基础拓扑学讲义1.1的习题答案
- 格式:doc
- 大小:666.00 KB
- 文档页数:6
点集拓扑学练习题一、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{,,}}X a a b a c e φ=T②{,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③{,,{},{,}}X a a b φ=T④{,,{},{},{},{},{}}X a b c d e φ=T2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{}}X a a b c φ=T ②{,,{},{,},{,}}X a a b a c φ=T③{,,{},{},{,}}X a b a c φ=T ④{,,{},{},{}}X a b c φ=T3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{,,}}X a a b a c d φ=T ②{,,{,,},{,,}}X a b c a b d φ=T③{,,{},{},{,,}}X a b a c d φ=T ④{,,{},{}}X a b φ=T4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{},{,}}X b c a b φ=T ②{,,{},{},{,},{,}}X a b a b a c φ=T③{,,{},{},{,}}X a b a c φ=T ④{,,{},{},{}}X a b c φ=T5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.①{,,{,},{,,}}X a b a c d φ=T ②{,,{,},{,,}}X a b a c d φ=T③{,,{},{},{,,}}X a b a c d φ=T ④{,,{},{},{,}}X a c a c φ=T6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{},{,}}X a b b c φ=T ②{,,{,},{,}}X a b b c φ=T③{,,{},{,}}X a a c φ=T ④{,,{},{},{}}X a b c φ=T7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ②X ③{}b ④{,,}b c d8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ②X ③{}b ④{,,}b c d9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ②X ③{}a ④{}b10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ②X ③{}a ④{}b11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ②X ③{,}a b ④{,,}b c d12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ②X ③{,}a c ④{,,}b c d13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 414、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 415、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0②1③ 2④ 316、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0②1③ 2④ 317、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1②2③ 3④ 418、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 419、在实数空间中,有理数集Q 的部Q 是( )①φ②Q ③R -Q ④R20、在实数空间中,有理数集Q 的边界()Q ∂是( )①φ②Q ③R -Q ④R21、在实数空间中,整数集Z 的部Z 是( )①φ②Z ③R -Z ④R22、在实数空间中,整数集Z 的边界()Z ∂是( )①φ②Z ③R -Z ④R23、在实数空间中,区间[0,1)的边界是( )①φ②[0,1]③{0,1}④(0,1)24、在实数空间中,区间[2,3)的边界是( )①φ②[2,3]③{2,3}④(2,3)25、在实数空间中,区间[0,1)的部是( )①φ②[0,1]③{0,1}④(0,1)26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( ) ①()()()d A B d A d B ⋃=⋃②A B A B ⋃=⋃③()()()d A B d A d B ⋂=⋂④A A =27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ①()()()d A B d A d B ⋃=⋃②A B A B -=-③()()()d A B d A d B ⋂=⋂④A A =28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ①()d A B A B ⋃=⋃②A B A B -=-③()()()d A B d A d B ⋂=⋂④(())()d d A A d A ⊂⋃29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是() ①()d A φ=②()d A X A =-③()d A A =④()d A X =30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是()①若A φ=,则()d A φ=② 若0{}A x =,则()d A X A =-③若A={12,x x },则()d A X =④ 若A X ≠, 则()d A X ≠31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是()①若A φ=,则()d A φ=② 若0{}A x =,则()d A X =③若A={12,x x },则()d A X A =-④若12{,}A x x =,则()d A A =32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是()① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③{ X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.①{{,}|{}}B p x x X p =∈-②{{}|}B x x X =∈③{{,}|}B p x x X =∈④{{}|{}}B x x X p =∈-34、 设{,,}X a b c =,则下列X 的拓扑中()以{,,{}}S X a φ=为子基.①{ X ,φ,{a },{a ,c }} ② {X ,φ,{a }}③{ X ,φ,{a },{b },{a ,b }} ④ {X ,φ}35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭④非开非闭36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭④非开非闭37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ②R ③A ∪{0}④A39、在实数空间R 中,下列集合是闭集的是()①整数集②[)b a ,③有理数集④无理数集40、在实数空间R 中,下列集合是开集的是()①整数集Z ②有理数集③ 无理数集④ 整数集Z 的补集Z '41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )①1 ②2 ③3 ④442、已知{,}X a b =,则X 上的所有可能的拓扑有( )①1个 ②2个③3个④4个43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3② 5③ 7④ 944、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉②T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈④ 当T T '⊂时,T T U U '∈∈45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A的拓扑为( )①{,{2},{1,2}}φ=T ②{,,{1},{2},{1,2}}T X φ=③{,,{1},{2}}T A φ=④{,,{1},{2}}T X φ=48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A的拓扑为( )①{,{1},{3},{1,3}}T φ=②{,,{1}}T A φ=③{,,{1},{3},{1,3}}T X φ=④{,,{1}}T X φ=49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A的拓扑为( )①{,{3},{2,3}}φ=T ②{,,{2},{3}}T A φ=③{,,{2},{3},{2,3}}T X φ=④{,,{3}}T X φ=50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )①{,{1}}T φ=②{,,{1,2}}T A φ=③{,,{1},{3},{1,3}}T X φ=④{,,{1}}T X φ=51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )①{,{2},{1,2}}T φ=②{,}T A φ=③{,,{2}}T X φ=④{,,{1,2}}T X φ=52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )①{,{2},{1,2}}T φ=②{,{},{1,3}}T X φ=③{,,{3}}T X φ=④{,{3}}T φ=53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )①{,}T Z φ=②()T P Z =③T Z =④{}T Z =54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ①A B A B ⨯≠⨯②A B A B ⨯=⨯③()A B A B ⨯≠⨯④()()()A B A B ∂⨯=∂⨯∂61、有理数集Q 是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对62、整数集Z 是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对63、无理数集是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集65、设12,X X 是平庸空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间66、设12,X X 是离散空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间67、设12,X X 是连通空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 区间或一点71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③3 ④ 472、实数空间R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对73、整数集Z 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对74、有理数集Q 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对75、无理数集作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对76、正整数集Z +作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对78、2维欧氏间空间2R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对79、3维欧氏间空间3R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ②连通性③离散性④第一可数性公理81、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ②连通性③第二可数性公理④平庸性82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ②可分性③第二可数性公理④ 离散性83、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ②可分性③离散性④第二可数性公理84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( )①0T 空间 ②1T 空间 ③2T 空间 ④以上都不对85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 道路连通空间87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间94、设X 是一个拓扑空间,若对x X ∀∈与x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间95、设X 是一个拓扑空间,若对X 的任何一个闭集A 与A 的每一个开邻域U ,都存在A的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正规空间97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正规空间98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正则空间99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个() ① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )①1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间二、填空题(每题2分)1、设{,}X a b =,则X 的平庸拓扑为 ;2、设{,}X a b =,则X 的离散拓扑为 ;3、同胚的拓扑空间所共有的性质叫 ;4、在实数空间R 中,有理数集Q 的导集是___________.5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;6、设A 是有限补空间X 中的一个无限子集,则()d A = ;7、设A 是有限补空间X 中的一个无限子集,则A = ;8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;9、设A 是可数补空间X 中的一个不可数子集,则A = ;10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的部为 ;11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A = 的部为 ;13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;14、设{,,}X a b c =,则X 的平庸拓扑为 ;15、设{,,}X a b c =,则X 的离散拓扑为 ;16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,3}}T X φ=,则X 的子集{1,2}A = 的部为 ; 18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个.20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 ;21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 ;22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个;34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P 为 ;38、设X 是一个拓扑空间,如果则称X 是一个0T 空间;39、设X 是一个拓扑空间,如果则称X 是一个1T 空间;40、设X 是一个拓扑空间,如果则称X 是一个2T 空间;41、正则的1T 空间称为 ;42、正规的1T 空间称为 ;43、完全正则的1T 空间称为 ;44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 .45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .46、设X 是一个拓扑空间.如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .47、设X 是一个拓扑空间.如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .48、设X 是一个拓扑空间.如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .三.判断(每题3分,判断1分,理由2分)1、从离散空间到拓扑空间的任何映射都是连续映射( )2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )16、3T 空间一定是2T 空间.( )17、4T 空间一定是3T 空间.( )18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )19、Hausdorff 空间中的每一个紧致子集都是闭集.( )四.名词解释(每题2分)1.同胚映射2、集合A 的点3、集合A 的部4.拓扑空间(,)T X 的基5.闭包6、序列7、导集8、不连通空间9、连通子集10、不连通子集11、1 A 空间12、2 A 空间13、可分空间14、0T 空间:15、1T 空间:16、2T 空间:17、正则空间:18、正规空间:19、完全正则空间:20、紧致空间21、紧致子集22、可数紧致空间23、列紧空间24、序列紧致空间五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →,:g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T .7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T .8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T .9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T .10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T .11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .12、离散空间是否为2A 空间?说出你的理由.13、试说明实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.15、设X 是一个1T 空间,试说明X 的每一个单点集是闭集.16、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,试说明X 是一个1T 空间.17、设(,)X T 是一个1T 空间,∞是任何一个不属于X 的元素.令*{}X X =⋃∞和*X =⋃*T T {},试说明拓扑空间*(,)X *T 是一个0T 空间.18、若X 是一个正则空间,试说明:对x X ∀∈与x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂.19、若X 是一个正规空间,试说明:对X 的任何一个闭集A 与A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂.20、试说明1T 空间X 的任何一个子集的导集都是闭集.21、试说明紧致空间X 的无穷子集必有凝聚点.22、如果X Y ⨯是紧致空间,则X 是紧致空间.23、如果X Y ⨯是紧致空间,则Y 是紧致空间.24、试说明紧致空间X 的每一个闭子集Y 都是紧致子集.六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集.5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.8、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.9、设X 是一个含有不可数多个点的有限补空间.证明:X 不满足第一可数性公理.10、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第二可数性公理,证明:Y 也满足第二可数性公理.11、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第一可数性公理,证明:Y 也满足第一可数性公理.12、A 是满足第二可数性公理空间X 的一个不可数集。
拓扑学尤承业答案【篇一:点集拓扑学】工业大学数学学院预备知识1.点集拓扑的定义《点集拓扑学》课程是一门现代数学基础课程,属数学与应用数学专业的理论课。
是数学与应用数学专业的主干课。
点集拓扑学(point set topology),有时也被称为一般拓扑学(general topology),是数学的拓扑学的一个分支。
它研究拓扑空间以及定义在其上的数学构造的基本性质。
这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。
它的表述形式大概在1940年左右就已经成文化了。
通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。
2.点集拓扑的起源点集拓扑学产生于19世纪。
g.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。
1906年m.-r.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始。
3.一些参考书籍(1)《拓扑空间论》,高国士,科学出版社,2000年7月第一版(2)《基础拓扑讲义》,尤承业,北京大学出版社,1997年11月第一版(3)《一版拓扑学讲义》,彭良雪,科学出版社,2011年2月第一版2第一章集合论初步在这一章中我们介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发给出集合运算、关系、映射以及集合的基数等方面的知识等。
这里所介绍的集合论通常称为“朴素的集合论”,这对大部分读者已经是足够了.那些对集合的理论有进一步需求的读者,例如打算研究集合论本身或者打算研究数理逻辑的读者,建议他们去研读有关公理集合论的专著。
1.1 集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体。
例如我们常说“正在这里听课的全体学生的集合”, “所有整数的集合”等等.集合也常称为集。
基础拓扑学讲义尤承业版第一章绪论1.1 拓扑学的定义与发展拓扑学是数学的一个分支,研究空间中的性质在连续变形下的不变性。
本章介绍了拓扑学的定义、发展历程以及基本概念。
1.2 拓扑学的基本概念本节介绍了拓扑学中的一些基本概念,包括集合、点集、邻域、开集、闭集等。
并且详细解释了它们的定义和性质。
第二章拓扑空间2.1 拓扑空间的定义本节介绍了拓扑空间的定义,即一个集合和一个定义在该集合上的拓扑结构构成的数学结构。
2.2 拓扑空间的基本性质本节介绍了拓扑空间的基本性质,包括空间的连通性、紧致性、分离公理等。
并且给出了相应的定义和定理。
第三章连续映射与同胚3.1 连续映射的定义本节介绍了连续映射的定义,即在拓扑空间之间保持连续性的映射。
3.2 同胚的定义与性质本节介绍了同胚的定义,即两个拓扑空间之间存在一个双射映射,并且该映射和其逆映射都是连续映射。
第四章拓扑基与拓扑生成4.1 拓扑基的定义与性质本节介绍了拓扑基的定义,即一个拓扑空间中的开集可以由拓扑基中的元素表示。
并且给出了拓扑基的一些性质。
4.2 拓扑生成的定义与性质本节介绍了拓扑生成的定义,即一个集合可以通过某些子集的交、并、补运算生成一个拓扑空间。
第五章度量空间与距离5.1 度量空间的定义与性质本节介绍了度量空间的定义,即一个集合中的元素可以通过距离函数相互比较。
5.2 距离函数的性质本节介绍了距离函数的性质,包括非负性、对称性、三角不等式等。
第六章完备性与紧致性6.1 完备性的定义与性质本节介绍了完备性的定义,即度量空间中的某个子集的极限点都在该集合内。
6.2 紧致性的定义与性质本节介绍了紧致性的定义,即一个拓扑空间中的任意开覆盖都存在有限子覆盖。
第七章分离公理7.1 Hausdorff空间的定义与性质本节介绍了Hausdorff空间的定义,即一个拓扑空间中的任意两个不同点都存在不相交的邻域。
7.2 正则空间和完全正则空间本节介绍了正则空间和完全正则空间的定义,以及它们与Hausdorff空间的关系。
点集拓扑学练习题一、单项选择题(每题1分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c e φ=T② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③ {,,{},{,}}X a a b φ=T④ {,,{},{},{},{},{}}X a b c d e φ=T答案:③2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{}}X a a b c φ=T ② {,,{},{,},{,}}X a a b a c φ=T③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:②3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{},{,},{,,}}X a a b a c d φ=T ② {,,{,,},{,,}}X a b c a b d φ=T ③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{}}X a b φ=T答案:①4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X b c a b φ=T ② {,,{},{},{,},{,}}X a b a b a c φ=T ③ {,,{},{},{,}}X a b a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:②5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.① {,,{,},{,,}}X a b a c d φ=T ② {,,{,},{,,}}X a b a c d φ=T③ {,,{},{},{,,}}X a b a c d φ=T ④ {,,{},{},{,}}X a c a c φ=T 答案:④6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.① {,,{},{},{,}}X a b b c φ=T ② {,,{,},{,}}X a b b c φ=T③ {,,{},{,}}X a a c φ=T ④ {,,{},{},{}}X a b c φ=T答案:③7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ ② X ③ {}b ④ {,,}b c d答案:④8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ ② X ③ {}b ④ {,,}b c d答案:④9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {}a ④ {}b答案:②10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ ② X ③ {}a ④ {}b答案:④11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ ② X ③ {,}a b ④ {,,}b c d答案:②12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ ② X ③ {,}a c ④ {,,}b c d答案:④13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 4答案:②14、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 4答案:②15、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0 ② 1 ③ 2 ④ 3答案:①16、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0 ② 1 ③ 2 ④ 3答案:③17、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1 ② 2 ③ 3 ④ 4答案:④18、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1 ② 2 ③ 3 ④ 4答案:②19、在实数空间中,有理数集Q 的内部Q 是( )① φ ② Q ③ R -Q ④ R答案:①20、在实数空间中,有理数集Q的边界()∂是()Q①φ②Q③R -Q④R答案:④21、在实数空间中,整数集Z的内部Z 是()①φ②Z③R-Z④R答案:①22、在实数空间中,整数集Z的边界()∂是()Z①φ②Z③R-Z④R答案:②23、在实数空间中,区间[0,1)的边界是()①φ②[0,1]③{0,1}④(0,1)答案:③24、在实数空间中,区间[2,3)的边界是()①φ②[2,3]③{2,3}④(2,3)答案:③25、在实数空间中,区间[0,1)的内部是()①φ②[0,1]③{0,1}④(0,1)答案:④26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B ⋃=⋃③ ()()()d A B d A d B ⋂=⋂ ④ A A =答案: ③27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()()()d A B d A d B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ A A =答案: ①28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( )① ()d A B A B ⋃=⋃ ② A B A B -=-③ ()()()d A B d A d B ⋂=⋂ ④ (())()d d A A d A ⊂⋃答案: ④29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是( )① ()d A φ= ② ()d A X A =-③ ()d A A = ④ ()d A X =答案:①30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X A =- ③ 若A={12,x x },则()d A X = ④ 若A X ≠, 则()d A X ≠ 答案:④31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是( )① 若A φ=,则()d A φ= ② 若0{}A x =,则()d A X = ③ 若A={12,x x },则()d A X A =- ④ 若12{,}A x x =,则()d A A = 答案:①32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d=B ,则由B 产生的X 上的拓扑是( )① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③ { X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}答案:①33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T是X 的拓扑,则( )是T 的基.① {{,}|{}}B p x x X p =∈- ② {{}|}B x x X =∈③ {{,}|}B p x x X =∈ ④ {{}|{}}B x x X p =∈-答案:③34、 设{,,}X a b c =,则下列X 的拓扑中( )以{,,{}}S X a φ=为子基. ① { X , φ,{a },{a ,c }} ② {X , φ,{a }}③ { X , φ,{a },{b },{a ,b }} ④ {X ,φ }答案:②35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭答案:③36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭 ④ 非开非闭答案:④37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭答案:②38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( )①φ ② R ③ A ∪{0} ④ A答案:③39、在实数空间R 中,下列集合是闭集的是( )① 整数集 ② [)b a , ③ 有理数集 ④ 无理数集答案:①40、在实数空间R 中,下列集合是开集的是( )① 整数集Z ② 有理数集③ 无理数集 ④ 整数集Z 的补集Z '答案:④41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是()① 1 ② 2 ③ 3 ④ 4答案:④42、已知{,}X a b =,则X 上的所有可能的拓扑有( )① 1个 ② 2个 ③ 3个 ④ 4个答案:④43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3 ② 5 ③ 7 ④ 9答案:④44、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉ ② T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈ ④ 当T T '⊂时,T T U U '∈∈ 答案:③45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭答案:③46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( ) ① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭答案:②47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}φ=T ② {,,{1},{2},{1,2}}T X φ=③ {,,{1},{2}}T A φ= ④ {,,{1},{2}}T X φ=答案:③48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A 的拓扑为( )① {,{1},{3},{1,3}}T φ= ② {,,{1}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=答案:②49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A 的拓扑为( )① {,{3},{2,3}}φ=T ② {,,{2},{3}}T A φ=③ {,,{2},{3},{2,3}}T X φ= ④ {,,{3}}T X φ=答案:②50、设{1,23}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X的子空间A 的拓扑为( )① {,{1}}T φ= ② {,,{1,2}}T A φ=③ {,,{1},{3},{1,3}}T X φ= ④ {,,{1}}T X φ=答案:①51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,}T A φ=③ {,,{2}}T X φ= ④ {,,{1,2}}T X φ=答案:②52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )① {,{2},{1,2}}T φ= ② {,{},{1,3}}T X φ=③ {,,{3}}T X φ= ④ {,{3}}T φ=答案:④53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )① {,}T Z φ= ② ()T P Z =③ T Z = ④ {}T Z =答案:②54、设126X X X X =⨯⨯⨯ 是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射答案:④55、设126X X X X =⨯⨯⨯ 是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射答案:④56、设126X X X X =⨯⨯⨯ 是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射答案:④57、设126X X X X =⨯⨯⨯ 是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射答案:④58、设126X X X X =⨯⨯⨯ 是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射答案:④59、设126X X X X =⨯⨯⨯ 是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( )① 单射 ② 连续的单射③ 满的连续闭映射 ④ 满的连续开映射答案:④60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( )① A B A B ⨯≠⨯ ② A B A B ⨯=⨯③()A B A B ⨯≠⨯ ④ ()()()A B A B ∂⨯=∂⨯∂答案:②61、有理数集Q 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①62、整数集Z 是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①63、无理数集是实数空间R 的一个( )① 不连通子集 ② 连通子集③ 开集 ④ 以上都不对答案:①64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集答案:②65、设12,X X 是平庸空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间答案:③66、设12,X X 是离散空间,则积空间12X X ⨯是( )① 离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间答案:①67、设12,X X 是连通空间,则积空间12X X ⨯是( )①离散空间②不一定是连通空间③平庸空间④连通空间答案:④68、实数空间R中的连通子集E为( )①开区间②闭区间③区间④以上都不对答案:④69、实数空间R中的不少于两点的连通子集E为( )①开区间②闭区间③区间④以上都不对答案:③70、实数空间R中的连通子集E为( )①开区间②闭区间③区间④区间或一点答案:④71、下列叙述中正确的个数为()(Ⅰ)单位圆周1S是连通的;(Ⅱ){0}R-是连通的(Ⅲ)2{(0,0)}R-是连通的(Ⅳ)2R和R同胚① 1 ② 2 ③ 3 ④ 4答案:②72、实数空间R( )①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③73、整数集Z作为实数空间R的子空间()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③74、有理数集Q作为实数空间R的子空间()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③75、无理数集作为实数空间R的子空间()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③作为实数空间R的子空间()76、正整数集Z+①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③作为实数空间R的子空间()77、负整数集Z-①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③78、2维欧氏间空间2R()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③79、3维欧氏间空间3R()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③80、下列拓扑学的性质中,不具有可遗传性的是()①平庸性②连通性③离散性④第一可数性公理答案:②81、下列拓扑学的性质中,不具有可遗传性的是()①第一可数性公理②连通性③第二可数性公理④平庸性答案:②82、下列拓扑学的性质中,不具有可遗传性的是()①第一可数性公理②可分性③第二可数性公理④离散性答案:②83、下列拓扑学的性质中,不具有可遗传性的是()①平庸性②可分性③离散性④第二可数性公理答案:②84、设X是一个拓扑空间,若对于,,∀∈≠,均有{}{}x y X x yx y≠, 则X是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对答案:①85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对答案:①86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 道路连通空间答案:①87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对答案:④88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( ) ① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对答案:④89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( ) ① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对答案:④90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( ) ① 0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对答案:④91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 以上都不对92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间答案:③93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间答案:③94、设X 是一个拓扑空间,若对x X ∀∈及x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间答案:①95、设X 是一个拓扑空间,若对X 的任何一个闭集A 及A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂,则X 是( ) ①正则空间 ②正规空间 ③ 1T 空间 ④ 4T 空间答案:②96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间答案:④97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正规空间答案:④98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ② 1T 空间 ③ 2T 空间 ④ 正则空间99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间答案:④ 100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间答案:④101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( ) ①2T 空间 ② 正则空间 ③ 4T 空间 ④ 正规空间答案:④ 102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个( )① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间 答案:③ 103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对 答案:③ 104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对答案:③ 105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对答案:③106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集答案:② 107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集答案:② 108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集答案:② 109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )① 1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间 答案:①二、填空题(每题1分)1、设{,}X a b =,则X 的平庸拓扑为 ; 答案:{,}T X φ=2、设{,}X a b =,则X 的离散拓扑为 ;答案:{,,{},{}}T X a b φ=3、同胚的拓扑空间所共有的性质叫 ; 答案:拓扑不变性质4、在实数空间R 中,有理数集Q 的导集是___________.答案: R5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;答案: ({})U A x φ⋂-≠6、设A 是有限补空间X 中的一个无限子集,则()d A = ;答案:X7、设A 是有限补空间X 中的一个无限子集,则A = ;答案:X8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;答案:X9、设A 是可数补空间X 中的一个不可数子集,则A = ;答案:X10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A =的内部为 ;11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A =的内部为 ;答案:{1}12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A =的内部为 ;答案:{1}13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A =的内部为 ;答案:φ14、设{,,}X a b c =,则X 的平庸拓扑为 ;答案:{,}T X φ=15、设{,,}X a b c =,则X 的离散拓扑为 ;答案:{,,{},{},{},{,},{,},{,}}T X a b c a b a c b c φ=16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的内部为 ;答案:{3}17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,T X φ=,则X 的子集{1,2}A = 的内部为 ;答案:{1}18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个 ;答案:商映射20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 ;答案:开映射21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 ;答案:闭映射22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;答案:不连通空间24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;答案:不连通空间25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;答案:连通子集26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;答案:在连续映射下保持不变的性质27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ; 答案:可商性质28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯ 也具有性质P ,则性质P 称为 ; 答案:有限可积性质29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;答案:不连通空间.30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;答案:第一可数性公理31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;答案:第二可数性公理32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;答案:可遗传性质33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个 ;答案:稠密子集34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ; 答案:可分空间35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;答案:Lindel Öff 空间36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;答案:对于开子空间可遗传性质37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P,则称性质P为 ;答案:对于闭子空间可遗传性质38、设X是一个拓扑空间,如果则称X是一个T空间;答案:X中任意两个不相同的点中必有一个点有一个开邻域不包含另一点39、设X是一个拓扑空间,如果则称X是一个T空间;1答案:X中任意两个不相同的点中每一点都有一个开邻域不包含另一点40、设X是一个拓扑空间,如果则称X是一个T空间;2答案:X中任意两个不相同的点各自有一个开邻域使得这两个开邻域互不相交41、正则的T空间称为;1T空间答案:3T空间称为;42、正规的1T空间答案:4T空间称为;43、完全正则的1T空间或Tychonoff空间答案:3.544、设X是一个拓扑空间.如果X的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X是一个 .答案:紧致空间45、设X是一个拓扑空间,Y是X的一个子集.如果Y作为X的子空间是一个紧致空间,则称Y是拓扑空间X的一个 .答案:紧致子集46、设X是一个拓扑空间. 如果X的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X是一个 .答案:可数紧致空间47、设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .答案:列紧空间48、设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .答案:序列紧致空间三.判断(每题4分,判断1分,理由3分)1、.从离散空间到拓扑空间的任何映射都是连续映射( )答案:√理由:设X 是离散空间,Y 是拓扑空间,:f X Y →是连续映射,因为对任意A Y ⊂,都有1)f A X -⊂(,由于X 中的任何一个子集都是开集,从而1()f A -是X 中的开集,所以:f X Y →是连续的.2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )答案:×理由:因为(1)12, T T 是X 的拓扑,故∈φ,X T 1,∈φ,X T 2,从而∈φ,X 12 T T ⋂;(2)对任意的∈B A ,T 1⋂T 2,则有∈B A ,T 1且∈B A ,T 2,由于T 1, T 2是X 的拓扑,故∈⋂B A T 1且∈⋂B A T 2,从而∈⋂B A T 1⋂T 2;(3)对任意的21T T T ⋂⊂',则21,T T T T ⊂'⊂',由于T 1, T 2是X 的拓扑,从而 U ∈T ’U ∈T 1, U ∈T ’U ∈T 2,故 U ∈T ’U ∈ T 1⋂T 2;综上有T 1⋂T 2也是X 的拓扑.3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )答案:√理由:设:f X Y →是任一满足条件的映射,由于Y 是平庸空间,它中的开集只有,Y φ,易知它们在f 下的原象分别是,X φ,均为X 中的开集,从而:f X Y →连续.4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( ) 答案:√理由:设p 为X 中的任何一点,因为离散空间中每个子集都是开集, 所以{}p 是X 的开子集,且有{}{}()p A p φ-= ,即()p d A ∉,从而 ()d A φ=.5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( ) 答案:×理由:设{}A y =,则对于任意,x X x y ∈≠,x 有唯一的一个邻域X ,且有()y X A x ∈⋂-,从而()X A x φ⋂-≠,因此x 是A 的一个凝聚点,但对于y 的唯一的邻域X ,有()X A y φ⋂-=,所以有()d A X A φ=-≠.6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( ) 答案:√理由:对于任意,x X ∈因为A 包含多于一点,从而对于x 的唯一的邻域X ,且有()X A x φ⋂-≠,因此x 是A 的一个凝聚点,即()x d A ∈,所以有()d A X =.7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )答案:√理由:设X 是一个不连通空间,设,A B 是X 的两个非空的隔离子集使得A B X ⋃=,显然A B φ= ,并且这时有:()()B B X B A B B B =⋂=⋂⋃⋂=从而B 是X 的一个闭子集,同理可证A 是X 的一个闭子集,这就证明了,A B 满足,A B A B X φ⋂=⋃=.8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )答案:√理由:这是因为若设A 是X 中的一个既开又闭的非空真子集,令B A '=,则,A B 都是X 中的非空闭子集,它们满足A B X ⋃=,易见,A B 是隔离子集,所以拓扑空间X 是一个不连通空.9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( ) 答案:√理由:设拓扑空间X 满足第二可数性公理,B 是它的一个可数基,对于每一个x X ∈,易知{} B B|x B x B =∈∈是点x 处的一个邻域基,它是B 的一个子族所以是可数族,从而X 在点x 处有可数邻域基,故X 满 足第一可数性公理.10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )答案:√理由:由于X 满足第二可数性公理,所以它有一个可数基B ,因为Y 是X 的子空间,则{|}B| B Y B Y B =⋂∈是Y 的一个可数基,从而X 的 子空间Y 也满足第二可数性公理.11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )答案:√理由:由于X 满足第一可数性公理,所以对x Y ∀∈,X 在点x 处有一个可数邻域基V x ,因为Y 是X 的子空间,则{|}V | V x Y x V Y V =⋂∈是Y在点x的一个可数邻域基,从而X的子空间Y也满足第一可数性公理.12、设{1,2,3}T空间.( )T,则(,)X T是X=,{,,{2},{3},{2,3}}Xφ=3答案:×理由:因为{1,3}是X的一个闭集,对于点2和{1,3}没有各自的开邻域互不相交,所以X不是正则空间,从而不是T空间.3注:也可以说明X不是T空间.113、设{1,2,3}T空间.( )X T是X=,{,,{1},{2},{1,2}}T Xφ=,则(,)3答案:×理由:因为{2,3}是X的一个闭集,对于点1和{2,3}没有各自的开邻域互不相交,所以X不是正则空间,从而不是T空间.3T空间.注:也可以说明X不是1T空间.( ) 14、设{1,23}X T是T,则(,)=XφX=,,{,,{1},{3},{1,3}}1答案:×T 理由:因为对于点1和点2,2没有开邻域不包含1,从而X不是1空间.注:也可以考虑点2和点3.T空间.( ) 15、设{1,23}X T是T,则(,)X=,,{,,{1},{3},{1,3}}=Xφ4答案:×T 理由:因为对于点1和点2,2没有开邻域不包含1,从而X不是1T空间.空间.故(,)X T是4注:也可以考虑点2和点3.16、3T 空间一定是2T 空间.( )答案:√理由:因为3T 空间是正则的1T 空间,所以对于3T 空间X 中的任意不同的两点,x y X ∈,{}y 是X 中的闭集,由于X 是正则空间,从而对于,{}x y 它们有各自的开邻域,U V 使得U V φ⋂=,所以X 是2T 空间. 17、4T 空间一定是3T 空间.( )答案:√理由:因为4T 空间是正规的1T 空间,所以对于4T 空间X 中的任意点x 和不包含x 的闭集A ,由于{}x 也是一个闭集及X 是正规空间,故存在{},x A 的开邻域,U V 使得U V φ⋂=,这说明X 是正则空间,因此X 是3T 空间.18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )答案:√理由:设A 是一个由X 中的开集构成的A B ⋃的覆盖,由于A 和B都是X 的紧致子集,从而存在A 的有限子族 A 1 A 2 分别是A 和B的覆盖,故12⋃A A 是A 的有限子族且覆盖A B ⋃,所以A B ⋃是紧致子集.19、Hausdorff 空间中的每一个紧致子集都是闭集.( )答案:√理由:设A 是Hausdorff 空间X 的一个紧致子集,则对于任何x X ∈,若x A ∉,则易知x 不是A 的凝聚点,因此A A =,从而A 是一个闭集.四.名词解释(每题2分)1.同胚映射答案:设X 和Y 是两个拓扑空间.如果:f X Y →是一个一一映射,并且f 和1:f Y X -→ 都是连续映射,则称f 是一个同胚映射或同胚.2、集合A 的内点答案:设X 是一个拓扑空间,A X ⊂.如果A 是点x X ∈的一个邻域,则称点x 是集合A 的一个内点.3、集合A 的内部答案:设X 是一个拓扑空间,A X ⊂.则集合A 的所有内点构成的集合称为集合A 的内部.4.拓扑空间(,)T X 的基答案:设(,)T X 是一个拓扑空间,B 是T 的一个子族.如果T 中的每一个元素是B 中的某些元素的并,则称B 是拓扑T 的一个基.5.闭包答案:设X 是一个拓扑空间,A X ⊂.集合A 与集合A 的导集()d A 的并()A d A ⋃称为集合A 的闭包.6、序列答案:设X 是一个拓扑空间,每一个映射:S Z X +→叫做X 中的一个序列.7、导集答案:设X 是一个拓扑空间,集合A 的所有凝聚点构成的集合称为A 的导集.8、不连通空间答案:设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个不连通空间.9、连通子集答案:设Y 是拓扑空间X 的一个子集.如果Y 作为X 的子空间是一个连通空间,则称Y 是X 的一个连通子集.10、不连通子集答案:设Y是拓扑空间X的一个子集.如果Y作为X的子空间是一个不连通空间,则称Y是X的一个不连通子集.11、A空间1答案:一个拓扑空间如果在它的每一点处有一个可数邻域基,则称这个拓扑空间是一个满足第一可数性公理的空间,简称为A空间.112、A空间2答案:一个拓扑空间如果有一个可数基,则称这个拓扑空间是一个满足第二可数性公理的空间,简称为A空间.213、可分空间答案:如果拓扑空间X有一个可数稠密子集,则称X是一个可分空间.14、T空间:答案:设X是一个拓扑空间,如果X中的任意两个不相同的点中必T空间.有一个点有一个开邻域不包含另一点,则称拓扑空间X是0 T空间:15、1答案:设X是一个拓扑空间,如果X中的任意两个不相同的点中每T空间.一个点都有一个开邻域不包含另一点,则称拓扑空间X是1 T空间:16、2答案:设X是一个拓扑空间,如果X中的任意两个不相同的点各自T空有一个开邻域使得这两个开邻域互不相交,则称拓扑空间X是2间.17、正则空间:答案:设X是一个拓扑空间,如果X中的任何一个点和任何一个不包含这个点的闭集都各自有一个开邻域,它们互不相交,则称X是正则空间.18、正规空间:答案:设X是一个拓扑空间,如果X中的任何两个无交的闭集都各自有一个开邻域,它们互不相交,则称X 是正规空间.19、完全正则空间:答案:设X 是一个拓扑空间,如果对于x X ∀∈和X 中任何一个不包含点x 的闭集B 存在一个连续映射:[0,1]f X →使得()0f x =以及对于任何y B ∈有()1f y =,则称拓扑空间X 是一个完全正则空间.20、紧致空间答案:设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个紧致空间.21、紧致子集答案:设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个紧致子集.22、可数紧致空间答案:设X 是一个拓扑空间. 如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个可数紧致空间.23、列紧空间答案:设X 是一个拓扑空间. 如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个列紧空间.24、序列紧致空间答案:设X 是一个拓扑空间. 如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个序列紧致空间.五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.答案:对于任意()x d A ∈,设U 是x 的任何一个邻域,则有({})U A x φ⋂-≠,由于A B ⊂,从而({})U B x U A x φ⋂-⊃⋂-≠,因此()x d B ∈,故()()d A d B ⊂. 2、设,,X Y Z 都是拓扑空间.:f X Y →, :g Y Z →都是连续映射,试说明:g f X Z → 也是连续映射.答案:设W 是Z 的任意一个开集,由于:g Y Z →是一个连续映射,从而1()g W -是Y 的一个开集,由:f X Y →是连续映射,故11(())f g W --是X 的一开集,因此 111()()(())g f W f g W ---= 是X 的开集,所以:g f X Z → 是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.答案:对于x A '∀∈,则x A ∉,由于A 是一个闭集,从而x 有一个邻域U 使得({})U A x φ⋂-=,因此U A φ⋂=,即U A '⊂,所以对任何x A '∈,A '是x 的一个邻域,这说明A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.答案:设x A ∉,则x A '∈,由于A '是一个开集,所以A '是x 的一个邻域,且满足A A φ'⋂=,因此x A ∉,从而A A ⊃,即有A A =,这说明A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x 设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .答案:]}}1[],0{[]},0{[,,{Y φ= T6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T .答案:{,,{[3]},{[2],[3]}}T Y φ=7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T .答案:{,,{[1]},{[1],[1]}}T Y φ=--8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T .答案:{,,{[2]},{[2],[1]}}T Y φ=--9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T .答案:{,,{[3]},{[2],[3]}}T Y φ=10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T .答案:{,,{[4]},{[2],[4]}}T Y φ=11、在实数空间R 中给定如下等价关系:。
东 北 大 学 秦 皇 岛 分 校课程名称: 拓扑学基础 (答案) 试卷: A 考试形式:闭卷授课专业:数学与应用数学 考试日期: 2013年 7月 试卷:共 3 页一、填空题:(每空2分,共20分)1.设{1,2,3}X =,写出5个拓扑,使得每个拓扑中的所有集合按包含关系构成一个升链 平凡拓扑 ,{,,{3},{1,3}}X ∅,{,,{1}}X ∅, {,,{2}}X ∅,{,,{3}}X ∅。
(注:答案不唯一,正确即可)2. 汉字“东” 的连通分支的个数是 3 ,抛物线的连通分支的个数是 1 。
3.字母Y 的割点个数为 无穷 。
字母T 中指数为3的点个数为 1 。
4.叙述同胚映射的定义 拓扑空间之间的连续映射称为同胚映射,若它是一一对应且它的逆也是连续的 。
二、选择题:(每题2分,共8分) 1.下列说法中正确的是( B )A 连通空间一定是道路连通空间B 道路连通空间一定是连通空间C 道路连通空间一定局部道路连通D 以上说法都不对 2.下列说法正确的是( A )A 紧空间的闭子集紧致B 紧致空间未必局部紧致C 有限空间一定不紧致D 列紧空间是紧致空间 3.下列说法错误的是( A )A 离散空间都是1T 空间B 2T 空间中单点集是闭集C ¡赋予余有限拓扑不是2T 空间D 第二可数空间可分 4.下列不具可乘性的是( D )A 紧致性B 连通性C 道路连通性D 商映射三、计算题:(共16分)1.在¡上赋予余有限拓扑,记¤为有理数集合,[0,1]I =。
试求'¤和I 。
(4分) 答:'=ぁ,I =¡。
2.确定欧式平面上子集22{(,)|01}A x y x y =<+≤的内部、外部、边界和闭包。
(8分)答:内部,22{(,)|01}x y x y <+<; 外部,22{(,)|1}x y x y <+ 边界,22{(,)|1}x y x y +=; 闭包 A A =。
拓扑学基础试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,以下哪个概念不是基本的?A. 开集B. 闭集C. 连续函数D. 距离函数答案:D2. 以下哪个选项不是拓扑空间的性质?A. 空集和整个空间是开集B. 任意开集的并集是开集C. 有限个开集的交集是开集D. 任意集合的补集是闭集答案:D3. 在拓扑学中,两个拓扑空间之间的映射被称为?A. 同胚B. 连续映射C. 同伦D. 同调答案:B4. 拓扑空间中的邻域系统是指?A. 包含某点的所有开集的集合B. 包含某点的任意集合的集合C. 包含某点的有限个开集的交集D. 包含某点的任意开集答案:A5. 拓扑空间中的连通性是指?A. 空间不能被分割成两个不相交的非空开集B. 空间中的任意两点都可以通过连续路径相连C. 空间中的任意两点都可以通过直线相连D. 空间中的任意两点都可以通过曲线相连答案:A二、填空题(每题3分,共15分)1. 如果拓扑空间中任意两个不同的点都存在不相交的邻域,则称该空间为________。
答案:豪斯多夫空间2. 拓扑空间中的紧致性是指该空间的任意开覆盖都有________。
答案:有限子覆盖3. 拓扑空间中的连通空间是指不能表示为两个不相交的非空开集的并集的空间,这种性质也称为________。
答案:不可分割性4. 拓扑空间中的基是指由开集构成的集合,使得空间中的每一个开集都可以表示为基中集合的________。
答案:并集5. 拓扑空间中的同胚是指两个拓扑空间之间存在一个双射的连续映射,并且其逆映射也是连续的,这种映射也称为________。
答案:同胚映射三、简答题(每题10分,共20分)1. 请简述拓扑空间中闭集的定义。
答案:在拓扑空间中,如果一个集合的补集是开集,则称该集合为闭集。
2. 请解释什么是拓扑空间中的同伦等价。
答案:如果存在两个拓扑空间之间的连续映射,使得这两个映射的复合与各自空间上的恒等映射是同伦的,则称这两个空间是同伦等价的。
P13第1。
2节6* 证明:0n >个集合经过并,交,差三种运算最多能生成212n-个互不相同的集合,并且确有0n >个集合,它们经过并,交,差三种运算恰能生成212n -个互不相同的集合。
证:分两步完成。
第一步,证明m 个两两无交的集合经过并,交,差三种运算最多能生成2m 个互不相同的集合。
因为,通过并运算,m 个两两无交的集合最多能生成1221m m m m m C C C +++=-个互不相同的集合,而交运算仅能产生空集,差运算也不能产生新的不同的集合,第一步的结论得证。
第二步,证明任意n 个集合经过并,交,差三种运算最多能产生21n -个互不相交的集合。
事实上,记11121212312310112121212312123121ˆ1,2,,ˆˆˆˆˆ,,,n nii i i n i i i i ni i i i i i n n i i jn E A E A A A A i nE A A A A A i i E A A A A A A i i i E A j i i i =-='===<=<<=≠ˆiA 表示去掉i A ,0E 的个数至多为1,11i E 的个数至多为1n C ,122i i E 的个数至多为2n C ,…,1211n n i i i E -- 的个数至多为1n n C -,故它们总的个数为1221n n n n n C C C +++=-它们的并集为1n i i A =。
令()()()()()()()()()111121122111111222212313111111222(1)2(1)2(1)1222121111,,,,,,,,,n n n n n n n n n n n n i n i in nn n i i i n n n n i i n in n i i i B E B E B B E B B E B B E B B E B BE B B A B B A B B A B ++++++--===++-+-+-+----=====-=-=-=-=-=-=-=-=-1221,,,n B B B - 至多有21n -个两两无交的非空集,且每一i A 可由1221,,,n B B B - 经过并,交,差三种运算表出,所以12,,,n A A A 经过并,交,差三种运算生成的集簇与1221,,,n B B B - 经过这三种运算生成的集簇相同。
拓扑学尤承业答案【篇一:点集拓扑学】工业大学数学学院预备知识1.点集拓扑的定义《点集拓扑学》课程是一门现代数学基础课程,属数学与应用数学专业的理论课。
是数学与应用数学专业的主干课。
点集拓扑学(point set topology),有时也被称为一般拓扑学(general topology),是数学的拓扑学的一个分支。
它研究拓扑空间以及定义在其上的数学构造的基本性质。
这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。
它的表述形式大概在1940年左右就已经成文化了。
通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。
2.点集拓扑的起源点集拓扑学产生于19世纪。
g.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。
1906年m.-r.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始。
3.一些参考书籍(1)《拓扑空间论》,高国士,科学出版社,2000年7月第一版(2)《基础拓扑讲义》,尤承业,北京大学出版社,1997年11月第一版(3)《一版拓扑学讲义》,彭良雪,科学出版社,2011年2月第一版2第一章集合论初步在这一章中我们介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发给出集合运算、关系、映射以及集合的基数等方面的知识等。
这里所介绍的集合论通常称为“朴素的集合论”,这对大部分读者已经是足够了.那些对集合的理论有进一步需求的读者,例如打算研究集合论本身或者打算研究数理逻辑的读者,建议他们去研读有关公理集合论的专著。
1.1 集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体。
例如我们常说“正在这里听课的全体学生的集合”, “所有整数的集合”等等.集合也常称为集。
基础拓扑学讲义答案第二章第二章基本拓扑学
1.什么是拓扑学?
拓扑学是一门研究空间结构的数学学科,它研究的是空间中的点、线、面和体的关系,以及它们之间的连接关系。
它是一门抽象的数学学科,它不关心物体的形状和大小,而是关注物体之间的关系。
2.拓扑学的基本概念有哪些?
(1)点:拓扑学中的点是一个抽象的概念,它可以表示一个物体的位置,也可以表示一个物体的属性。
(2)线:拓扑学中的线是一个抽象的概念,它表示两个点之间的连接关系。
(3)面:拓扑学中的面是一个抽象的概念,它表示一组点之间的连接关系。
(4)体:拓扑学中的体是一个抽象的概念,它表示一组面之
间的连接关系。
3.拓扑学的基本概念有哪些?
(1)连通性:拓扑学中的连通性是指一组点之间的连接关系,它表示一组点之间是否存在路径,以及路径的长度。
(2)闭合性:拓扑学中的闭合性是指一组点之间的连接关系,它表示一组点之间是否存在一个完整的回路,以及回路的长度。
(3)同构性:拓扑学中的同构性是指两个空间结构之间的关系,它表示两个空间结构之间是否存在一种可以将一个空间结构
变换成另一个空间结构的变换。
(4)等价性:拓扑学中的等价性是指两个空间结构之间的关系,它表示两个空间结构之间是否存在一种可以将一个空间结构
变换成另一个空间结构的变换,并且这种变换不会改变空间结构
的性质。
《基础拓扑学讲义》部分习题解答六1. 设(,)X Γ是空间,是任何一个不属于1T ∞X 的元素。
令*{}X X =∞∪和*{}*X Γ=Γ∪。
证明:(1)**(,X )Γ是一个拓扑空间。
(2)**(,X )Γ是一个空间但不是空间。
0T 1T 证明 (1)(略)(2)先证(,X ∗∗)Γ是空间:由于0T X 是空间,故也是空间,对1T 0T X ∗中的任意两个不相同的点,如果这两个点都不是,则有一个点有一个开邻域不包含另一个点;如果这两个点有一个是∞,则对另一点记为∞p (p ≠∞)而言,X 是包含点p 的一个开邻域,并且X ∞∉,所以是T 空间.(,X ∗∗Γ))0再说明(,X ∗∗Γ不是空间:由于1T {}X ∗∗Γ=Γ∪ ,故包含的开邻域只有一个,就是∞{}X X ∗=∪∞,因此对X 中一点p 而言,包含∞的开邻域一定包含p ,所以不是空间.(,X ∗∗Γ)1T 2.设和Γ Γ是集合X 上的两个拓扑,并且 Γ⊂Γ。
证明:如果拓扑空间(,)X Γ是一个或空间,则拓扑空间0T 1T (,)X Γ相应也是一个或空间。
0T 1T证明 (1)若是空间,则对(,)X Γ0T X 中任意两个不同的点,存在一个点的一个开邻域不包含另外一个点,又 Γ⊂Γ,故上述开邻域也是该点在拓扑空间 (,)X Γ下的一个开邻域,它同样不包含另一个点,得到 (,)X Γ也是空间.T (2)若(,)X Γ是空间,则对1T X 中任意两个不同的点x 与,分别各自存在一个开邻域不包含另外一点,又y Γ⊂Γ,这两个开邻域也是点x 与在拓扑空间y (,)X Γ下的开邻域,它们同样不包含另一个点,得到 (,)X Γ也是空间.1T 3.对中的区间进行同胚分类,问总共有几个类? 答:三个。
(1)[,;(2);(3)[,。
]a b (,)a b )a b注:如果对一维连通流形进行同胚分类则有四个,加上。
1S。
第一章朴素集合论1.1集合的基本概念1.解:B = DuAu Z、C = E =(j), C,E是疗的真子集,5D是4的真子集2.解:(2), (3)为正确3.解:因为&u 4+1, i = 1,2,3,..」—1,有传递性,4+] u 4 U九U 4,所以结论成立4.解:欽 X) = {^{a},{b},{c}9{a,b}9{a,c},{b,c},X}5.解:l + C,;+C;+.... + C:=2”1.2集合的基本运算1.证:(1)显然,(2)因为4u5所以4u5所以4 = = 从而B<J C=(A<J B)<J C= A<J CAcC = (4c3)cC = Ac(3cC)u3cC(3)因为AuB,则xwB_(B_A )当且仅当xeB且XE B—A当且仅当XG A,故B_(B_A) = A°2.证:(1) XG A-B当且仅当XG B当且仅当XG A,XE B'当且仅当xwAcZT,所以\A-B = AoB'(2)(45) —F = (45)c夕=(4cF23cB)= AcB,=A—B所以,A — B = (4uB) — 3 = 4 — (Ac3)(3)因为AcB = ©所以B-A=B.A'=X-A=(A<J B)-A=B-A=B因此A' = B从而B' = A(4)(A 一c(£ -毘)=(人 c B\ ')n(A, c BJ)=(A c4jc(3「cBJ) = (& c A2)r}(B l uB2)1= (Ac4j-(B]SJ3.证明:(1)兀w Bc(u&J o XG 3且Oxwu&O存在几使得O XG B且,=1/=iA-e A. <x>存在i,使得xeBnA j <=>xen),所以结论成立。
(2)x eB-(uA z) o xw B且x g ^4 o xw B且x 住 & = 1,2,..., n) o对任何r=l /=1i.x w 3且xw &• <=> 对任何eB- A i <=> x wc(3-4)。
习题记S 是全体无理数的集合,在实数集R 上规定子集族{}1\A ,A S U U τ=⊂是E 的开集. (1)验证τ是R 上的拓扑;(2)验证(),R τ满足2T 公理,但不满足3T 公理; (3)验证(),R τ是满足1C 公理的可分空间;(4)证明τ在S 上诱导的子空间拓扑s τ是离散拓扑,从而(),s S τ是不可分的;(5)说明(),R τ不满足2C 公理。
证明:(1)○1,A U R R U A ττ=∅=⎫⎫⇒∅∈⇒∈⎬⎬=∅=∅⎭⎭所以R 和∅都含在τ中 ○2()U A U A λλλλλλλ∈Λ∈Λ∈Λ-=-()0000,,,x U A x U A x U x A x U x A x U A λλλλλλλλλλλλλλλλ∈Λ∈Λ∈Λ∈Λ∈Λ∀∈-⇔∃∈Λ∈-⇔∈∉⇔∈∉⇔∈-使U A λλλλτ∈Λ∈Λ-∈∴τ中任意多个成员的并集仍在τ中○3()()()()11221212\\\U A U A U U A A =()()()()11221122112212121212\\,,,,,\x U A U A x U A x U A x U x A x U x A x U U x A A x U U A A ∀∈⇔∈-∈-⇔∈∉∈∉⇔∈∉⇔∈()()1212\U U A A τ∈∴τ中两个成员的交集仍在τ中综上所述:τ是R 上的拓扑(2)任取一个有理数a ,则a 在(),R τ中存在一个开邻域11\U A这样我们就可以在1E 中找到一个与1U 不相交的开集2U ,令有理数2b U ∈ 则22\U A 为b 的一个开邻域 且()()1122\\U A U A =∅∴(),R τ满足2T 公理由题意可知S 是闭集,a S ∀∉有理数 如果W 是S 的任意一个开邻域因为S 为全集,所以S 的开邻域W 总会与a 的开邻域相交 因此在(),R τ中,S 与a 不存在不想交的开邻域,故不满足3T 公理(3)x R ∀∈,做x 的一组可数邻域{}11,n U x x x Q n n ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭则{}n U 是x 的一个可数邻域 对x 的任一开邻域U ,U 为R 中开集(),\\x a b S U S ∈⊂当n 充分大,(),\\n U a b S U S ⊂⊂所以{}n U 是x 的一个可数邻域基 说明(),R τ满足1C 公理 显然Q R ⊂x R ∀∈,x 的任一开邻域\U S()\U S Q x QR Q≠∅⇒∈⇒⊂所以Q R =所以Q 是(),R τ的可数稠密子集,所以(),R τ是可分的 (4)设A S ⊂()\\R S A 是(),R τ的开集∴有()\\R S A S A =是(),S S τ的开集∴S 的每个子集都是(),S S τ的开集 ∴(),S S τ是离散拓扑空间,S 不可数 ∴从而(),S S τ是不可分的 (5)假如(),R τ满足2C 公理2C 公理具有遗传性则(),S S τ也要满足2C 公理2C 空间是可分空间则(),S S τ是可分的与(),S S τ不可分矛盾了 ∴(),R τ不满足2C 公理设A 和B 都是拓扑空间X 的子集,并且A 是开集.证明A B A B ⊂.证明:对x AB ∀∈,即x A ∈且x B ∈令U 是x 的任一开邻域 则UA 也是x 的开邻域因为x B ∈ 所以()U A B ≠∅ 即()UAB ≠∅所以x A B ∈,所以A B A B ⊂设12,,,n A A A 都是X 的闭集,并且1ni i X A ==.证明B X ⊂是X 的闭集⇔i B A 是()1,2,,i A i n =的闭集.证明:()⇒1,2,,i n ∀=有()Ci i i A BA B A -=(),i i i iC Cix A BA x A x BA xB x B x B A ∀∈-⇔∈∉⇔∉⇔∈⇔∈又B 是X 的闭集∴C B 是X 的开集 从而i B A 是i A 的开集 ∴i B A 是i A 的闭集 ()⇐因为i BA 是()1,2,,i A n 的闭集故1,2,,i n ∀=,存在X 的闭集i B ,使i ii BA B A =,而()()111111nn n n n ni ii i i i i i i i i i i B B A B A B A B X B ======⎛⎫⎛⎫⎛⎫=====⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以B 是X 的闭集(有限多个闭集的并还是闭集)设{}n x 是(),c R τ中的一个序列.证明:n x x →⇔存在正整数N ,使得当n N >,n x x =.证明:()⇐显然的()⇒ 假设当n N >时,n x x =不成立那么可找到{}n x 的无穷子序列{}k n x ,{}()1,2,k n x x k =={}\k n R x 为x 的一个开邻域 因为lim n x x x →∞=对x 的开邻域{}\k n R x 会{},,\k n n K n K x R x ∃>∈ 与{}\k k n n x R x ∉矛盾所以存在正整数N ,使得当n N >,n x x =证明:A 是拓扑空间X 的稠密子集⇔X 的每个非空开集与A 相交非空. 证明:()⇒因为A 是X 的稠密子集 所以A X =故对x A ∀∈,x 的每个开邻域与A 都有交点 从而X 的每个非空开集与A 相交非空 ()⇐因为X 的每个非空开集与A 相交非空 故对x X ∀∈,X 的每个开邻域与A 都有交点 所以x A ∈,即X A ⊂ 又因为A X ⊂,所以A X = 所以A 是X 的稠密子集若A 是X 的稠密子集,B 是A 的稠密子集,则B 也是X 的稠密子集.证明:令U 是X 的任一非空开集 因为A 是X 的稠密子集 所以U A ≠∅从而UA 是A 的非空开集又因为B 是A 的稠密子集,则()UB U A B =≠∅所以B 也是X 的稠密子集设:f X Y →是映射,证明下列条件互相等价: (1)f 是连续映射;(2)对X 的任何子集A ,()()f A f A ⊂; (3)对Y 的任何子集B ,()()11fB f B --⊂.证明:()()12→欲证()()f A f A ⊂即()y f A ∀∈,要有()y f A ∈ 设V 为y 的任一开邻域 因为f 是连续映射 所以()1f V -为x 开集()1fy A -∈,()()11f y f V --∈又因为()1f V A -≠∅所以()()1f f V A -≠∅即()()()()()()()11ff V A f f V f A V f A y f A --==⇒∈所以()()f A f A ⊂ ()()23→由(2)得,()()()()11f f B f f B B --⊂=所以()()11fB f B --⊂()()31→B 是Y 的闭集,且()()()111f B f B f B ---⊂=所以()1fB -是X 的闭集由定理可得,f 是连续映射。
《拓扑学》题库及答案一、单项选择1.关于笛卡儿积,下面等式成立的是(A ))()()()(D B C A D C B A ⨯-⨯=-⨯- (B ))()()()(D C B A D B C A I I I ⨯=⨯⨯ (C ))()()()(D B C A D C B A ⨯⨯=⨯Y Y Y (D )D B C A ⨯⊆⨯当且仅当D C B A ⊆⊆,2.设Y X f →:是映射,)(,,X B A P ∈,)(,Y D C P ∈,则下面结论不成立的是: (A ))()()(111D f C f D C f ---=Y Y (B ))()()(111D f C f D C f---=I I(C ))()()(B f A f B A f Y Y = (D ))()()(B f A f B A f I I =3.在字典序拓扑空间++⨯Z Z 中,子集+⨯Z }2{是:(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,也非闭集4.设R R →2:d 为映射,(R 表示实数集合),R ∈∀y x ,,下面关于d 的定义中是R 的度量的是:(A )2(,)()d x y x y '=- (B )22),(y x y x d -=(C )||||),(y x y x d += (D )⎩⎨⎧=≠=yx yx y x d 01),(5.设)T ,(X 是平庸拓扑空间,b a X b a ≠∈,,,则交错序列Λb a b a ,,,在拓扑空间)T ,(X 中的收敛点集合是: (A )∅ (B )}{a (C )},{b a (D )X6.设}},{},{,,{},3,2,1{},,,{1b a a X Y c b a X ∅===T ,}}2{},3,2{},2,1{,,{2Y ∅=T ,}{b A =,}1{=B ,则在积空间Y X ⨯中B A ⨯等于(A ))}1,{(b (B ))}1,(),1,{(c b(C ))}2,(),1,{(b b (D ))}2,(),1,(),2,(),1,{(c c b b7.设},,,{d c b a X =,{,,{,,},{,,},{,}}x a b c b c d b c =∅T ,},,{d c a Y =,},{c a A =,则在子空间Y 中A 的内部等于:(A )∅ (B )}{a (C )}{c (D )},{c a8.拓扑空间的Lindel öff 性,可分性,紧致性,完全正则性中是有限可积性质的有: (A )1个 (B )2个 (C )3个 (D )4个 9.下列拓扑空间的蕴涵关系中,成立的有完全正则空间⇒正则空间,完全正则空间⇒正规空间,连通空间⇒局部连通空间, 度量空间⇒可分空间,度量空间⇒Lindel öff 空间(A )1个 (B )2个 (C )3个 (D )4个10.拓扑空间的可分性,紧致性,Lindel öff 性,连通性中在连续射下保持不变的性质有: (A )1个 (B )2个 (C )3个 (D )4个 11.设X X R ⨯⊆是一个等价关系,则R 不满足的条件是(A )R X ⊆∆)( (B )R ∩R -1=∅ (C )R R R ⊆ο (D )1-=R R12.设Y X f →:是映射,)(}|{X J A P ⊆∈αα,)(}|{Y r B r P ⊆Γ∈则下面等式中不成立的是 (A ))()(ααααA f A f JJ∈∈=Y Y (B ))()(ααααA f A f JJ∈∈=II(C ))()(11r r r r B f B f-Γ∈Γ∈-=Y Y (D ))()(11r r r r B f B f -Γ∈Γ∈-I I13.在字典序拓扑空间++⨯Z Z 中,子集+⨯Z }1{是:(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,亦非闭集14.设},,{c b a X =,}},{},{,,{b a a X ∅=T ,则在拓扑空间)T ,(X 中常值序列Λ,,a a 的 收敛点集合是 (A )}{a (B )},{c a (C )},{b a (D ) X15.设},,{c b a X =,}3,2,1{=Y ,}{},{},{,,{c b a X ∅=1T ,}}3,2{},2{},2,1{,,{Y ∅=2T ,}2,1{},,{==B b a A ,则在积空间Y X ⨯中,0)(B A ⨯等于:(A )∅ (B )}{)2,(),1,(a a (C )}{)2,(),1,(b b (D )}{)2,(),1,(),2,(),1,(b b a a16.设},,,{d c b a X =,}},{},,,{},,,{,,{d c d c a d c b X ∅=T ,}{},,,{c A d c a Y ==,则在子空间Y 中,A 的闭包等于(A )}{c (B )},{a c (C )},{b c (D )},,{c d a17.设)T ,(X 是拓扑空间,)T ,(X 是可度量空间是指存在X 的度量R →2:X d 使得由d 诱导的拓扑d T 满足: (A)T T ⊆d (B)d T T ⊆ (C)d T T = (D))(X P T d = 18.拓扑空间的可分性,Lindel öff 性, 正规性、完全正则性中是遗传性质的有 (A )1个 (B) 2个 (C) 3个 (D) 4个 19.下列拓扑空间的蕴涵关系中成立的有满足第二可数理空间⇒可分空间 度量空间⇒Lindel öff 空间 正规空间⇒完全正则空间 度量空间⇒满足第一可数公理空间 正规空间⇒正则空间 完全正则空间⇒正则空间 (A )1个 (B )2个 (C )3个 (D )4个20.设),(T X 是拓扑空间,则对X 中任意两个不相交闭集B A ,存在连续映射]1,0[:→X f 使得}0{)(⊆A f ,}1{)(⊆B f 当且仅当),(T X 是:(A )正则空间 (B )完全正则空间 (C )正规空间 (D )4T 空间 21.设X 是全集,,()A B X ∈P ,A B ⊆则当且仅当(A )∅='B A I (B )∅='B A I (C )A B A =Y (D )B B A =I 22.设Y X f →:是映射,,()A B y ∈P ,则下面结论不成立的是(A ))()()(111B f A f B A f ---=Y Y (B )111()()()f A B f A f B ---=I I (C ))()()(111B f A fB A f----=- (D )()B B f f =-)(123.在字典序拓扑空间+⨯Z }2,1{中,子集+⨯Z }2{是(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,亦非闭集 24.定义度量R R R →⨯22:d ,),(21x x x =∀,221),(R ∈=y y y ,}{|||,|m ax ),(2211y x y x y x d --=,则度量空间(d ,2R )中的单位球是(A (B )(C (D )25.设)T ,(X 是离散拓扑空间,b a X b a ≠∈,,, 则在)T ,(X 中交错序列Λb a b a ,,,的收敛点集合是 (A )∅ (B) }{a (C) },{b a (D)X26.设},,,,{d c b a X =}},{},,,{},,,{,,{c b d c b c b a X T ∅=,},,{c b a Y =,}{b A =,则在子空间Y 中A 的闭包等于(A )}{b (B )},{b a (C )},{c b (D )},,{c b a27.设}3,2,1{},,,{==Y c b a X ,}{,,{,},{},{,}X a b b b c =∅1T ,}{}2,1{},1{,,2Y ∅=T ,},{c b A =,}3,1{=B 则在积空间Y X ⨯中()o A B ⨯等于(A )∅ (B )}{)2,(),1,(b b (C )}{)1,(),1,(c b (D )}{(,1),(,2),(,1),(,2)b b c c28.拓扑空间的连通性、紧致性、可分性、完全正则性,Lindel öff 性,满足第二可数公理性中是可遗传性质的有(A )1个 (B )2个 (C )3个 (D )4个 29.下列拓扑空间之间的蕴涵关系中成立的有:满足第二可数合理空间⇒可分空间, 度量空间⇒满足第一可数公理空间 完全正则空间⇒正则空间, 紧致空间⇒Lindel öff 空间 (A )1个 (B )2个 (C )3个 (D )4个}0{)(⊆A f ,}1{)(⊆B f 当且仅当),(T X 是:(A )正则空间 (B )完全正则空间 (C )正规空间 (D )4T 空间 31.设f Y X f ,⨯⊆是映射,则f 满足的条件是 (A )X Y f =-)(1;如果f y x y x ∈),(),,(21,则21y y =(B )X Y f=-)(1;如果f y x y x ∈),(),,(21,则21x x =(C )Y X f =)(;如果f y x y x ∈),(),,(21,则21y y = (D )Y X f =)(;如果f y x y x ∈),(),,(21,则21x x =32.设,,(),,(),R X Y A B Y C D X ⊆⨯∈∈P P 则下面等式成立的是 (A ))()()(111B R A R B A R---=Y Y (B ))()()(111B R A R B A R ---=I I(C ))()()(D R C R D C R I I = (D ))()()(D R C R D C R -=- 33.在字典序拓扑空间+⨯Z }2,1{中,子集+⨯Z }2{是(A )开集,非闭集 (B )闭集,非开集 (C )即开,且闭集 (D )即非开集,亦非闭集 34.设),(d X 是度量空间,d T 是X 的由d 诱导的拓扑,dU ∈T ,则下列关于U 的结论不正确的是(A )存在0,>∈εX x 使得),(εx B U =(B )+∈∃∈∀Z n U x ,使得U nx B ⊆)1,((C )0,>∃∈∀εU x 使得U x B ⊆),(ε(D )存在}0,|),({>∈⊆εεX x x B U B 使得U U =U B35.设},,,{c b a X =}{},{},{,,{b a a X ∅=T ,则在拓扑空间),(T X 中常值序列,,,a a a …的收敛点集合是 (A )}{a (B )},{c a (C )},{b a (D )X36.设},,,{c b a X =}},{},,,{},,,{,,{c b d c b c b a X ∅=T ,},,,{d c a Y =},{c a A =,则在子空间Y 中A 的内部是(A )∅ (B )}{a (C )}{c (D )},{c a37.设},,,{c b a X =},3,2,1{=Y }},{},{,,{b a a X ∅=1T ,}}3,2{},2{},2,1{,,{2Y ∅=T ,}1{},{==B b A ,则在积空间Y X ⨯中,B A ⨯等于(A ))}1,{(b (B ))}1,(),1,{(c b(C ))}2,(),1,{(b b (D ))}2,(),1,(),2,(),1,{(c c b b38.拓扑空间的可分性,Lindel öff 性,紧致性,正规性,连通性中是有限可积的性质有: (A )1个 (B )2个 (C )3个 (D )4个 39.下列拓扑空间之间的蕴涵关系中成立的有正规空间⇒正则空间 完全正则空间⇒正则空间 局部连通空间⇒连通空间 满足第二可数公理空间⇒可分空间 度量空间⇒满足第一可数公理空间 度量空间⇒可分空间}1{)(,0)(⊆=A f x f 当且仅当),(T X 是(A )1T 空间 (B )正规空间 (C )完全正则空间 (D )4T 空间二.证明题1.设Y X ,是两个拓扑空间,Y X f →:是映射,证明若f 是连续映射,则)(Y B Ρ∈∀,11()(())o o fB f B --⊆。
习题
记S 是全体无理数的集合,在实数集R 上规定子集族
{}
1\A ,A S U U τ=⊂是E 的开集.
(1)验证τ是R 上的拓扑;
(2)验证(),R τ满足2T 公理,但不满足3T 公理; (3)验证(),R τ是满足1C 公理的可分空间;
(4)证明τ在S 上诱导的子空间拓扑s τ是离散拓扑,从而(),s S τ是不可分的;
(5)说明
(),R τ不满足2
C
公理。
证明:(1)○
1,A U R R U A ττ=∅=⎫⎫
⇒∅∈⇒∈⎬⎬=∅=∅⎭⎭
所以R 和∅都含在τ中 ○
2()U A U A λλλλλλλ∈Λ
∈Λ
∈Λ
-=
-
()0
000,,,x U A x U A x U x A x U x A x U A λλλ
λλλλλλλλλλ
λλλ∈Λ
∈Λ
∈Λ
∈Λ
∈Λ
∀∈
-⇔∃∈Λ∈-⇔∈∉⇔∈
∉
⇔∈
-
使
U A λλλλτ∈Λ
∈Λ
-
∈
∴τ中任意多个成员的并集仍在τ中 ○3()
()()()
11221
212\\\U A U A U U A A =
()
()()()
11221122
11221212121
2\\,,,,,\x U A U A x U A x U A x U x A x U x A x U U x A A x U U A A ∀∈⇔∈-∈-⇔∈∉∈∉⇔∈∉⇔∈
()()1212\U U A A τ∈
∴τ中两个成员的交集仍在τ中
综上所述:τ是R 上的拓扑
(2)任取一个有理数a ,则a 在(),R τ中存在一个开邻域11\U A
这样我们就可以在1
E 中找到一个与1U 不相交的开集2U ,令有理数2b U ∈
则22\U A 为b 的一个开邻域 且()
()1122\\U A U A =∅
∴(),R τ满足2T 公理
由题意可知S 是闭集,a S ∀∉有理数
如果W 是S 的任意一个开邻域
因为S 为全集,所以S 的开邻域W 总会与a 的开邻域相交 因此在(),R τ中,S 与a 不存在不想交的开邻域,故不满足3T 公理 (3)x R ∀∈,做x 的一组可数邻域{}11,n U x x x Q n n ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭
则{}n U 是x 的一个可数邻域 对x 的任一开邻域U ,U 为R 中开集
(),\\x a b S U S ∈⊂
当n 充分大,(),\\n U a b S U S ⊂⊂ 所以{}n U 是x 的一个可数邻域基 说明(),R τ满足1C 公理 显然Q R ⊂
x R ∀∈,x 的任一开邻域\U S
()
\U S Q x Q
R Q
≠∅⇒∈⇒⊂
所以Q R =
所以Q 是(),R τ的可数稠密子集,所以(),R τ是可分的 (4)设A S ⊂
()\\R S A 是(),R τ的开集
∴有()
\\R S A S A =是(),S S τ的开集
∴S 的每个子集都是(),S S τ的开集 ∴(),S S τ是离散拓扑空间,S 不可数
∴从而(),S S τ是不可分的 (5)假如(),R τ满足2C 公理
2C 公理具有遗传性
则(),S S τ也要满足2C 公理
2C 空间是可分空间
则(),S S τ是可分的与(),S S τ不可分矛盾了 ∴(),R τ不满足2C 公理
设A 和B 都是拓扑空间X 的子集,并且A 是开集.证明A B A B ⊂.
证明:对x A
B ∀∈,即x A ∈且x B ∈
令U 是x 的任一开邻域 则U A 也是x 的开邻域 因为x B ∈ 所以()U A B ≠∅ 即()U
A
B ≠∅
所以x A B ∈,所以A B A B ⊂
设12,,,n A A A 都是X 的闭集,并且1
n
i i X A ==
.证明B X ⊂是X 的闭集⇔i
B A 是()1,2,
,i A i n =的闭集.
证明:()⇒1,2,
,i n ∀=
有()C
i i i A B A B A -=
(),i i i i
C C
i
x A B
A x A x B
A x
B x B x B A ∀∈-⇔∈∉⇔∉⇔∈⇔∈
又
B 是X 的闭集
∴C B 是X 的开集 从而i B A 是i A 的开集 ∴i B A 是i A 的闭集 ()⇐因为i B
A 是()1,2,
,i A n 的闭集
故1,2,
,i n ∀=,存在X 的闭集i B ,使i i
i B
A B A =,而
()()1
1
1111
n
n n n n n
i i
i i i i i i i i i i i B B A B A B A B X B ======⎛⎫⎛⎫⎛⎫=
====
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
所以B 是X 的闭集(有限多个闭集的并还是闭集)
设{}n x 是(),c R τ中的一个序列.证明:n x x →⇔存在正整数N ,使得当n N >,
n x x =.
证明:()⇐显然的
()⇒ 假设当n N >时,n x x =不成立
那么可找到{}n x 的无穷子序列{}k n x ,{}
()1,2,k n x x k ==
{}
\k n R x 为x 的一个开邻域 因为lim n x x x →∞
=
对x 的开邻域{}
\k n R x
会{}
,,\k n n K n K x R x ∃>∈ 与{}
\k k n n x R x ∉矛盾
所以存在正整数N ,使得当n N >,n x x =
证明:A 是拓扑空间X 的稠密子集⇔X 的每个非空开集与A 相交非空. 证明:()⇒因为A 是X 的稠密子集 所以A X =
故对x A ∀∈,x 的每个开邻域与A 都有交点 从而X 的每个非空开集与A 相交非空 ()⇐因为X 的每个非空开集与A 相交非空 故对x X ∀∈,X 的每个开邻域与A 都有交点 所以x A ∈,即X A ⊂ 又因为A X ⊂,所以A X = 所以A 是X 的稠密子集
若A 是X 的稠密子集,B 是A 的稠密子集,则B 也是X 的稠密子集. 证明:令U 是X 的任一非空开集 因为A 是X 的稠密子集 所以U A ≠∅
从而U A 是A 的非空开集 又因为B 是A 的稠密子集,则
()U
B U A B =≠∅
所以B 也是X 的稠密子集
设:f X Y →是映射,证明下列条件互相等价: (1)f 是连续映射;
(2)对X 的任何子集A ,()
()f A f A ⊂; (3)对Y 的任何子集B ,()()
1
1f
B f B --⊂
.
证明:()()12→欲证()
()
f A f A ⊂
即()
y f A ∀∈,要有()y f A ∈ 设V 为y 的任一开邻域 因为f 是连续映射 所以()1
f V -为x 开集
()1
f
y A -∈,()()11f y f V --∈
又因为()
1
f V A -≠∅
所以()
()1
f f V A -≠∅
即()
()()()
()()()11f
f V A f f V f A V f A y f A --==⇒∈
所以()
()f A f A ⊂ ()()23→由(2)得,()(
)()()1
1f f B f f B B --⊂=
所以()()
1
1f
B f B --⊂
()()31→B 是Y 的闭集,且()()
()1
11f B f B f B ---⊂=
所以()1
f
B -是X 的闭集
由定理可得,f 是
连续映射。