lingo实现 建立选课策略多目标模型
- 格式:doc
- 大小:48.00 KB
- 文档页数:3
黑龙江科技大学题目:选课策略数学模型班级:姓名:学号:摘要本问题要求我们为了解决学生最优选课问题,本文利用0-1规划模型先找出目标函数,再列出约束条件,分三步得出对最终问题逐层分析化多目标规划为单目标规划,从而建立模型,模型建立之后,运用LINGO软件求解,得到最优解,满足同学选修课程的数量少,又能获得的学分多。
特点:根据以上分析,特将模型分成以下几种情况,(1)考虑获得最多的学分,而不考虑所选修的课程的多少;(2)考虑课程最少的情况下,使得到的学分最多;(3)同时考虑学分最多和选修科目最少,并且所占比例三七分。
在不同的情况下建立不同的模型,最终计算出结果。
关键词 0-1规划选修课要求多目标规划模型一:同时要求课程最少而且获得的学分最多,并按3:7的重要性建立模型。
模型二:要求选修课的课程最少,学分忽略;约束条件只有,每人至少学习2门数学,3门运筹学,2 门计算机,和先修课的要求建立模型一。
模型三:要求科目最少的情况下,获得的学分尽可能最多,只是目标函数变了,约束条件没变。
一.问题的重述某学校规定,运筹学专业的学生毕业时必须至少学过两门数学课,三门运筹学课,两门计算机。
这些课程的编号,名称,学分,所属类别和选修课的要求如表所示。
那么,毕业时最少可以学习这些课程中的哪些课程。
如果某个学生即希望选修课程的数量最少,又希望所获得的学分最多,他可以选修哪些课程?二.模型的假设及符号说明1.模型假设1)学生只要选修就能通过;2)每个学生都必须遵守规定;2. 符号说明1)xi:表示选修的课程(xi=0表示不选,xi=1表示选i=1,2,3,4,5,6,7,8,9);三.问题分析对于问题一,在忽略所获得学分的高低,只考虑课程最少,分析题目,有先修课要求,和最少科目限制,建立模型一,计算求出结果;对于问题二,在模型一的条件下,考虑分数最高,把模型一的结果当做约束条件,建立模型二,计算求出结果;对于问题三,同时考虑两者,所占权重比一样,建立模型三;四.模型的建立及求解模型一目标函数:min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9)约束条件:x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;模型的求解:输入:min=0.7*(x1+x2+x3+x4+x5+x6+x7+x8+x9)-0.3*(5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x 7+2*x8+3*x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9); 输出:Global optimal solution found.Objective value: -2.800000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 -0.8000000X2 1.000000 -0.5000000X3 1.000000 -0.5000000X4 1.000000 -0.2000000X5 1.000000 -0.5000000X6 1.000000 -0.2000000X7 1.000000 0.1000000X8 0.000000 0.1000000X9 1.000000 -0.2000000Row Slack or Surplus Dual Price1 -2.800000 -1.0000002 3.000000 0.0000003 1.000000 0.0000004 2.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 0.000000 0.0000001.模型二:目标函数:min z=x1+x2+x3+x4+x5+x6+x7+x8+x9约束条件:X1+x2+x3+x4+x5>=2X3+x5+x6+x8+x9>=3X4+x6+x7+x9>=22*x3-x1-x2<=0x4-x7<=02*x5-x1-x2<=0x6-x7<=0x8-x5<=02*x9-x1-x2<=0模型的求解本文运用lingo运算球的结果:输入min=x1+x2+x3+x4+x5+x6+x7+x8+x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9);输出:Global optimal solution found.Objective value: 6.000000Extended solver steps: 0Total solver iterations: 1Variable Value Reduced CostX1 1.000000 1.000000X2 1.000000 1.000000X3 1.000000 1.000000X4 0.000000 1.000000X5 0.000000 1.000000X6 1.000000 1.000000X7 1.000000 1.000000X8 0.000000 1.000000X9 1.000000 1.000000Row Slack or Surplus Dual Price1 6.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 1.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.000000模型三:目标函数:Max W=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;约束条件:X1+x2+x3+x4+x5>=2X3+x5+x6+x8+x9>=3X4+x6+x7+x9>=22*x3-x1-x2<=0x4-x7<=02*x5-x1-x2<=0x6-x7<=0x8-x5<=02*x9-x1-x2<=0x1+x2+x3+x4+x5+x6+x7+x8+x9=6运用lingo解题:输入:max=5*x1+4*x2+4*x3+3*x4+4*x5+3*x6+2*x7+2*x8+3*x9;x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;x1+x2+x3+x4+x5+x6+x7+x8+x9=6;@bin(x1);@bin(x2);@bin(x3);@bin(x4);@bin(x5);@bin(x6);@bin(x7);@bin(x9); 输出:Global optimal solution found.Objective value: 22.00000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 -3.000000X2 1.000000 -2.000000X3 1.000000 -2.000000X4 0.000000 -1.000000X5 1.000000 -2.000000X6 1.000000 -1.000000X7 1.000000 0.000000X8 0.000000 0.000000X9 0.000000 -1.000000Row Slack or Surplus Dual Price1 22.00000 1.0000002 2.000000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 0.000000 0.0000008 0.000000 0.0000009 1.000000 0.00000010 2.000000 0.00000011 0.000000 2.000000五.结果的检验与分析经过检验输入式子正确,结果多次验证一样。
LINGO 在多目标规划和最大最小化模型中的应用在许多实际问题中,决策者所期望的目标往往不止一个,如电力网络管理部门在制定发电计划时即希望安全系数要大,也希望发电成本要小,这一类问题称为多目标最优化问题或多目标规划问题。
一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑i i ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==p i a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(i i f x f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
目标规划实验报告lingo实验目的本次实验运用目标规划(Goal Programming)方法解决一个复杂的决策问题。
通过实践应用目标规划模型,可以深入了解该方法的原理和应用场景,并掌握运用LINGO软件求解目标规划模型的技巧。
实验背景目标规划是一种多目标优化方法,通过为每个目标设置上下界限来考虑多个目标之间的权衡和优先级。
该方法在实际决策问题中被广泛应用,如生产调度、资源分配等。
在本次实验中,我们将尝试运用目标规划方法解决一个供应链优化问题。
实验步骤1. 定义决策变量与目标函数首先,我们定义了一组决策变量,包括供应商的订单量、转运中心的运输量以及销售网点的销售量。
然后,我们针对不同的供应链环节和目标,建立了几个目标函数,如最小化总成本、最大化客户满意度等。
2. 设置目标上下界限根据供应链管理的实际情况,我们为每个目标函数设置了上下界限。
例如,总成本的上界可以是一个预算限制,客户满意度的下界可以是一个最低满意度指标。
3. 构建目标规划模型根据定义的决策变量和目标函数,我们构建了一个目标规划模型。
该模型包括了决策变量的约束条件、目标函数的上下界限制等。
4. 利用LINGO软件求解模型使用LINGO软件,我们输入了目标规划模型,并设置了初始数值。
然后运行LINGO软件,对目标规划模型进行求解。
5. 分析与调整模型根据LINGO软件的求解结果,我们对模型的结果进行了分析。
如果目标无法完全实现或者有其他问题,我们需要调整模型的上下界限、决策变量的限制条件等。
6. 进行灵敏度分析为了进一步了解目标规划模型的稳定性和可靠性,我们进行了灵敏度分析。
通过逐步调整目标函数的上下界限,我们观察模型结果的变化,并判断模型的鲁棒性和可操作性。
实验结果与讨论通过LINGO软件的求解,我们得到了供应链优化问题的最优解。
根据模型的目标函数和约束条件,我们可以评估供应链在不同目标下的表现,从而为决策者提供多个可选方案。
在实验的过程中,我们发现目标规划方法对于多目标问题的处理非常有效。
lingo在运筹学中的运用
Lingo在运筹学中是一类特别有用的工具,它是一种针对非线性优
化问题的建模语言。
它提供了一种实现复杂求解过程的有效方法,可
以帮助企业创建可衡量的、可控的模型,本质上提高解决难题的能力。
Lingo在运筹学中的应用如下:
一、数据建模
Lingo可以帮助企业更好地利用数据分析,通过数据可视化,实时监测,以及建立超级等式和复合对象,更好地实现数据建模。
这样可以提高
数据管理能力,让企业能够更好地组织、管理、分析及设计数据模型。
二、决策模型
Lingo可以帮助企业构建复杂的决策模型,允许运筹学家在多变量制约
条件下建立决策模型。
Lingo可以在多种应用场景中使用,从传统的精
确方程求解到组合优化多目标问题,从分布式系统的模拟到深度学习
的应用模型,Lingo都有着重要的用途。
三、数学优化
Lingo可以帮助企业有效地实现数学优化目标,在模型本身的表述上,Lingo具有更快的执行速度,并且可以处理大量的数量和变量,可以表
示复杂的最优化目标函数,从而提供最佳的运行数值。
四、机器学习
Lingo在运筹学中也可以应用于机器学习领域,可以用来构建收敛性更
强的机器学习模型,比如基于复杂决策树的模型,或者用Lingo设计的模型来处理视觉捕获和多机实时分析的问题。
总结:Lingo在运筹学中具有重要的作用,它可以帮助企业更加有效地实现数据建模、决策模型、数学优化和机器学习等方面的目标,进而提高企业的解决问题的能力。
数学模型实验—实验报告9一、实验项目:选课策略模型建立和求解二、实验目的和要求a.根据题目要求建立优化模型b.通过Lingo软件求解模型三、实验内容1.根据教材4.4节内容建立选课策略多目标模型。
目标一:课程数最少;目标二:学分最多,1)课程数最少前提下,学分最多模型.即在选修6门课的条件下使得总学分尽可能的多,这样应在原规划问题中增加约束条件x1+x2+x3+x4+x5+x6+x7+x8+x9=6;2)引入权重将两目标转化为单目标模型一般的,将权重记为λ1,λ2,且令λ1+ λ2=1, 0≤λ1,λ2≤1,则0—1规划模型的新目标为 min Y= λ1Z-λ2W2. 编写lingo程序求解:1)以课程数最少为单目标的优化模型(注意xi为0-1变量)min x1+x2+x3+x4+x5+x6+x7+x8+x9x1+x2+x3+x4+x5>=2;x3+x5+x6+x8+x9>=3;x4+x6+x7+x9>=2;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@BIN(X1);@BIN(X2);@BIN(X3);@BIN(X4);@BIN(X5);@BIN(X6);@BIN(X7);@BIN(X8);@BIN(X9);运行结果如下:Global optimal solution found.Objective value: 6.000000Objective bound: 6.000000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostX1 1.000000 1.000000X2 1.000000 1.000000X3 1.000000 1.000000X4 0.000000 1.000000X5 0.000000 1.000000X6 1.000000 1.000000X7 1.000000 1.000000X8 0.000000 1.000000X9 1.000000 1.000000Row Slack or Surplus Dual Price1 6.000000 -1.0000002 1.000000 0.0000003 0.000000 0.0000004 1.000000 0.0000005 0.000000 0.0000006 1.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.00000010 0.000000 0.0000002)求解以上方法建立的多目标模型,并调整权重值,观察模型结果的变化。
数学建模必备LINGO 在多目标规划和最大最小化模型中的应用一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑ii ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==pi a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(iifx f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
最大最小化模型的目标函数可写成)}(,),(),(max{min 21X f X f X f p X或)}(,),(),(min{max 21X f X f X f p X式中T n x x x X ),,,(21 是决策变量。
基于LINGO的多目标规划模型求解唐家德(楚雄师范学院数学与统计学院,云南楚雄 675000)摘要建立实际问题的多目标规划数学模型并求解是运筹学中常遇到的问题,应用最优化软件LINGO可以快捷准确地求出该类问题的解,本文以实例的方式介绍了多目标规划数学模型的建立、LINGO求解程序的编写,为实际工作者解决这类优化问题提供了一种便捷的途径。
关键词多目标规划;LINGO;偏差变量;优先级.中图分类号 O221.6文献标识码A0引言多目标规划是运筹学的一个重要内容,它研究在一定约束条件下多个目标函数的极值问题,与传统的单目标函数问题不同,在多目标规划问题中,通常不存在能使得所有目标函数同时得到优化的最优解,往往只需要求出满意解.求解多目标规划的方法主要有两类:第一类是化多为少的方法,即把多目标化为较容易求解的单目标问题进行求解,第二类是分级序列法,即把目标按其重要性给出一个优先级,每次在上一优先级目标的最优解集内求下一优先目标的最优解,直到求出共同的最优解,本文主要介绍第二种方法。
下面我们以一个实例来说明多目标规划的特点、采用分级序列法求解的步骤和LINGO程序的编写。
1 一个实例(运输问题模型)要把一种产品从产地运到客户处,发量、需求量及产地到客户的运输费单价如表1所示.表1 运输费用单价表2 线性规划建模求解设从产地i (1,2i =)到客户(1,2,3)j j =的运送量为ij x ,单位运输费用为ij c ,产地i 的发量为i e ,客户j 的需求量为j d ,则可建立如下的线性规划模型: min 2311ijij i j z cx ===⋅∑∑ (1)s.t.21,1,2,3ijj i xd j ===∑ (2)31,1,2iji j xe i =≤=∑ (3)使用LINGO 软件求解,发现无可行解。
无可行解的原因是客户总需求量(8500)大于产地的总发量(7000),客户需求量无法满足。
由于该问题是一个供求不平衡问题,总需求量缺少1500个单位,因此按下列目标来考虑运输方案:第一目标,客户1为重要部门,需求量必须全部满足; 第二目标,满足其他两个客户至少75%的需要量; 第三目标,使运费尽量少;第四目标,从产地2到客户1的运量至少有1000个单位.3 采用分级序列法对多目标规划求解[13]-3.1 确定目标的优先级与权系数 首先确定目标的优先级与权系数,目标的优先分为两个层次,第一个层次是目标分成不同的优先级,在计算多目标规划时,必须先优化高优先级的目标,然后再优化低优先级的目标,通常以12,,,k P P P 表示不同的优先级,并规定k k p p >-1,在上述实例中,有四个目标,按重要性分为第一至第四目标,我们分别记这四个目标的优先级为1234,,,P P P P 。
lingo数学模型
"lingo"是一种用于数学建模和优化的软件工具。
它提供了一个
直观的界面,用于建立和求解复杂的数学模型,包括线性规划、整
数规划、非线性规划、多目标规划等。
lingo的使用可以帮助分析
师和决策者在面临复杂的决策问题时进行优化决策。
在数学建模方面,lingo可以用来建立数学模型,包括定义决
策变量、约束条件和目标函数。
用户可以通过lingo的界面直观地
输入模型的各个部分,而无需深入了解数学建模的具体语法和规则。
这使得非专业的用户也能够快速地建立数学模型。
在优化方面,lingo提供了强大的求解算法,可以对各种类型
的数学模型进行求解,以找到最优的决策方案。
lingo支持对模型
进行灵敏度分析,帮助用户了解参数变化对最优解的影响,从而更
好地进行决策。
除了数学建模和优化外,lingo还具有数据可视化功能,可以
直观地展示模型的结果和决策方案。
这有助于用户向决策者传达模
型分析的结果,从而更好地支持决策过程。
总的来说,lingo作为数学建模和优化工具,为用户提供了一
个方便、强大的平台,帮助他们解决复杂的决策问题。
通过lingo,用户可以更好地理解问题、制定决策,并得到最优的解决方案。
数学模型实验—实验报告9
一、实验项目:选课策略模型建立和求解
二、实验目的和要求
a.根据题目要求建立优化模型
b.通过Lingo软件求解模型
三、实验内容
1.根据教材4.4节内容建立选课策略多目标模型。
目标一:课程数最少;目标二:学分最多,
1)课程数最少前提下,学分最多模型.即在选修6门课的条件下使得总学分尽可能的多,这样应在原规划问题中增加约束条件x1+x2+x3+x4+x5+x6+x7+x8+x9=6;
2)引入权重将两目标转化为单目标模型
一般的,将权重记为λ1,λ2,且令λ1+ λ2=1, 0≤λ1,λ2≤1,则0—1规划模型的新目标为 min Y= λ1Z-λ2W
2. 编写lingo程序求解:
1)以课程数最少为单目标的优化模型(注意xi为0-1变量)
min x1+x2+x3+x4+x5+x6+x7+x8+x9
x1+x2+x3+x4+x5>=2;
x3+x5+x6+x8+x9>=3;
x4+x6+x7+x9>=2;
2*x3-x1-x2<=0;
x4-x7<=0;
2*x5-x1-x2<=0;
x6-x7<=0;
x8-x5<=0;
2*x9-x1-x2<=0;
@BIN(X1);@BIN(X2);@BIN(X3);@BIN(X4);@BIN(X5);@BIN(X6);@BIN(X7);@BIN(X8);@BIN(X9);
运行结果如下:
Global optimal solution found.
Objective value: 6.000000
Objective bound: 6.000000
Infeasibilities: 0.000000
Extended solver steps: 0
Total solver iterations: 0
Variable Value Reduced Cost
X1 1.000000 1.000000
X2 1.000000 1.000000
X3 1.000000 1.000000
X4 0.000000 1.000000
X5 0.000000 1.000000
X6 1.000000 1.000000
X7 1.000000 1.000000
X8 0.000000 1.000000
X9 1.000000 1.000000
Row Slack or Surplus Dual Price
1 6.000000 -1.000000
2 1.000000 0.000000
3 0.000000 0.000000
4 1.000000 0.000000
5 0.000000 0.000000
6 1.000000 0.000000
7 2.000000 0.000000
8 0.000000 0.000000
9 0.000000 0.000000
10 0.000000 0.000000
2)求解以上方法建立的多目标模型,并调整权重值,观察模型结果的变化。
学分数和课程数三七开时代码如下:
min-0.8x1-0.5x2-0.5x3-0.2x4-0.5x5-0.2x6+0.1x7+0.1x8-0.2x9
x1+x2+x3+x4+x5>=2;
x3+x5+x6+x8+x9>=3;
x4+x6+x7+x9>=2;
2*x3-x1-x2<=0;
x4-x7<=0;
2*x5-x1-x2<=0;
x6-x7<=0;
x8-x5<=0;
2*x9-x1-x2<=0;
@BIN(X1);@BIN(X2);@BIN(X3);@BIN(X4);@BIN(X5);@BIN(X6);@BIN(X7);@BIN(X8);@BIN(X9);
模型求解结果如下:
Global optimal solution found.
Objective value: -2.800000
Objective bound: -2.800000
Infeasibilities: 0.000000
Extended solver steps: 0
Total solver iterations: 0
Variable Value Reduced Cost
X1 1.000000 -0.8000000
X2 1.000000 -0.5000000
X3 1.000000 -0.5000000
X4 1.000000 -0.2000000
X5 1.000000 -0.5000000
X6 1.000000 -0.2000000
X7 1.000000 0.1000000
X8 0.000000 0.1000000
X9 1.000000 -0.2000000
Row Slack or Surplus Dual Price
1 -2.800000 -1.000000
2 1.000000 0.000000
3 2.000000 0.000000
4 0.000000 0.000000
5 0.000000 0.000000
6 0.000000 0.000000
7 0.000000 0.000000
8 1.000000 0.000000
9 0.000000 0.000000
由于将两个权重记作λ1,λ2,且λ1+λ2=1,λ1,λ2均属于[0,1];通过调整权重值λ1,λ2
进行计算,可以发现当λ1<2/3时,结果与只考虑学分多的情况相同;当λ1>3/4时,结果与只考虑课程最少的情况是一样的。