水声学-海洋的声学特性
- 格式:ppt
- 大小:318.00 KB
- 文档页数:15
第2章 海洋的声学特性§2.1 海洋声学参数及传播损失本讲主要内容⏹ 声速经验公式(了解) ⏹ 海洋中声速的变化(重点) ⏹ 传播衰减概述(重点)⏹ 纯水和海水的超吸收(重点) ⏹ 非均匀液体中的声衰减(了解) 一、海水中的声速 1、声速(Sound Speed):海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
流体介质中,声波为弹性纵波,声速为:式中,密度 和绝热压缩系数都是温度T 、盐度S 和静压力P 的函数,因此,声速也是Temperature 、Salinity 、Pressure 的函数。
2、声速经验公式❑ 海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增大而增大。
❑ 经验公式是许多海上测量实验总结得到的。
※注:❑ 单位❑ 海水中盐度变化不大,典型值35‰; ❑ 经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。
3、乌德公式4、声速测量❑ 声速剖面仪SVP ——Sound Velocity Profile❑ 温盐深测量仪CTD —Conductivity, Temperature, Depth ❑ 抛弃式温度测量仪XBT ——eXpendable BathyThermograph5、海洋中的声速变化❑ 海洋中声速的垂直分层性质❑ 声速梯度1)温度变化1度,声速变化约4m/s2)盐度变化1‰ ,声速变化约1m/ssc ρβ1=s β()P S T T c 175.03514.1037.021.414502+-+-+=()()z c z y x c =,,P P S S T T c g a g a g a dz dcg ++==ρ3)压力变化1个大气压,声速变化约0.2m/s6、海中声速的基本结构典型深海声速剖面温度垂直分布的“三层结构”:❑表面层(表面等温层或混合层):海洋表面受到阳光照射,水温较高,但又受到风雨搅拌作用。
第三章海洋的声学特性本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中 目标探测、声信号识别、通讯和环境监测等问题的解决。
3.1海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:1 c ----------s式中,密度 和绝热压缩系数 s 都是温度T 、盐度S 和静压力P 的函数,因此,声速也是 T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (C)、盐度S (%。
)、压力P (kg/cm 2)的增加而增加。
经验公式是许多海上测量实验的总结得到的,常用的经验公式为: 较为准确的经验公式:c ST p S 35 1.197 10 3T 2.61 10 4P 1.96 10 1P 2 2.09 10 6 PT P 2.796 10 4T 1.3302 10 5T 2 6.644 10 8T 3 P 22.391 10 1T 9.286 10 10T 21.745 10 10 P 3T上式适用范围:-3C <T<30 C 、33%<S<37%。
、1.013 105N /m 2 1 个大气压 注意I :海水中盐度变化不大,典型值 35% ;经常用深度替代静压力,每下降1个大气压的压力。
声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很 大,因此需要有准确的声速数值。
但上式计算比较繁琐,在精度要求不太高时,可使用比较简单 的经验公式。
许多文献资料,都给出较为简单的声速经验公式,这里介绍|乌德公式|:式中,压力P 单位是大气压,1atm 1.013 105N/m 2 。
c 1449.22c TC sCPc STPc T4.6233T5.4585 10 2T 2 2.822 10 4T 3 5.07 10仃4C s 1.391 S 35 7.8 10 2 S 35 2c P1.60518 10 1P 1.0279 10 5P 2 3.451 10 9 P 3 3.503 10 12 P 4式中,52P 980 105N/m 2。
第二章 海洋的声学特性第一讲 海水的声速2.1 海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:sc ρβ1=式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。
经验公式是许多海上测量实验的总结得到的,常用的经验公式为:较为准确的经验公式:STPP S T c c c c c ∆∆∆∆++++=22.1449式中,4734221007.510822.2104585.56233.4T T T T c T ---⨯-⨯+⨯-=∆()()2235108.735391.1-⨯--=-S S c S ∆4123925110503.310451.3100279.11060518.1P P P P c P ----⨯-⨯+⨯+⨯=∆()[][][]T P T T P T T T P PT P P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------⨯-⨯+⨯-+⨯-⨯+⨯-+⨯-⨯-⨯+⨯--=∆上式适用范围:-3℃<T<30℃、33‰<S<37‰、()2525/109801/10013.1m N P m N ⨯<<⨯个大气压。
注意:海水中盐度变化不大,典型值35‰;经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。
声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很大,因此需要有准确的声速数值。
但上式计算比较繁琐,在精度要求不太高时,可使用比较简单的经验公式。
海洋声学基础——水声学原理绪论各种能量形式中,声传播性能最好。
在海水中,电磁波衰减极大,传播距离有限,无法满足海洋活动中的水下目标探测、通讯、导航等需要。
声传播性能最好,水声声道可以传播上千公里,使其在人类海洋活动中广泛应用,随海洋需求增大,应用会更广。
§0-1节水声学简史01490年,意大利达芬奇利用插入水中长管而听到航船声记载。
11827年,瑞士物理学家D.colladon法国数学家c.starm于日内瓦湖测声速为1435米每秒。
21840年焦耳发现磁致伸缩效应1880年居里发现压电效应31912年泰坦尼克号事件后,L.F.Richardson提出回声探测方案。
4第一次世界大战,郎之万等利用真空管放大,首次实现了回波探测,表示换能器和弱信号放大电子技术是水声学发展成为可能。
(200米外装甲板,1500米远潜艇)5第二次世界大战主被动声呐,水声制导鱼雷,音响水雷,扫描声呐等出现,对目标强度、辐射噪声级、混响级有初步认识。
(二战中被击沉潜艇,60%靠的是声呐设备)6二、三十年代——午后效应,强迫人们对声音在海洋中的传播规律进行了大量研究,并建立起相关理论。
对海中声传播机理的认识是二次大战间取得的最大成就。
7二战后随着信息科学发展,声呐设备向低频、大功率、大基阵及综合信号处理方向发展,同时逐步形成了声在海洋中传播规律研究的理论体系。
81、1945年,Ewing发现声道现象,使远程传播成为可能,建立了一些介质影响声传播的介质模型。
2、1946年,Bergman提出声场求解的射线理论。
3、1948年,Perkeris应用简正波理论解声波导传播问题。
4、50-60年代,完善了上述模型(利用计算技术)。
5、1966年,Tolstor 和Clay 提出声场计算中在确定性背景结构中应计入随机海洋介质的必要性。
§0-2 节 水声学的研究对象及任务1、 水声学:它是声学的一个重要分支,它基于四十年代反潜战争的需要,在经典声学的基础上吸收雷达技术及其它科学成就而发展起来的综合性尖端科学技术。
第三章 海洋的声学特性本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中目标探测、声信号识别、通讯和环境监测等问题的解决。
3.1 海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:s c ρβ1=式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。
经验公式是许多海上测量实验的总结得到的,常用的经验公式为:较为准确的经验公式:STP P S T c c c c c ∆∆∆∆++++=22.1449式中,4734221007.510822.2104585.56233.4T T T T c T ---⨯-⨯+⨯-=∆()()2235108.735391.1-⨯--=-S S c S ∆4123925110503.310451.3100279.11060518.1P P P P c P ----⨯-⨯+⨯+⨯=∆()[][][]TP T T P T T T P PTP P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------⨯-⨯+⨯-+⨯-⨯+⨯-+⨯-⨯-⨯+⨯--=∆上式适用范围:-3℃<T<30℃、33‰<S<37‰、()2525/109801/10013.1m N P m N ⨯<<⨯个大气压。
35‰;经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。
声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很大,因此需要有准确的声速数值。
声速剖面插值简介本算例是对水声学原理第二章关于水下声速问题的部分内容进行仿真,利用MATLAB对声速进行插值。
1.1 基本原理声速是影响声波在水中传播的最基本物理量。
海水中声速的变化会导致声传播规律的改变,因此,精确的声速数据在理论研究和工程应用中都具有十分重要的意义。
本算例提供两种方法进行声速插值计算。
第一种方法利用快速傅里叶插值的方法。
利用FFT算法把测得的实验数据转换到变换域中,再通过补零的方法,然后用更多点的傅里叶逆变换变换回来得到更多的数据,其结果相当于是对数据进行升采样。
第二种方法利用分段线性插值的方法。
分段线性插值具有计算简单、稳定性好、收敛性好、各小段曲线在连接点上连续、且容易实现等多种优点。
具体原理可以参阅各类数值计算的参考书籍,在此不作展开。
1.2 数值仿真仿真参数:声速极小值1500m/s;声道轴深度1000m;同时可以调整傅里叶插值的点数,本例程中设置点数为原始数据长度的50倍。
仿真结果:本例程使用Munk声速分布作为测量得到的数据。
声速/(m/s)深度/m图1 利用快速傅里叶插值的方法得到的插值结果声速/(m/s)深度/m图2 利用分段线性插值的方法得到的插值结果1.3 结论(1)从仿真结果中可以看出利用分段线性插值得到的数据较好,由于FFT 运算的特点,插值中会引入截断效应和混叠,导致插值结果的起伏,但有时傅里叶变换插值也不失为一种方法。
(2)实验测量的声速仅是在某些深度上,而理论和工程研究中需要用到任意深度的声速数据,此时便可通过函数插值来获得该深度的数据。
参考文献[1] 刘伯胜,雷家煜.水声学原理(第二版)[M].哈尔滨:哈尔滨工程大学出版社,2010:[2] 易大义,沈云宝,李有法.计算方法[M].杭州:浙江大学出版社,2010:。
一:声波情况声波类型:弹性波,在弹性介质中传播,属纵波。
水中声速为1500m/s,空气中为330m/s。
声场:声波作用的空间范围。
声波频率:声源每秒振动次数,单位赫兹(Hz)。
人耳可听到的最高频率为20KHz,因此该频率以上的声波称为超声波(ultrasonic);可听到的最低频率为20Hz,低于此的称为次声波(infrasound)。
折射(refraction)、反射(reflection)定律:声线总是向声速小的方向弯曲。
声波在海洋中的传播分为波导型,反波导型,分裂型二:海洋声学特性海水的声吸收:将声能变为不可逆的海水分子内能海面波浪的声散射:因不平整性、气泡和浮游生物的散射,声能弥散到其他方向而损失海底声学特性:声波经过海底不仅有纵波也产生横波。
反射和吸收是海底声学的重要物理量。
与海底的密度和其中的声速度有关。
海底岩石组成、表面粗糙度、密度及孔隙率有关海洋内部不均匀性对声波影响:气泡、冷暖水体、湍流、内波和深水声散射层等,都可引起声场起伏三:应用水下声道和Sofar系统水下声道(sofar channel):声波在海水中反射或者折射时,从声源发出的声线束将向声速极小值所在的水层弯曲,此时声能大部分限制在此水层间,没经过海面和海底的反射、散射和吸收,声能损失很少。
物理噪声:来自海洋介质本身运动,波浪、海流、湍流及冰层破裂等产生的噪声。
生物噪声:动物噪声,鲸、海豚、虾群碰撞等引起的噪声。
海洋噪声源在空间的分布是无规则的、运动随时间无规则变化。
海洋噪声可应用到声纳探鱼。
声纳技术对目前军事,渔业等各领域有着重要的应用价值。