第三章海洋的声学特性教材
- 格式:doc
- 大小:11.70 MB
- 文档页数:14
第三章海洋的声学特性本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中 目标探测、声信号识别、通讯和环境监测等问题的解决。
3.1海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:1 c ----------s式中,密度 和绝热压缩系数 s 都是温度T 、盐度S 和静压力P 的函数,因此,声速也是 T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (C)、盐度S (%。
)、压力P (kg/cm 2)的增加而增加。
经验公式是许多海上测量实验的总结得到的,常用的经验公式为: 较为准确的经验公式:c ST p S 35 1.197 10 3T 2.61 10 4P 1.96 10 1P 2 2.09 10 6 PT P 2.796 10 4T 1.3302 10 5T 2 6.644 10 8T 3 P 22.391 10 1T 9.286 10 10T 21.745 10 10 P 3T上式适用范围:-3C <T<30 C 、33%<S<37%。
、1.013 105N /m 2 1 个大气压 注意I :海水中盐度变化不大,典型值 35% ;经常用深度替代静压力,每下降1个大气压的压力。
声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很 大,因此需要有准确的声速数值。
但上式计算比较繁琐,在精度要求不太高时,可使用比较简单 的经验公式。
许多文献资料,都给出较为简单的声速经验公式,这里介绍|乌德公式|:式中,压力P 单位是大气压,1atm 1.013 105N/m 2 。
c 1449.22c TC sCPc STPc T4.6233T5.4585 10 2T 2 2.822 10 4T 3 5.07 10仃4C s 1.391 S 35 7.8 10 2 S 35 2c P1.60518 10 1P 1.0279 10 5P 2 3.451 10 9 P 3 3.503 10 12 P 4式中,52P 980 105N/m 2。
第三章 海洋的声学特性本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中目标探测、声信号识别、通讯和环境监测等问题的解决。
3.1 海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:s c ρβ1=式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。
经验公式是许多海上测量实验的总结得到的,常用的经验公式为:较为准确的经验公式:STP P S T c c c c c ∆∆∆∆++++=22.1449式中,4734221007.510822.2104585.56233.4T T T T c T ---⨯-⨯+⨯-=∆()()2235108.735391.1-⨯--=-S S c S ∆4123925110503.310451.3100279.11060518.1P P P P c P ----⨯-⨯+⨯+⨯=∆()[][][]TP T T P T T T P PTP P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------⨯-⨯+⨯-+⨯-⨯+⨯-+⨯-⨯-⨯+⨯--=∆上式适用范围:-3℃<T<30℃、33‰<S<37‰、()2525/109801/10013.1m N P m N ⨯<<⨯个大气压。
35‰;经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。
声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很大,因此需要有准确的声速数值。
第三章 海洋的声学特性本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中目标探测、声信号识别、通讯和环境监测等问题的解决。
3.1 海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:s c ρβ1=式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。
经验公式是许多海上测量实验的总结得到的,常用的经验公式为:较为准确的经验公式:STP P S T c c c c c ∆∆∆∆++++=22.1449式中,4734221007.510822.2104585.56233.4T T T T c T ---⨯-⨯+⨯-=∆()()2235108.735391.1-⨯--=-S S c S ∆4123925110503.310451.3100279.11060518.1P P P P c P ----⨯-⨯+⨯+⨯=∆()[][][]TP T T P T T T P PTP P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------⨯-⨯+⨯-+⨯-⨯+⨯-+⨯-⨯-⨯+⨯--=∆上式适用范围:-3℃<T<30℃、33‰<S<37‰、()2525/109801/10013.1m N P m N ⨯<<⨯个大气压。
35‰;经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。
声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很大,因此需要有准确的声速数值。
一:声波情况声波类型:弹性波,在弹性介质中传播,属纵波。
水中声速为1500m/s,空气中为330m/s。
声场:声波作用的空间范围。
声波频率:声源每秒振动次数,单位赫兹(Hz)。
人耳可听到的最高频率为20KHz,因此该频率以上的声波称为超声波(ultrasonic);可听到的最低频率为20Hz,低于此的称为次声波(infrasound)。
折射(refraction)、反射(reflection)定律:声线总是向声速小的方向弯曲。
声波在海洋中的传播分为波导型,反波导型,分裂型二:海洋声学特性海水的声吸收:将声能变为不可逆的海水分子内能海面波浪的声散射:因不平整性、气泡和浮游生物的散射,声能弥散到其他方向而损失海底声学特性:声波经过海底不仅有纵波也产生横波。
反射和吸收是海底声学的重要物理量。
与海底的密度和其中的声速度有关。
海底岩石组成、表面粗糙度、密度及孔隙率有关海洋内部不均匀性对声波影响:气泡、冷暖水体、湍流、内波和深水声散射层等,都可引起声场起伏三:应用水下声道和Sofar系统水下声道(sofar channel):声波在海水中反射或者折射时,从声源发出的声线束将向声速极小值所在的水层弯曲,此时声能大部分限制在此水层间,没经过海面和海底的反射、散射和吸收,声能损失很少。
物理噪声:来自海洋介质本身运动,波浪、海流、湍流及冰层破裂等产生的噪声。
生物噪声:动物噪声,鲸、海豚、虾群碰撞等引起的噪声。
海洋噪声源在空间的分布是无规则的、运动随时间无规则变化。
海洋噪声可应用到声纳探鱼。
声纳技术对目前军事,渔业等各领域有着重要的应用价值。
海水中的声速海水中的声速是海洋环境重要的声学参数之一,也是水声物理实验研究中必须测量的环境参数。
它随时间和空间而变化,对声波的传播有重要影响。
该案例给出了水声物理实验研究中海水中声速获取的常用设备及测量结果,用实验数据证明了声速分布的不同结构及时变空变特性。
目前常用的测量设备有CTD(电导率-温度-深度仪)、SVP(声速剖面仪)、XBT(消耗式温深传感器)、温度链(温度传感器阵)四类。
其中CTD和SVP需要人工改变设备的深度以测量不同深度的声速,所以测量速度缓慢,不能同时刻长时间进行海水中声速剖面的观测;XBT可以测量获得海水温度剖面,但获得的温度也不是同时刻海水的温度,且该传感器是一次性的;为了同时刻长时间对海水介质的声速剖面进行测量,为海洋内波的研究提供环境参数,实验中将采用高精度温度传感器组成的垂直阵进行测量。
图1给出了几种仪器设备的实物图。
图1 左:CTD 中:SVP 右:XBT图2给出了CTD实验吊放方法及海上实验中声速剖面的测量结果。
不同地理位置的声速不一致性表明了声速的空间变化特性。
图3给出了同一地理位置海水温度剖面随时间的变化。
根据温度剖面数据和乌德公式计算得到声速剖面。
计算过程中盐度选取35‰。
跃变层附近声速的随机起伏特性表明了声速的时间变化特性。
图中声速剖面曲线与温度剖面曲线结构的相似性表明了海水介质的声速主要由温度控制。
图2 左: 201验海域,声速0.0175s 乌德公式如下式所示:CTD 吊放方法右:不同地理位置的声速剖面图3 海上实验温度链测量数据1年,海上实验测量的声速剖面如图4所示。
实验之前台风刚刚经过实海水受到风浪的充分搅拌,形成了等温层,因此在压力的作用下,随着深度线性缓慢增大。
对实验测量的声速数据进行拟合,得到声速梯度为-1,该梯度与乌德公式中声速随着压力的变化梯度完全吻合。
()P S T T c 175.03514.1037.021.414502+−+−+=图4 浅海混合层声道声速分布。
第三章 海洋的声学特性本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中目标探测、声信号识别、通讯和环境监测等问题的解决。
3.1 海水中的声速声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。
海洋中声波为弹性纵波,声速为:s c ρβ1=式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。
1、声速经验公式海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。
经验公式是许多海上测量实验的总结得到的,常用的经验公式为:较为准确的经验公式:STP P S T c c c c c ∆∆∆∆++++=22.1449式中,4734221007.510822.2104585.56233.4T T T T c T ---⨯-⨯+⨯-=∆()()2235108.735391.1-⨯--=-S S c S ∆4123925110503.310451.3100279.11060518.1P P P P c P ----⨯-⨯+⨯+⨯=∆()[][][]TP T T P T T T P PTP P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------⨯-⨯+⨯-+⨯-⨯+⨯-+⨯-⨯-⨯+⨯--=∆ 上式适用范围:-3℃<T<30℃、33‰<S<37‰、()2525/109801/10013.1m N P m N ⨯<<⨯个大气压。
35‰;经常用深度替代静压力,每下降10m 水深近似增加1个大气压的压力。
声速c 的数值变化虽然微小,但它对长距离传播声线的分布、射程、传播时间等量的影响很大,因此需要有准确的声速数值。
但上式计算比较繁琐,在精度要求不太高时,可使用比较简单式中,压力P 单位是大气压, 25/10013.11m N atm ⨯=。
2、声速测量常用的测量仪器设备为:温度深度记录仪和声速仪。
温度深度记录仪通过热敏探头测量水中温度,同时通过压力传感器给出深度信息,这样就可以转换给出声速。
声速仪是声学装置,它是通过测量发射高频短脉冲次数。
它用“声循环”原理工作:前一个脉冲到达接收器,触发后一个脉冲从发射器发出,记录每秒钟脉冲的发射次数f ,发射器和接收器的距离L 已知,则声速为:c=fL 。
3、海洋中的声速变化实测海洋的等温线和等盐度线几乎是水平平行的,也就是说,声速近似为水平分层变化。
因此,在海洋中声速()()z c z y x c =,,,z 为垂直坐标,x 、y 为水平坐标。
声速梯度:P P S S T T c g a g a g a dzdc g ++== 式中,T g 、S g 、P g 分别为温度梯度、盐度梯度和压力梯度;T a 、S a 、P a 分别为声速对温度、盐度和压力的变化率(偏微分);根据乌德公式,则得:T a T 0074.021.4-=(m/s )/℃14.1=S a (m/s )/‰175.0=P a (m/s )/atm声速梯度:()P S T c g g g T g 175.014.10074.012.4++-=(1)典型深海声速剖面温度垂直分布的“三层结构”:✧ 表面层(表面等温层或混合层):海洋表面受到阳光照射,水温较高,但又受到风雨搅拌作用。
✧ 季节跃变层:在表面层之下,特征是负的温度梯度或声速梯度,此梯度随季节而异。
夏、秋季节,跃变层明显;冬、春(北冰洋)季节,跃变层与表面层合并在一起。
✧ 主跃变层:温度随深度巨变的层,特征是负的温度梯度或声速梯度,季节对它的影响微弱。
✧ 深海等温层:在深海内部,水温比较低而且稳定,特征是正声速梯度。
有一声速极小值。
解释一下深海的温度分布。
(2)温度的季节变化、日变化和纬度变化温度的季节变化和日变化主要发生在海洋上层。
图为近百慕大海区温度随月份的变化情况,夏季既有表面等温层,又有表面负梯度层;冬季有很深的表面混合层。
季节变化对海洋深处的温度影响较小。
日变化:高风速——中午表面温度,受高风速的作用,出现明显的混合层;低风速——表面呈现负温度梯度,在早晨,可能出现正温度梯度。
在低纬度海域,主跃变层的深度较深;在高纬度海域,声速正梯度一直延伸到接近海洋表面。
(3)浅海声速剖面浅海声速剖面分布具有明显的季节特征。
在冬季,大多属于等温层的声速剖面,夏季为负跃变层声速梯度剖面。
前面,我们将温度和声速看成不遂时间变化,只随深度变化,这是海洋描述声速变化的粗略近似,等温层是宏观而言,微观而言温度随时间起伏变化的。
一般,温度起伏在下午和靠近海面到达最大。
温度起伏的原因多种多样:湍流、海面波浪、涡旋和海中内波等因素。
在水声学中,经常将声速表示称为确定性的声速垂直分布与随机不均匀声速起伏的线性组合:()c z c c ∆+=。
宏观而言,声速分布分成四类:(1)深海声道声速分布图中(a )和(b )为深海声道典型声速分布,在某一深度m z 处有一声速最小值。
而这不同之处:图(a )表面声速小于海底声速;图(b )表面声速大于海底声速。
(2)表面声道声速分布图中(c )为表面声道声速分布,在某一深度m z 处有一声速极大值。
形成原因:在秋冬季节,水面温度较低,加上风浪搅拌,海表面层温度均匀分布,在层内形成正声速梯度分布。
(3)反声道声速分布图中(d )为反声道声速分布,声速随深度单调下降。
形成原因:海洋上部的海水受到太阳强烈照射的结果。
(4)浅海常见声速分布图中(e )为浅海常见声速分布,声速随深度单调下降。
形成原因:海洋上部的海水受到太阳强烈照射的结果。
图(e )与图(d )不同之处:前者是浅海中的负速度分布,需计入海底对声传播的影响。
3.2 海水中的声吸收1、传播衰减概述声波传播的强度衰减(传播损失)原因:(1)扩展损失(几何衰减):声波波阵面在传播过程中不断扩展引起的声强衰减。
(2)吸收损失:均匀介质的粘滞性、热传导性以及其它驰豫过程引起的声强衰减。
(3)散射:介质的不均匀性引起的声波散射和声强衰减。
包括:海洋中泥沙、气泡、浮游生物等悬浮粒子以及介质本身的不均匀性和海水界面对声波的散射。
在理想介质中,沿x 轴方向传播的简谐平面波声压可写成为:()[]kx t i p p -=ωexp 0平面波声压幅值0p 和声强20p I ∝均不随距离x 变化的常数,因而,平面波波阵面不随距离扩展,没有扩展损失。
传播损失表示声传播衰减:()()()dB x I I TL 01lg10==即在理想介质中,平面波的TL 等于0dB 。
在理想介质中,沿r 方向传播的简谐球面波声压可写成为:()[]kx t i rp p -=ωexp 0 平面波声压幅值r p 0和声强220r p I ∝均随距离r 变化,因而,球面波TL : ()()()dB r x I I TL lg 201lg 10== 一般,可以把扩展损失写成:()dB rn TL lg 10⋅=根据不同的传播条件,n 取不同的数值: (1)0=n 适用管道中的声传播,平面波传播,0=TL 。
(2)1=n 适用表面声道和深海声道,柱面波传播,r TL lg 10=,相当于全反射海底和全反射海面组成的理想波导中的传播条件。
(3)23=n 适用计及海底声吸收时的浅海声传播,r TL lg 15=,相当于计入界面声吸收所引起的对柱面波的传播损失的修正。
(4)2=n 适用于开阔水域(自由场),球面波传播,r TL lg 20=。
(5)3=n 声波通过浅海声速负跃变层后的声传播,r TL lg 30=。
(6)4=n 适用偶极子声源或计及平整海面虚源干涉的远场声传播,r TL lg 40=,相当于计入声波干涉后,对球面波传播损失的修正。
在介质中,声吸收和声散射引起的声传播损失经常同时存在,很难区分开来。
假设平面波传播距离d x 后,由于声吸收而引起声强降低d I ,则Idx dI β2-=式中,0>β是比例常数,负号表示dI 是声强的负标量(0<dI )。
积分得声强:()x e I x I β20-=对上式取自然对数得()⎥⎦⎤⎢⎣⎡=x I I x 0ln 21β 也可表示为: ()⎥⎦⎤⎢⎣⎡=x p p x 0ln 1β声压振幅的自然对数衰减为无量纲量,称为奈贝(Neper )。
上式为单位距离的奈贝数,Neper/m 。
实际上,经常将声强写成下式:()10010x I x I α-=则有()()⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=x p p x x I I x 00lg 20lg 10α 式中,α称为吸收系数。
声强之比的以10为底的对数为贝尔(Bel ),贝尔值的10倍称为分贝(dB )。
吸收系数α单位是单位距离的分贝数,dB/m 。
()ββα68.8lg 20ln lg 200==⎥⎦⎤⎢⎣⎡⋅=e x p p e x 即1Neper=8.68dB 。
声吸收引起的传播损失为(吸收系数乘上传播距离):()()()()111lg 10>>=-==x x x x I I TL αα 总传播损失(扩散加吸收)等于均匀介质的经典声吸收:k αααη+=,其中ηα为介质切变粘滞的声吸收系数;k α为介质热传导声吸收系数。
实际吸收系数的测量值远大于经典吸收系数理论值,两者差值称为超吸收。
2、纯水和海水的超吸收1947年,Hall 提出了水的结构驰豫理论,成功解释了水介质的超吸收原因。
图中曲线A (Hall 理论计算曲线)和B (经典声吸收)垂直坐标之差为纯水的超吸收。
(P378-380)海水声吸收系数随频率变化的测量值见下图,海水超吸收原因:海水中含有溶解度较小的MgSO 4,它的化学反应的驰豫过程引起超吸收。
MgSO 4的化学反应的平衡被破坏,达到新的动态平衡,这种化学的驰豫过程,导致声波的吸收。
Schulkin 和Marsh 根据2~25kHz 频率范围内所作的大量测量结果,归纳的半经验公式:km dB f f B f f f Sf A T T T /22++=α式中,21089.1-⨯=A ;21072.2-⨯=B ;S 为盐度(‰);f为声波频率(kHz );T f 为驰豫频率(kHz ):27315206109.21+-⨯=T T f式中,T 为摄氏温度(℃)。
驰豫频率随温度升高而增加(3℃~30℃,73kHz~206kHz )。
✧ 主要是MgSO 4驰豫现象引起的吗?实验结果:海水中含有溶解度很大的NaCI ,NaCI 的存在使得海水超吸收反而下降。