高温超导材料的研究进展-PPT精品
- 格式:ppt
- 大小:1.25 MB
- 文档页数:20
高温超导材料的应用与研究进展目录一、引言二、高温超导材料的定义与特点三、高温超导材料的应用领域3.1 能源领域3.2 电子领域3.3 医疗领域3.4 航天航空领域四、高温超导材料的研究进展4.1 新型高温超导材料的发现4.2 实验方法与测试技术的改进4.3 理论模型的完善与计算模拟五、结论六、参考文献一、引言高温超导材料是一种具有特殊电学性质的物质,能在相对较高的温度下表现出超导特性。
自1986年La-Ba-Cu-O超导材料的发现以来,高温超导材料引起了科学界的广泛关注,并在各个领域的应用与研究中取得了显著进展。
本文将重点介绍高温超导材料的定义与特点,以及其在能源、电子、医疗和航天航空领域的应用,同时也对高温超导材料的研究进展进行概述。
二、高温超导材料的定义与特点高温超导材料是指能在相对较高温度下(超过液氮沸点77K)显示出零电阻特性的材料。
与传统低温超导材料相比,高温超导材料更容易制备和操作,也更适合于实际应用。
其特点主要表现在以下两个方面:1. 高临界温度:高温超导材料的超导转变温度通常在液氮温度以下,最高可达到约138K-165K之间。
相对于低温超导材料需要极低温度的要求,高温超导材料的临界温度大幅度提高,使得超导材料能在常见的液氮温度下运行,从而降低了制冷成本。
2. 复杂的晶体结构:高温超导材料一般由复杂的晶格结构构成,其中包含着各种结构单位,如Cu-O层、Bi-O层等。
这种复杂的晶体结构是高温超导特性的基础,也给高温超导材料的制备和研究带来了一定的挑战。
三、高温超导材料的应用领域3.1 能源领域能源是全球发展的基础和重要支撑,而高温超导材料在能源领域的应用有着巨大潜力。
例如,高温超导材料可以应用于电力输配系统中,通过提高电缆的导电率和传输效率,减少电能损失。
此外,高温超导材料还可以用于发电设备的制造,提高发电效率和稳定性。
3.2 电子领域在电子领域,高温超导材料有望应用于高速电子器件。
高温超导材料的研究进展程长飞20091410404引言2O世纪8O年代后期高温超导的发现,在全球掀起了一股“超导热”。
经过2O多年的研究发展,我国高温超导技术在超导材料技术、超导强电技术和超导弱电技术三个方面取得了重大进展和突破。
在众多领域中,超导技术的应用具有非常突出的优点和不可取代的作用。
随着高温超导材料和低温制冷技术的迅速发展,使超导技术的应用步伐迅速加快。
超导技术在电力、通信、高新技术装备和军事装备等方面的应用也十分令人向往,具有重要的战略意义。
根据第五届国际超导工业峰会预测,高温超导应用技术将在今后5~10年时间达到实用化水平,并将在2010年前后形成较大规模的产业。
到2010年,全球超导产业的产值预计将达到260亿美元,到2020年将达到2 400亿美元以上。
超导技术将是21世纪具有光明前景的高新技术一、超导的基本概述和基本原理1911年发现,但直到1957年,美国科学家巴丁、库珀和施里弗在《物理学评论》提出BCS理论,其微观机理才得到一个令人满意的解释。
BCS理论把超导,库珀对在晶格当中可以无损耗的运动,形成超导电流。
在BCS理论提出的同时,博戈留波夫(Bogoliubov)也独立的提出了超导电性的的博戈留波夫变换至今为人常用。
电子间的直接相互作用是相互排斥的库仑力。
如果仅仅存在库仑直接作用的话,电子不能形成配对。
但电子间还存在以晶格振动正是这种吸引作用导致了“库珀对”的产生。
大致上,其机理如下:电变,形成一个局域的高正电荷区。
这个局域的高正电荷区会吸引自旋相反的电子,和原来的电子以一定的结合能相结合配对。
在很低的温度下,这个结合能可能高于晶格原子振动的能量,这样,电子对将不会和晶格发生能量交换,也就没有电阻,形成所谓“超导”。
BCS理论而获得1972BCS理论并无法成功的解释所谓第二二、高温超导材料概述对超导现象,BCS 理论给出了比较满意的解释。
而在应用方面,超导现象具有很宽敞的应用空间,具有很高的应用价值。
高温超导技术的研究进展Chapter 1:引言高温超导技术是一项引人注目的研究领域,在能源和电力传输领域有着广泛的应用前景。
本章将对高温超导技术的背景和研究意义进行介绍。
Chapter 2:高温超导基本原理本章将详细介绍高温超导的基本原理,包括超导现象、临界温度和超导材料的特性等。
同时,还将介绍常见的高温超导材料的组成和结构。
Chapter 3:高温超导材料的研究进展本章将综述高温超导材料的研究进展,如铜基超导体、铁基超导体和镁二硼化镁等。
同时,还将介绍人们对于高温超导材料的探索和改进方向。
Chapter 4:高温超导技术在能源领域的应用本章将深入探讨高温超导技术在能源领域的应用,如超导电缆和超导发电设备。
同时,还将介绍高温超导技术在电力传输和储能方面的应用前景。
Chapter 5:高温超导技术的挑战与展望本章将分析高温超导技术所面临的挑战,如超导材料制备难度大、成本高昂等问题,并提出相应的解决方案。
同时,还将展望高温超导技术未来的发展方向和应用前景。
Chapter 6:结论本章将对全文进行总结,并强调高温超导技术的重要性和应用前景。
同时,还将提出进一步研究的建议,以推动高温超导技术的发展。
Chapter 1:引言高温超导技术是一项引人注目的研究领域,在能源和电力传输领域有着广泛的应用前景。
前身的低温超导技术由于需要极低的温度条件,限制了其应用范围。
然而,在1986年,康奈尔大学和IBM研究中心的科学家们首次发现了一种以氧化镧和铜为主要成分的铜氧化物陶瓷材料可以在液氮温度下实现超导。
这一突破大大提高了超导技术的实用性和应用领域。
Chapter 2:高温超导基本原理高温超导的基本原理是指在某些特定的温度下,电流能在不产生任何电阻的情况下通过超导体中传输。
常规超导材料的临界温度一般在几摄氏度甚至更低,而高温超导材料的临界温度可以达到液氮温度(77K)甚至更高。
高温超导材料的超导性能的提高主要取决于材料结构和化学成分的优化。
高温超导材料的研究进展和应用前景邓汝乾摘要:超导材料是一类具有超导特性的材料,这种材料在一定的温度的条件下能排斥磁力线,并且其电阻会变为零。
高温超导材料(HTS)能够在高于30K的条件下表现出超导性和抗磁性,其性能更稳定,应用成本更低。
本文深入探讨了高温超导材料的研究进展及其应用前景,以期为相关人员提供参考。
关键词:高温超导材料;研究进展;应用前景0.引言材料领域的许多研究成果可以在生产生活中掀起巨大的变革。
根据焦耳定律,几乎所有的用电器都会在工作中产生一定的热量,造成一定的浪费。
20世纪初,一些科学家在实验中偶然发现,一些材料会在环境温度低于某一温度(材料的临界温度)时失去电阻,这种性质被称为超导电性。
超导材料还具有完全抗磁性,这是常规导体不能比拟的。
可以说,超导材料集诸多优越的电学性质和磁学性质于一身,其应用前景十分诱人。
不过,多数超导材料的临界温度较低。
20世纪80年代的物理学家发现了能够在高于30K的条件下表现出超导性和抗磁性的高温超导材料,这些材料的结构与传统的超导材料有一定的差异,它们的性质更稳定,可以耐受更高的磁场。
深入分析高温超导材料的性质及其应用,可以为改进超导技术提供新思路。
1.高温超导材料的研究进展“高温”是一个相对的术语,即使是最好的材料,在常温下也不会完全失去电阻。
不过,在过去的几十年中,高温超导领域的研究者取得了许多重要进展。
在2000年,一些研究人员通过空穴,实现了52K的临界温度;在2001年,科学家发现硼化镁具有超导性质。
最近发现的钌-铜酸盐超导铁磁体,也有着许多独特的性质[1]。
不过,在发现高温超导材料的几十年后,我们仍然没有找到性能十分理想的高温超导材料。
尽管超导领域的实验技术不断完善,已发表的论文近20万篇,但物理学家仍然不能从理论层面,解释材料具有高温超导性的原因。
很多现有的理论存在着一些内在的矛盾,因此,对高温超导现象进行更加深入的研究,从而得到更有说服力的结论,是物理学家面临的重大挑战之一。