梁的弯曲正应力及强计算
- 格式:pptx
- 大小:743.54 KB
- 文档页数:17
梁弯曲时的正应力§7-1 梁弯曲时的正应力一、纯弯曲时的正应力如图7-2a 所示的简支梁,荷载与支座反力都作用在梁的纵向对称平面内,其剪力图和弯矩图加图7-2b 、c 所示。
在梁的AC 和DB 段内,各横截面上同时有剪力和弯矩,这种弯曲称为剪力弯曲或横力弯曲。
在CD 段中,各横截面上只有弯矩而无剪力,这种弯曲称为纯弯曲。
b )c )a )图7-2为了使问题简单,现以矩形截面梁为例,推导梁在纯弯曲时横截面上的正应力。
其方法和推导圆轴在扭转时的剪应力公式的方法相同,从几何变形、物理关系和静力学关系等三方面考虑。
1、几何变形为观察梁纯弯曲时的表面变形情况,在矩形截面梁的表面画上一些纵向直线和横向直线,形成许多小矩形,然后在梁两端对称位置上加集中荷载P ,梁受力后产生对称变形,在两个集中荷载之间的区段产生纯弯曲变形,如图7-3所示。
从实验中观察到如下现象:m n nma )b )d )ij i j图7-31)所有纵向直线均变为曲线,靠近顶面(凹边)的纵向线缩短,靠近底面(凸边)的纵向线伸长,如图7-3b 中的i ′—i ′和j ′—j ′。
2)所有横向直线仍为直线,只是各横向线之间作了相对转动,但仍与变形后的纵向线正交, 如图7-3b 中的m ′—m ′。
3)变形后横截面的高度不变,而宽度在纵向线伸长区减小,在纵向线缩短区增大,如图7-3b 右所示。
根据以上观察到的现象,并将表面横向直线看作梁的横截面,可作如下假设:1)平面假设:变形前为平面的横截面,变形后仍为平面,它像刚性平面一样绕某轴旋转了一个角度,但仍垂直于梁变形后的轴线。
2)单向受力假设:认为梁由无数微纵向纤维组成。
各纵向纤维的变形只是简单的拉伸或压缩,各纵向纤维无挤压现象。
根据平面假设,梁变形后的横截面转动,使得梁的凸边纤维伸长,凹边纤维缩短。
由变形的连续性可知,中间必有一层纤维既不伸长也不缩短,此层纤维称为中性层,如图7-3d 所示。