动态分区存储管理的模拟实现
- 格式:doc
- 大小:289.00 KB
- 文档页数:13
动态分区分配方式的模拟动态分区分配方式是计算机中内存管理的一种重要方式。
在动态分区分配方式中,内存空间被分割为多个不同大小的分区,每个分区可以被进程占用。
当一个进程需要内存时,系统会为其分配一个适当大小的分区,进程结束后,该分区将会被释放出来供其他进程使用。
为了更好地理解动态分区分配方式的原理和实际运作,可以通过模拟的方法来观察和分析。
下面是一个简单的动态分区分配方式的模拟过程:假设我们有一块容量为6400KB的内存,要模拟分配4个进程的情况。
这4个进程的内存需求分别是1000KB,2000KB,500KB和300KB。
首先,我们可以将内存划分为几个分区,每个分区的大小根据需要进行调整。
可以设置整块内存为一块分区(大小为6400KB),或者划分成多个较小的分区。
由于这里有4个进程需要分配内存,我们可以为它们设置4个分区,分别为P1,P2,P3和P41.初始状态:内存:[6400KB](未分配)进程:P1,P2,P3,P4(空)2.分配P1:内存:[1000KB](P1)、[5400KB](未分配)进程:P1,P2,P3,P4P1占用了1000KB的内存,剩余空间为5400KB。
3.分配P2:内存:[1000KB](P1)、[2000KB](P2)、[3400KB](未分配)进程:P1,P2,P3,P4P2占用了2000KB的内存,剩余空间为3400KB。
4.分配P3:内存:[1000KB](P1)、[2000KB](P2)、[500KB](P3)、[2900KB](未分配)进程:P1,P2,P3,P4P3占用了500KB的内存,剩余空间为2900KB。
5.分配P4:内存:[1000KB](P1)、[2000KB](P2)、[500KB](P3)、[300KB](P4)、[2600KB](未分配)进程:P1,P2,P3,P4P4占用了300KB的内存,剩余空间为2600KB。
在模拟的过程中,我们可以看到进程在内存中的分配情况和未分配内存的变化。
动态分区分配方式的模拟实验原理说明一、引言动态分区分配方式是操作系统中的一种内存管理方式,它将内存分为若干个不同大小的分区,根据进程的需求动态地分配内存。
在实际应用中,动态分区分配方式广泛应用于多任务操作系统中,如Windows、Linux等。
本文将介绍动态分区分配方式的模拟实验原理。
二、动态分区分配方式的基本原理动态分区分配方式是指在内存空间中按照进程需要划分出若干个不同大小的空间块,每个空间块可以被一个进程占用。
当有新进程需要内存时,操作系统会在空闲的空间块中选择一个大小合适的空间块给该进程使用。
当进程结束时,该进程所占用的空间块就会被释放出来,成为空闲块。
三、模拟实验环境搭建为了模拟动态分区分配方式,我们需要搭建一个虚拟机环境。
首先需要安装一款虚拟机软件(如VMware Workstation),然后安装一个操作系统(如Windows)。
接下来,在虚拟机中安装Visual Studio等开发工具。
四、模拟实验步骤1.设计数据结构为了方便管理内存空间,我们需要设计一种数据结构来存储内存块的信息。
我们可以使用链表来实现这一功能,每个节点表示一个内存块,包括该内存块的起始地址、大小以及状态(已分配或未分配)等信息。
2.初始化内存空间在模拟实验中,我们需要初始化一段虚拟内存空间。
我们可以使用一个数组来表示整个内存空间,并将其划分为若干个大小不同的空间块。
同时,我们需要将这些空间块的信息存储到链表中。
3.模拟进程请求内存在模拟实验中,我们需要模拟多个进程同时请求内存的情况。
当一个进程请求内存时,操作系统会根据其所需的内存大小,在空闲的空间块中选择一个合适的块分配给该进程,并将该块标记为已分配状态。
4.模拟进程释放内存当一个进程结束时,它所占用的内存块就会被释放出来,成为空闲块。
此时操作系统会更新链表信息,并将该块标记为未分配状态。
5.显示当前内存使用情况在模拟实验过程中,我们需要不断地显示当前的内存使用情况。
使用最佳适应算法对内存实现模拟动态分区管理摘要:内存动态分区管理的算法是操作系统课程中一个重要内容,理解和学习不同的分区算法能够为深入学习操作系统等知识提供一定的理论知识和实践依据。
本文采用c语言程序设计出最佳适应算法来模拟计算机内存分区管理,减少内存分配时产生的碎片,以此提高操作系统的稳定性。
关键词: c语言;模拟;内存分区;分配管理;最佳适应算法中图分类号:tp301 文献标识码:a 文章编号:1006-4311(2013)16-0214-021 模拟算法的设计思想计算机操作系统的最佳适应算法(best fit)是动态内存分区分配算法的一种[1]。
它能够从全部空闲区找出满足作业要求并且最小的空闲分区,这种算法能够让产生的碎片尽量缩小。
为了提高寻找速度,这种算法要求将所有的空闲区按其内容以从小到大的顺序形成一个空闲分区链。
这样,第一次找到的能满足要求的空闲区,必然是最佳的[2]。
最佳适应算法利用的思想就是将地址相邻近的自由区与回收区进行有效地合并,通过初始化空闲区、分配空闲区、回收空闲区实现模拟的内存管理,从而尽量减少碎片的产生,并尽可能的利用内存空间。
2 模拟算法的设计2.1 定义空闲分区链结构初始化时内存分配最大值定义为35670。
全局变量申明:设置分区描述器:2.2 主函数主函数main()包括:建立头结点head;定义内存分配申请1和回收内存2的选择,如果输入1则输入申请的内存大小并调用分配函数assign1=assignment(head,application1),若assign1->address==-1则分配不成功,则调用printf()函数输出“申请失败”,否则分配成功,用assign1->address进行分配;输入2将调用printf()函数提示“输入回收区的首地址和回收区的大小”,然后用语句check=backcheck(head,back)函数判断申请是否合法,若输入合法,则调用do-while循环语句多次查找适应的节点,并再次调用printf()函数输出回收结果。
实验五动态分区分配算法的模拟为了更好地理解动态分区分配算法的工作原理,我们可以进行一次模拟实验。
在实验中,我们将模拟一个内存分区,并使用动态分区分配算法来管理这些分区。
首先,让我们定义一个内存大小为1000字节的分区。
我们假设这个内存中包含几个已分配的分区和几个空闲的分区。
我们使用首次适应算法来进行分区的首次适应分配。
首先,我们将整个内存空间标记为空闲状态,并创建一个初始的空闲链表。
我们假设初始时只有一个空闲分区,大小为1000字节,起始地址为0。
现在,假设有一个进程请求分配一个250字节大小的内存空间。
我们首先检查空闲链表,找到一个大小大于等于250字节的空闲分区。
在这种情况下,我们发现第一个空闲分区的大小是1000字节,所以我们将它拆分成250字节的已分配分区和750字节的空闲分区。
我们在已分配分区上标记一个进程编号,并将空闲分区加入空闲链表。
接下来,假设我们的进程需要申请500字节的内存空间。
在这种情况下,我们需要查找一个大小大于等于500字节的空闲分区。
我们发现第一个可用的空闲分区大小是750字节,我们将它拆分为已分配的500字节和剩余的250字节的空闲分区。
然后,我们假设有进程释放了先前分配的250字节的内存空间。
当一个进程释放分配的内存空间时,我们需要合并相邻的空闲分区。
在这种情况下,释放的分区位于地址0,大小为250字节,并且其下一个分区是地址500,大小为500字节的空闲分区。
因此,我们将这两个分区合并为一个大小为750字节的空闲分区。
接下来,我们假设另一个进程将请求600字节的内存空间。
根据首次适应算法,我们将在第一个满足条件的空闲分区进行分配。
在这种情况下,我们将分配200字节的空闲分区和分配400字节的空闲分区拆分为600字节的已分配分区和空闲分区。
最后,假设一个进程请求200字节的内存空间。
根据首次适应算法,我们在第一个满足条件的空闲分区进行分配。
在这种情况下,我们将250字节的空闲分区拆分为200字节的已分配分区和50字节的空闲分区。
实验五动态分区分配算法的模拟一、实验目的1、加深操作系统内存管理过程的理解2、掌握内存分配算法的基本应用二、实验任务请同学们用C/C++实现一个完整的(可变)动态分区管理器,包括分配,回收,分区碎片整理等。
希望同学们实现如下功能:n 初始化功能:内存状态设置为初始状态。
n 分配功能:要求至少使用两种算法,用户可以选择使用。
n 回收功能:n 空闲块的合并:即紧凑功能,用以消除碎片。
当做碎片整理时,需要跟踪分配的空间,修改其引用以保证引用的正确性。
n 显示当前内存的使用状态,可以使用表格或图形。
三、实验指导1.基本思想动态分区是指系统不预先划分固定分区,而是在装入程序的时候划分内存区域,使得为程序分配的分区大小恰好等于该程序的需求量,且分区的个数是动态的。
显然动态分区有较大的灵活性,较之固定分区能获得好的内存利用率。
2.数据结构动态分区管理可以用两种数据结构实现,一种是已分配区表和空闲区表,也就是用预先定义好的系统空间来存放空间分配信息。
另一种也是最常用的就是空闲链表,由于对分区的操作是动态的,所以很难估计数据结构所占用的空间,而且空闲区表会占用宝贵的系统空间,所以提出了空闲链表的概念。
其特点是用于管理分区的信息动态生成并和该分区在物理地址上相邻。
这样由于可以简单用两个空闲块之间的距离定位已分配空间,不仅节约了系统空间,而且不必维持已分配空间的信息。
本实验是要做一个模拟程序,来模拟动态分区算法的分配和回收过程,并不是真正的去分配和回收内存。
基本的模拟方法有两种:1、先从内存中申请一块存储区,对这块存储区进行模拟的分配和回收活动。
2、不申请存储区,自己定义一块虚拟的存储区,对这块存储区进行模拟的分配和回收活动,分配和回收仅仅是对数据结构的修改而已。
程序代码:#include<iostream>using namespace std;int FreePartition[100];//空闲分区块数组int FirstPartition[100];//首次适应算法数组int CycleFirstPartition[100];//循环首次适应算法数组int BestPartition[100];//最佳适应算法数组int WorstPartition[100];//最坏适应算法数组int ProcessNeed[100];//每个作业的大小int PartitionNum,ProcessNum;//分区块数,作业数//首次适应算法void First(){int i,j;char str;for(i=0;i<PartitionNum;i++){FirstPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++)//找出第一块满足作业的分区for(j=0;j<PartitionNum;j++){if(ProcessNeed[i]>FirstPartition[j])continue;else{FirstPartition[j]-=ProcessNeed[i];//找到后把分区大小减去作业的大小 ? ? ? ? ? ? ?str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl;break;}}cout<<endl;cout<<"分配之后剩余情况:"<<endl;?for(i=0;i<PartitionNum;i++)cout<<FirstPartition[i]<<" ";cout<<endl<<endl;}//循环首次适应算法void CycleFirst(){int i,j=1;char str;for(i=0;i<PartitionNum;i++){CycleFirstPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++)//for(j=0;j<PartitionNum;j++){j=j-1;while(j<PartitionNum)if(ProcessNeed[i]>CycleFirstPartition[j])//continue;j++;else{CycleFirstPartition[j]-=ProcessNeed[i];str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl; break;}//j++;//cout<<j<<" ";if(j==PartitionNum && i!=ProcessNum){i=-1;}}}cout<<endl;cout<<"分配之后剩余情况:"<<endl;for(i=0;i<PartitionNum;i++)cout<<CycleFirstPartition[i]<<" ";cout<<endl<<endl;}//最佳适应算法void Best(){int i,j,k;char str;?for(i=0;i<PartitionNum;i++){BestPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++){k=0;for(j=0;j<PartitionNum;j++){//cout<<BestPartition[j]<<" ? "<<ProcessNeed[i]<<endl; if(BestPartition[j]>=ProcessNeed[i]){break;}}for(int n=0;n<PartitionNum;n++){if(BestPartition[n]<BestPartition[k] && BestPartition[n]>=ProcessNeed[i])//找最佳的 k=n;}BestPartition[k]-=ProcessNeed[i];str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl;}cout<<endl;cout<<"分配之后剩余情况:"<<endl;for(i=0;i<PartitionNum;i++)cout<<BestPartition[i]<<" ";cout<<endl<<endl;}//最坏适应算法void Worst(){int i,j,k;char str;for(i=0;i<PartitionNum;i++){WorstPartition[i]=FreePartition[i];}for(i=0;i<ProcessNum;i++){k=0;for(j=0;j<PartitionNum;j++){if(WorstPartition[j]>WorstPartition[k])//找到最大的分区k=j;}WorstPartition[k]-=ProcessNeed[i];str='A'+i;cout<<"作业"<<str<<"在第"<<j+1<<"块分区中"<<endl;}cout<<endl;cout<<"分配之后剩余情况:"<<endl;for(i=0;i<PartitionNum;i++)cout<<WorstPartition[i]<<" ";cout<<endl<<endl;}void main(){int i;cout<<"输入分区块数:"<<endl;cin>>PartitionNum;cout<<"输入每个分区的大小:"<<endl;for(i=0;i<PartitionNum;i++)cin>>FreePartition[i];cout<<"输入作业数:"<<endl;cin>>ProcessNum;cout<<"输入每个作业的大小:"<<endl;for(i=0;i<ProcessNum;i++)cin>>ProcessNeed[i];cout<<"------------首次适应算法-----------------"<<endl; First();cout<<"------------循环首次适应算法-------------"<<endl; ?CycleFirst();cout<<"------------最佳适应算法-----------------"<<endl; Best();cout<<"------------最坏适应算法-----------------"<<endl; Worst();}。
实验五动态分区存储管理一、实验目的深入了解采用动态分区存储管理方式的内存分配回收的实现。
通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉动态分区存储管理的内存分配和回收。
二、实验内容编写程序完成动态分区存储管理方式的内存分配回收。
具体包括:确定内存空间分配表;采用最优适应算法完成内存空间的分配和回收;编写主函数对所做工作进行测试。
三、设计思路整体思路:动态分区管理方式将内存除操作系统占用区域外的空间看成一个大的空闲区。
当作业要求装入内存时,根据作业需要内存空间的大小查询内存中的各个空闲区,当从内存空间中找到一个大于或等于该作业大小的内存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装人该作业,作业执行完后,其所占的内存分区被收回,成为一个空闲区。
如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。
设计所采用的算法:采用最优适应算法,每次为作业分配内存时,总是把既能满足要求、又是最小的空闲分区分配给作业。
但最优适应算法容易出现找到的一个分区可能只比作业所需求的长度略大一点的情行,这时,空闲区分割后剩下的空闲区就很小以致很难再使用,降低了内存的使用率。
为解决此问题,设定一个限值minsize,如果空闲区的大小减去作业需求长度得到的值小于等于minsize,不再将空闲区分成己分分区和空闲区两部分,而是将整个空闲区都分配给作业。
内存分配与回收所使用的结构体:为便于对内存的分配和回收,建立两张表记录内存的使用情况。
一张为记录作业占用分区的“内存分配表”,内容包括分区起始地址、长度、作业名/标志〔为0时作为标志位表示空栏目〕;一张为记录空闲区的“空闲分区表”,内容包括分区起始地址、长度、标志〔0表空栏目,1表未分配〕。
两张表都采用顺序表形式。
关于分配留下的内存小碎片问题:当要装入一个作业时,从“空闲分区表”中查找标志为“1”〔未分配〕且满足作业所需内存大小的最小空闲区,假设空闲区的大小与作业所需大小的差值小于或等于minsize,把该分区全部分配给作业,并把该空闲区的标志改为“0”〔空栏目〕。
动态分区分配方式模拟动态分区分配方式的核心思想是将内存划分为若干个不同大小的分区,每个分区可以用来存放一个进程或作为一部分进程的存储区域。
当一个进程需要分配内存时,系统会根据进程的需要选择一个合适大小的空闲分区分配给该进程。
当进程执行完毕后,系统会回收其占用的内存分区,再次将其标记为空闲分区。
首次适应算法(First Fit)是最简单的动态分区分配算法之一、它从内存的起始位置开始,寻找第一个满足进程需要的空闲分区,然后将该分区分配给进程。
首次适应算法的优点是实现简单,且内存利用率较高。
然而,它也有一些缺点,比如容易产生碎片,导致内存的利用率下降。
最佳适应算法(Best Fit)是根据进程需要的内存大小,选择最小的满足条件的空闲分区进行分配。
最佳适应算法可以最大限度地减少碎片的产生,提高内存的利用率。
但是,最佳适应算法的缺点是实现较为复杂,同时由于选择最小的分区进行分配,会导致大量的碎片出现。
最坏适应算法(Worst Fit)与最佳适应算法相反,它选择最大的满足进程需要的空闲分区进行分配。
最坏适应算法的优点是可以减少大型进程的外部碎片,但由于选择最大的分区进行分配,会导致更多的碎片产生。
为了更好地理解动态分区分配方式,我们可以通过一个简单的模拟实例来进行说明。
假设有一块内存大小为1MB,现有以下三个请求需要进行内存分配:1.进程A需要200KB的内存;2.进程B需要400KB的内存;3.进程C需要600KB的内存。
首次适应算法:首先,进程A需要200KB的内存,首次适应算法从内存起始位置开始寻找空闲分区,找到一个大小符合要求的空闲分区,将其分配给进程A。
然后,进程B需要400KB的内存,首次适应算法会从上次分配的位置开始,找到一个大小满足要求的空闲分区,并将其分配给进程B。
最后,进程C需要600KB的内存,首次适应算法会继续从上次分配的位置开始,但发现没有足够的空闲分区,分配失败。
最佳适应算法:最佳适应算法需要对所有空闲分区进行排序,按照分区大小的升序排列。
实验四动态分区存储管理
实验目的:熟悉并掌握动态分区分配的各种算法。
熟悉并掌握动态分区中分区回收的各种情况,并能够实现分区合并。
实验内容:用高级语言模拟实现动态分区存储管理,要求:
1、分区分配算法至少实现首次适应算法、最佳适应算法和最坏适应算法中的至
少一种。
熟悉并掌握各种算法的空闲区组织方式。
2、分区的初始化——可以由用户输入初始分区的大小。
(初始化后只有一个空
闲分区,起始地址为0,大小是用户输入的大小)
3、分区的动态分配过程:由用户输入作业号和作业的大小,实现分区过程。
4、分区的回收:用户输入作业号,实现分区回收,同时,分区的合并要体现出
来。
(注意:不存在的作业号要给出错误提示!)
5、分区的显示:任何时刻,可以查看当前内存的情况(起始地址是什么,大小
多大的分区时空闲的,或者占用的,能够显示出来)
要求考虑:(1)内存空间不足的情况,要有相应的显示;
(2)作业不能同名,但是删除后可以再用这个名字;
(3)作业空间回收是输入作业名,回收相应的空间,如果这个作业名不存在,也要有相应的提示。
课程设计题目模拟设计动态分区存储管理的分配与回收学院计算机科学与技术学院专业物联网工程专业班级姓名指导教师2013 年01 月16 日课程设计任务书学生姓名:专业班级:物联网指导教师:工作单位:计算机科学与技术学院题目: 模拟设计动态分区存储管理的分配与回收初始条件:1.预备内容:阅读操作系统的内存管理章节内容,理解动态分区存储管理,掌握动态分区管理内存的分配和回收过程。
2.实践准备:掌握一种计算机高级语言的使用。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.采用动态分区管理方案实施内存分配和回收。
能够处理以下的情形⑴能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小;⑵当某进程提出申请空间的大小后,显示能否满足申请,以及为该进程分配资源后有关内存空间使用的情况;⑶当某进程撤消时,显示内存回收后内存空间的使用情况(注意回收后的合并)。
2.设计报告内容应说明:⑴需求分析;⑵功能设计(数据结构及模块说明);⑶开发平台及源程序的主要部分;⑷测试用例,运行结果与运行情况分析;⑸自我评价与总结:i)你认为你完成的设计哪些地方做得比较好或比较出色;ii)什么地方做得不太好,以后如何改正;iii)从本设计得到的收获(在编写,调试,执行过程中的经验和教训);iv)完成本题是否有其他方法(如果有,简要说明该方法);时间安排:设计安排一周:周1、周2:完成程序分析及设计。
周2、周3:完成程序调试及测试。
周4、周5:验收、撰写课程设计报告。
(注意事项:严禁抄袭,一旦发现,一律按0分记)指导教师签名:年月日系主任(或责任教师)签名:年月日模拟设计动态分区存储管理的分配与回收1.需求分析1.1动态分区动态分区分配又称为可变式分区分配,是一种动态划分存储器的分区方法。
不事先将内存划分成一块块的分区,而是在作业进入内存时,根据作业的大小动态地建立分区,并使分区的大小正好适应作业的需要。