17-信道编码-卷积码1
- 格式:ppt
- 大小:1.54 MB
- 文档页数:59
数字通信中的信源编码和信道编码摘要:如今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。
而对于信息的传输,数字通信已经成为重要的手段。
本论文根据当今现代通信技术的发展,对信源编码和信道编码进行了概述性的介绍.关键词:数字通信;通信系统;信源编码;信道编码Abstract:Now it is an information society. In the all of information technologies, transmission and communication of information take an important effect. For the transmission of information, Digital communication has been an important means. In this thesis we will present an overview of source coding and channel coding depending on the development of today’s communication technologies.Key Words:digital communication; communication system; source coding; channel coding1.前言通常所谓的“编码”包括信源编码和信道编码。
编码是数字通信的必要手段。
使用数字信号进行传输有许多优点, 如不易受噪声干扰, 容易进行各种复杂处理, 便于存贮, 易集成化等。
编码的目的就是为了优化通信系统。
一般通信系统的性能指标主要是有效性和可靠性。
所谓优化,就是使这些指标达到最佳。
除了经济性外,这些指标正是信息论研究的对象。
按照不同的编码目的,编码可主要分为信源编码和信道编码。
在本文中对此做一个简单的介绍。
信道编译码技术信道编码与解码技术(Channel Coding and Decoding)是数字通信领域的一个重要技术,其作用是提高数据传输的可靠性和安全性。
在数字通信中,信道(Channel)指的是信号在传输过程中可能遭受到的各种扰动,如噪声、衰落、多径等。
这些扰动会使信号发生失真,使接收端无法正确解读信号。
为了保证数据能够正确地传输,需要采用信道编码技术对原始数据进行编码和解码,以实现数据的纠错和校验。
信道编码的原理是通过在信号中添加冗余信息,使得即使在信道受到扰动的情况下,接收端仍能够正确还原出原始信号。
这种冗余信息一般是一些校验码或纠错码,它们能够使得接收端检错并纠正信号中的错误位。
常见的信道编码方案有卷积码、海明码、BCH码、RS码等。
卷积码是一种线性编码,其原理是通过将输入数据与一个预定义的信道决策器进行卷积运算,得到一个编码后的序列。
在接收端,利用与发送端相同的决策器对编码序列进行解码,得到原始数据。
卷积码的主要缺点是码长较短,冗余信息较少,因此在高信噪比的信道中表现良好,但在低信噪比下表现不佳。
BCH码是一种多项式编码,其原理是将信息序列看作一个多项式,通过除法得到余数,将余数作为纠错码添加到信息序列中,得到一个编码序列。
在接收端,利用BCH解码器进行解码,可以检测并纠正多个错误位。
BCH码适用于低速率的数字通信系统和存储系统中。
信道编码技术对于提高数字通信的可靠性和安全性至关重要。
各种编码方案都有其特点和适用范围,我们需要根据实际应用场景选择适合的编码方案。
下面我们来深入了解一下信道编码的相关概念和性质。
1. 码率与编码效率信道编码系统中,码率是指源码经过信道编码后变成的码字的速率,通常用R表示,单位为咪比特/秒(Mbits/s)。
编码效率是指码率与信源熵率之比,即R/H(X),表示利用编码所能达到的信息传输效率。
编码效率越高,表示可以用更少的码字传输更多的信息,同时也意味着在相同的信道条件下,可以得到更高的传输速率。
前言计算机通信是一种以数据通信形式出现,在计算机与计算机之间或计算机与终端设备之间进行信息传递的方式。
它是现代计算机技术与通信技术相融合的产物,在军队指挥自动化系统、武器控制系统、信息处理系统、决策分析系统、情报检索系统以及办公自动化系统等领域得到了广泛应用。
计算机通信系统是经典的数字通信系统,它是计算机技术和通信技术结合的产物,一方面通信网络为计算机之间的数据传递和交换提供必要的设施和手段;另一方面,数字计算机技术的发展渗透到通信技术中,又提高了通信网络的各种性能,二者相互渗透、互相促进、共同发展。
由于计算机、卫星通信及高速数据网的飞速发展,数据的交换、处理和存储技术得到了广泛的应用,数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象,人们对数据传输和存储系统的可靠性提出来了越来越高的要求,经过长时间的努力,通过编译码来控制差错、提高可靠性的方式在信道传输中得到了大量的使用和发展,并形成了一门新的技术叫做纠错编码技术,纠错编码按其码字结构形式和对信息序列处理方式的不同分为两大类:分组码和卷积码。
第一章 信道编码1.1 信道编码概述1.1.1信道模型信息必须首先转换成能在信道中传输或存储的信息后才能通过信道传送给收信者。
在信息传输过程中,噪声或干扰主要是从信道引入的,它使信息通过信道传输后产生错误和失真。
因此信道的输入和输出之间一般不是确定的函数关系,而是统计依赖的关系。
只要知道信道的输入信号、输出信号以及它们之间的统计依赖关系,就可以确定信道的全部特性。
信道的种类很多,这里只研究无反馈、固定参数的单用户离散信道。
1.离散信道的数学模型离散信道的数学模型一般如图6.1所示。
图中输入和输出信号用随机矢量表示,输入信号为 X = (X 1, X 2,…, X N ),输出信号为Y = (Y 1, Y 2,…, Y N );每个随机变量X i 和Y i 又分别取值于符号集A ={a 1, a 2, …, a r }和B ={b 1, b 2, …, b s },其中r 不一定等于s ;条件概率P (y |x ) 描述了输入信号和输出信号之间的统计依赖关系,反映了信道的统计特性。
信道编码概念信道编码是一种在数字通信中使用的技术,它可以提高数据传输的可靠性和效率。
在数字通信中,数据传输过程中会受到各种干扰和噪声的影响,这些干扰和噪声会导致数据传输错误。
信道编码技术可以通过在数据传输过程中添加冗余信息来提高数据传输的可靠性,从而减少数据传输错误的发生。
信道编码技术的基本原理是在发送端对原始数据进行编码,生成一些冗余信息,并将编码后的数据传输到接收端。
接收端通过解码过程来恢复原始数据。
在解码过程中,接收端可以利用冗余信息来检测和纠正数据传输中的错误。
常见的信道编码技术包括前向纠错编码、卷积码和块码等。
前向纠错编码是一种常用的信道编码技术,它可以在数据传输过程中检测和纠正错误。
前向纠错编码的基本原理是在发送端对原始数据进行编码,并在编码后的数据中添加一些冗余信息。
接收端在接收到编码后的数据后,可以利用冗余信息来检测和纠正数据传输中的错误。
前向纠错编码的优点是可以在数据传输过程中实时检测和纠正错误,从而提高数据传输的可靠性。
卷积码是一种常用的信道编码技术,它可以在数据传输过程中检测和纠正错误。
卷积码的基本原理是在发送端对原始数据进行编码,并在编码后的数据中添加一些冗余信息。
接收端在接收到编码后的数据后,可以利用冗余信息来检测和纠正数据传输中的错误。
卷积码的优点是可以在数据传输过程中实时检测和纠正错误,从而提高数据传输的可靠性。
块码是一种常用的信道编码技术,它可以在数据传输过程中检测和纠正错误。
块码的基本原理是将原始数据分成若干个块,并对每个块进行编码。
在编码过程中,会添加一些冗余信息。
接收端在接收到编码后的数据后,可以利用冗余信息来检测和纠正数据传输中的错误。
块码的优点是可以在数据传输过程中实时检测和纠正错误,从而提高数据传输的可靠性。
总之,信道编码技术是一种在数字通信中使用的重要技术,它可以提高数据传输的可靠性和效率。
常见的信道编码技术包括前向纠错编码、卷积码和块码等。
在实际应用中,需要根据具体的应用场景选择合适的信道编码技术,以提高数据传输的可靠性和效率。
信道编码综述
信道编码是一种将信息源编码为特定格式以适应信道传输的技术。
在信息传输过程中,信号可能会受到干扰和噪声的影响,导致信息的失真或丢失。
信道编码通过在传输过程中添加冗余信息来增加信号的可靠性和纠错能力,从而减少错误率。
信道编码通常由两个阶段组成:编码和解码。
编码器将输入的信息源转化为编码序列,而解码器则根据接收到的编码序列还原出原始信息。
编码和解码的算法是信道编码的核心部分,常见的编码算法包括奇偶校验码、海明码、重复码、卷积码等。
奇偶校验码是最简单的信道编码方法,通过在每个数据位后添加一个校验位,以检测并纠正单个错误。
海明码则是一种更高级的编码方法,它可以检测并纠正多个错误,适用于高信噪比的信道。
重复码将每个数据位重复发送多次,以增加错误检测和纠正的能力。
卷积码则是一种更复杂的编码方法,它可以在较低的误码率下提供更高的数据传输速率。
除了以上的编码方法,还有其他一些更高级的编码技术,如Turbo码、低密度奇偶校验码(LDPC码)等。
这些编码方法采用了更复杂的算法和结构,可以在更差的信道条件下达到较低的误码率。
综上所述,信道编码是一种重要的信息传输技术,它通过增加冗余信息来提高信号的可靠性和抗干扰能力。
不同的信道编码方法适用于不同的应用场景,选择合适的编码方法可以有效提升通信系统的性能。
信源编码:主要是利用信源的统计特性,解决信源的相关性,去掉信源冗余信息,从而达到压缩信源输出的信息率,提高系统有效性的目的。
第三代移动通信中的信源编码包括语音压缩编码、各类图像压缩编码及多媒体数据压缩编码。
信道编码:为了保证通信系统的传输可靠性,克服信道中的噪声和干扰的。
它根据一定的(监督)规律在待发送的信息码元中(人为的)加入一些必要的(监督)码元,在接受端利用这些监督码元与信息码元之间的监督规律,发现和纠正差错,以提高信息码元传输的可靠性。
信道编码的目的是试图以最少的监督码元为代价,以换取最大程度的可靠性的提高。
信道编码从功能上可分为3类:仅具有发现差错功能的检错码,如循环冗余校验码、自动请求重传ARQ等具有自动纠正差错功能的纠错码,如循环码中的BCH码、RS码及卷积码、级联码、Turbo 码等既能检错又能纠错功能的信道编码,最典型的是混合ARQ信道编码从结构和规律上分两大类线性码:监督关系方程是线性方程的信道编码非线性码:监督关系方程是非线性的FEC是前向就错码,在不同系统中,不同信道采用的FEC都不一样,有卷积码,Turbo码等信源编码&信道编码区别(通院的必杀技):官方课本如是介绍:信源编码:表示信源和降低信源的信息速率。
信道编码:消除或减轻信道错误的影响。
通过适当的调制方式来运载信息,以适应信道特征。
本人总结:一.信源编码信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩。
码元速率将直接影响传输所占的带宽,而传输带宽又直接反映了通信的有效性。
作用之二是,当信息源给出的是模拟语音信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。
模拟信号数字化传输的两种方式:脉冲编码调制(PCM)和增量调制(ΔM)。
信源译码是信源编码的逆过程。
1.脉冲编码调制(PCM)简称脉码调制:一种用一组二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。
由于这种通信方式抗干扰能力强,它在光纤通信、数字微波通信、卫星通信中均获得了极为广泛的应用。
信道编码分类信道编码是一种将数据信息转换成特定格式的编码方式,以提高数据的可靠性和传输速率。
根据不同的编码方式,信道编码可分为三大类:前向纠错码、回退纠错码以及分组编码。
下面将对这三类编码进行详细介绍。
一、前向纠错码前向纠错码(Forward Error Correction,FEC)是一种通过向待传输的数据中添加冗余信息来实现纠错的编码方式。
它在发送端将原始数据进行编码,生成纠错码,并将生成的码字一同发送给接收端。
接收端通过对接收到的码字进行解码,可以恢复出原始的数据。
1. 卷积码卷积码是一种经典的前向纠错码,它采用移位寄存器和异或运算来生成纠错码。
卷积码具有连续的编码特性,适用于串行传输和高误码率的信道。
常见的卷积码有卷积码的集结码(Convolutional Code Concatenated,CCC)和卷积码的交织码(Convolutional Code Interleaved,CCI)等。
2. 矩阵码矩阵码是一种通过矩阵运算实现纠错的编码方式。
常见的矩阵码有海明码(Hamming Code)、Reed-Solomon码等。
与卷积码相比,矩阵码具有更高的纠错能力和较低的译码复杂度。
矩阵码广泛应用于存储介质、数字电视等领域。
二、回退纠错码回退纠错码(Automatic Repeat reQuest,ARQ)是一种采用反馈机制来实现纠错的编码方式。
它在发送端将原始数据进行分组,并附加检测码,将分组数据发送给接收端。
接收端在接收到数据后,对数据进行校验,如果发现错误,通过发送请求重传的消息来要求发送端重新发送数据。
1. 奇偶检验码奇偶检验码是一种简单的纠错码,通过统计数据中二进制位的1的个数,来判断数据的奇偶性。
如果数据中1的个数是偶数,则在最后添加一个1,使得数据的奇偶性变为奇数;如果数据中1的个数是奇数,则在最后添加一个0,使得数据的奇偶性变为偶数。
2. CRC码CRC码是一种循环冗余校验码,通过多项式运算来生成校验码。