状态。
N 分频器是一个简单的除N 计数器,它对脉冲加减电路的输出脉冲再进行N 分频,得到整个环路的输出信号f o 。
因为f o = CLK/2N = f c ,因此通过改变分频值N 可以得到不同的环路中心频率f c 。