(2)当0<x<1,a>1或x>1,0<a<1时,logax<0,即当真数x和底数a中一个大于 1,而另一个大于0且小于1时,也就是说真数x和底数a的取值范围“相异” 时,对数logax<0,即对数值为负数,简称为“异负”.因此对数的符号简称 为“同正异负”.
3.指数型、对数型函数的图象与性质的讨论,常常要转化为相应指 数函数,对数函数的图象与性质的问题.
第四章 对数运算与对数函数
§3 对数函数 3.3 对数函数y=logax的图象和性质
必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
基础知识
知识点1 对数函数的图象和性质 (1)图象和性质:
0<a<1
a>1
图象
性质
0<a<1
a>1
①定义域:(0,+∞)
②值域:R
③过定点(1,0),即x=1时,y=0
若 x∈-∞,13,∵u=3x2-2x-1 为减函数, ∴f(x)=loga(3x2-2x-1)为减函数. 当 0<a<1 时,y=logau 为减函数,若 x∈(1,+∞),则 f(x)=loga(3x2 -2x-1)为减函数, 若 x∈-∞,-13,则 f(x)=loga(3x2-2x-1)为增函数.
关键能力•攻重难
题型一
题型探究 对数函数的图象
例 1 已知图中曲线C1,C2,C3,C4分别是函数y=loga1x,y=loga2x,y=
loga3x,y=loga4x的图象,则a1,a2,a3,a4的大小关系是
()
A.a4<a3<a2<a1
B
B.a3<a4<a1<a2