空间桁架结构程序设计(Fortran)
- 格式:doc
- 大小:253.50 KB
- 文档页数:17
维斯塔斯矩形钢管空间桁架连廊结构设计(全文)范本一:正文:一、引言维斯塔斯矩形钢管空间桁架连廊结构设计主要目的是为了满足建筑物中连廊结构的承重和抗震需求。
本文将详细介绍该结构的设计思路、参数计算、构件选择、荷载分析等内容。
二、设计思路该连廊结构采用矩形钢管空间桁架作为主要承重结构,以满足建筑物连廊的跨度要求。
设计思路主要包括结构形式的选择、受力分析和稳定性分析。
2.1 结构形式选择在连廊结构的设计中,考虑到跨度较大,矩形钢管空间桁架结构能够在保证结构稳定性的同时满足承重要求。
因此选择矩形钢管空间桁架结构作为主要承重结构。
2.2 受力分析在受力分析中,首先需要计算连廊结构的自重荷载。
然后考虑到连廊上可能发生的活载荷载和风荷载,进行荷载分析。
最后结合连廊的抗震设计,确定连廊结构的主要受力情况。
2.3 稳定性分析稳定性分析是为了保证连廊结构在使用过程中不发生倾覆或失稳。
需要考虑到连廊结构的刚度,通过横向稳定分析和纵向稳定分析,确定连廊结构的稳定性。
三、参数计算参数计算是在设计中必不可少的环节,包括截面尺寸、材料强度、构件节点的设计等。
3.1 截面尺寸根据连廊的跨度和荷载情况,计算连廊结构所需的最大截面尺寸。
一般情况下,矩形钢管的高度和宽度需要满足一定的宽高比要求,以保证结构的稳定性。
3.2 材料强度在材料的选择中,需要考虑到矩形钢管的强度、刚度和耐久性等。
通过计算材料的抗弯强度、抗压强度和抗拉强度,确定矩形钢管的材料强度。
3.3 构件节点设计构件节点的设计是确保连廊结构的节点连接紧固可靠、不发生脱开或错位的重要环节。
通过合理的节点设计,保证矩形钢管的连接稳定性。
四、荷载分析荷载分析是为了确定连廊结构的最大受力情况,包括自重荷载、活载荷载和风荷载。
4.1 自重荷载自重荷载主要考虑连廊结构本身的重量。
根据材料的密度和结构的截面尺寸,计算出连廊结构的自重荷载。
4.2 活载荷载活载荷载主要考虑连廊上可能承载的人员和设备等活动荷载。
空间管桁架结构设计王芬;周云平【摘要】空间管桁架作为一种新型的空间结构体系,具有刚度大、用钢量小、施工方便、经济环保性能优等特点,广泛应用于大型输变电站、体育馆、车站等大跨空间结构中。
通过对管桁架结构布置、稳定性和抗震性能的分析,讨论结构外观体型布置对大跨度结构内力及变形的影响,为同类结构设计提供参考和借鉴。
%As a new spatial structure system,the structure of the spatial tube truss has the features of great rigidity,small in amount of steel,convenient for constructing,economical and environmental in performance and therefore it is widely used in substations,stadiums and railway stations. Based on an analysis of the structural arrangement,stability and seismic performance the tube truss,this paper discusses the effects of the outer structural arrangement on the internal forces and deformations of the large-span structure in a bid to provide useful reference for the design of similar structures.【期刊名称】《电网与清洁能源》【年(卷),期】2015(000)007【总页数】5页(P123-127)【关键词】空间管桁架;结构布置;稳定性能;抗震性能;SAP2000设计【作者】王芬;周云平【作者单位】中煤西安设计工程有限责任公司,陕西西安 710054;西安理工大学土木建筑工程学院,陕西西安 710048【正文语种】中文【中图分类】TU323.4工程主体为钢筋混凝土结构,屋盖为空间管桁架结构,桁架采用稳定性比较好的倒三角形结构体系。
空间桁架设计方法摘要:本文将空间桁架设计方法引入到钢结构胶带机通廊的结构设计工作中,较为真实的反映了钢结构通廊的空间工作状态,为今后进行钢结构胶带机通廊的结构设计起到了一定的指导作用。
关键词:胶带机通廊;钢结构;空间桁架;结构设计Abstract: In this paper, the space truss design method is introduced to the steel structure conveyor gallery structure design work, it is a true reflection of the steel structure gallery space working condition, for future steel conveyor gallery structure design can play a guiding role.Key words: conveyor Gallery; steel structure; space truss; structure design1.引言胶带机由于具有运送散粒物料输送量大、可实现连续供料等优点,现在已经逐渐成为冶金行业运送各种散粒物料的主要设施。
随着冶金企业规模的扩大,冶金厂区建(构)筑物日益密集,加之生产工艺日趋复杂,胶带机通廊正向着大跨、超高、重载的方向发展。
而钢结构则以其轻质高强、跨度大(跨度60m左右的胶带机通廊在冶金行业的上料系统已经很常见【文献1】)、施工周期短等优点逐渐成为胶带机通廊设计的首选结构形式。
钢结构胶带机通廊主体部分由两侧承重主桁架、主桁架上弦支撑(垂直支撑和斜向支撑)、主桁架下弦支撑(垂直支撑和斜向支撑)组成,主桁架上弦支撑、主桁架下弦支撑通过节点板或螺栓将两侧承重主桁架连接成整体的空间桁架结构。
以笔者所在单位为例,钢结构胶带机通廊主体部分在结构设计阶段,空间桁架整体结构分析时将空间桁架简化为平面桁架进行内力分析:两侧承重主桁架采用PKPM系列结构分析软件中STS钢结构桁架进行建模分析;主桁架上弦支撑、主桁架下弦支撑中的垂直支撑由于分别承担屋面檩条和胶带机支腿荷载(图1),依据【文献2】按压弯构件进行复核;主桁架上弦支撑、主桁架下弦支撑中的斜向支撑依据【文献2】按拉、压杆进行复核,综合考虑构造要求进行设计。
有限单元法课程设计有限单元法是基于连续介质力学基础上发展起来的,目前使用最广泛的数值计算方法。
有限单元法解决问题的前提是各单元相邻边界的位移协调。
有限单元法解决问题的前提是各单元相邻边界的位移协调。
有限单元有限单元法将连续的求解域离散为一组有限个单元组成的组合体,由细分单元去逼近求解域,由于单元的不同连接方式和形式各异的单元形状由于单元的不同连接方式和形式各异的单元形状,,因此可以适应几何形状复杂的求解区域杂的求解区域;;第二第二,,利用每一个单元内的近似函数利用每一个单元内的近似函数((形函数形函数))来表示全求解域上待求的未知场函数待求的未知场函数,,把一个连续的无限自由度问题变成离散的有限自由度问题,只要求出单元结点的物理量只要求出单元结点的物理量,,就可以确定单元组合体上的其他未知场函数就可以确定单元组合体上的其他未知场函数,,如果选择合适的形函数选择合适的形函数,,随着网格密度的减小随着网格密度的减小,,近似解将逐步趋向精确解近似解将逐步趋向精确解;;第三第三,,有限单元法计算得到的总体刚度矩阵为稀疏带状矩阵,这样借助于电子计算机存储和计算的效率大大提高计算的效率大大提高,,便于处理大规模问题。
便于处理大规模问题。
从上述有限单元法的特性可知从上述有限单元法的特性可知,,其计算原理简单其计算原理简单,,但由于单元连接方式和单元形状的多元化元形状的多元化,,以及近似函数的选择合适与否以及近似函数的选择合适与否,,使得有限元法在针对具体问题求解时比较烦琐求解时比较烦琐,,正是基于这样的应用背景正是基于这样的应用背景,,本论文提出了一种更简单实用的单元模型—平面等效桁架单元模型。
最后最后,,编制有限元分析程序编制有限元分析程序,,将这种桁架单元模型运用于钢筋混凝土结构中型运用于钢筋混凝土结构中,,模型中混凝土采用等效桁架单元模型中混凝土采用等效桁架单元,,钢筋采用一维杆单元单元,,利用混凝土等效的应力应变关系对各种构件进行弹塑性分析,并试探性的提出了单元破坏准则。
空间桁架静力分析程序及算例1、变量及数组说明2、空间桁架结构有限元分析程序源代码!主程序(读入文件,调用总计算程序,输出结果)CHARACTER IDFUT*20,OUTFUT*20WRITE(*,*) 'Input Data File name:'READ (*,*)IDFUTOPEN (11,FILE=IDFUT,STATUS='OLD')WRITE(*,*) 'Output File name:'READ (*,*)OUTFUTOPEN(12,FILE=OUTFUT,STATUS='UNKNOWN')WRITE(12,*)'*****************************************'WRITE(12,*)'* Program for Analysis of Space Trusses *'WRITE(12,*)'* School of Civil Engineering CSU *'WRITE(12,*)'* 2012.6.25 Designed By MuZhaoxiang *'WRITE(12,*)'*****************************************'WRITE(12,*)' 'WRITE(12,*)'*****************************************'WRITE(12,*)'*************The Input Data****************'WRITE(12,*)'*****************************************'WRITE(12,100)READ(11,*)NF,NP,NE,NM,NR,NCF,NDWRITE(12,110)NF,NP,NE,NM,NR,NCF,ND100 FORMAT(6X,'The General Information'/2X,'NF',5X,'NP',5X,'NE',5X,'NM',5X,'NR',& 5X,'NCF',5X,'ND')110 FORMAT(2X,I2,6I7)NPF=NF*NPNDF=ND*NFCALL ANALYSE(NF,NP,NE,NM,NR,NCF,ND,NPF,NDF)END!********************************************************************!总计算程序SUBROUTINE ANALYSE(NF,NP,NE,NM,NR,NCF,ND,NPF,NDF)DIMENSION X(NP),Y(NP),Z(NP),MM(NE),ME(ND,NE),IT(NF,NP),RR(ND,NR), NAE(NE),&AE(1,2),PF(4,NCF),LMT(NDF,NE),MAXA(NPF),CKK(1000),V(NPF),DIST(NPF),&PP(NPF),FF(NPF),SG(NE),SM(NE)READ(11,*)(X(I),Y(I),Z(I),I=1,NP)READ(11,*)(MM(I),ME(1,I),ME(2,I),NAE(I),I=1,NE)READ(11,*)(RR(1,J),RR(2,J),J=1,NR)READ(11,*)(AE(1,J),J=1,2)WRITE(12,120)WRITE(12,121)(I,X(I),Y(I),Z(I),I=1,NP)WRITE(12,130)WRITE(12,131)(MM(I),ME(1,I),ME(2,I),NAE(I),I=1,NE)WRITE(12,140)WRITE(12,141)(INT(RR(1,J)),RR(2,J),J=1,NR)WRITE(12,150)WRITE(12,151)(AE(1,J),J=1,2)IF(NCF/=0)THENREAD(11,*)((PF(I,J),I=1,4),J=1,NCF)WRITE(12,160)WRITE(12,161)(INT(PF(1,J)),PF(2,J),PF(3,J),PF(4,J),J=1,NCF)ENDIF120 FORMAT(/6X,'The Information of Joints'/2x,'Joint',5X,'X',5X,'Y',5X,'Z')121 FORMAT(1X,I4,3F8.1)130 FORMAT(/6X,'The Information of Members'/2x,'Member',2X,'START',4X,'END',6X,'NAE')131 FORMAT(1X,I4,3I8)140 FORMAT(/6X,'The Information of SUPPORTS'/2x,'Joint',5X,'S')141 FORMAT(1X,I4,F8.3)150 FORMAT(/6X,'The Information of Sections'/4x,'E0',8X,'A0')151 FORMAT(1X,1PE8.2,F8.4)160 FORMAT(/6X,'The Loading at Joints'/2x,'Joint',5X,'FX',5X,'FY',7X,'FZ')161 FORMAT(1X,I4,3F8.2)CALL FLMT(NP,NE,NN,NNM,NR,RR,ND,NF,NDF,ME,IT,LMT)CALL FMAXA(NNM,NE,LMT,MAXA,NWK,NPF,NDF)CALL LP(V,PP,IT,PF,NN,NCF,NF,NP,NPF)CALL CONKB(NP,NE,NM,NWK,ME,X,Y,Z,AE,NAE,LMT,MAXA,CKK,NNM)ISH=1CALL LDLT(CKK,MAXA,NN,ISH,IOUT,NWK,NNM)CALL REBACK(CKK,V,MAXA,NN,NWK,NNM)CALL DISPLS(NP,NE,NPF,NM,NN,IT,V,DIST,AE,NAE,X,Y,Z,PP,FF,SG,SM,ME,NR,RR,NF)END!********************************************************************!矩阵转置子程序SUBROUTINE MAT(M,N,A,B)DIMENSION A(M,N),B(N,M)DO I=1,MDO J=1,NB(J,I)=A(I,J)END DOEND DORETURNEND!单元刚度矩阵的形成SUBROUTINE FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)DIMENSION X(NP),Y(NP),Z(NP),ME(2,NE),NAE(NE),AE(2,NM) ,AKE(2,2) N1=ME(1,IE)N2=ME(2,IE)X1=X(N1);Y1=Y(N1);Z1=Z(N1)X2=X(N2);Y2=Y(N2);Z2=Z(N2)BL=SQRT((X2-X1)**2+(Y2-Y1)**2+(Z2-Z1)**2)NMI=NAE(IE)E0=AE(1,NMI);A0=AE(2,NMI)C=E0*A0/BLAKE(1,1)=CAKE(1,2)=-CAKE(2,1)=-CAKE(2,2)=CRETURNEND!单元坐标转换矩阵SUBROUTINE FT(IE,NP,NE,X,Y,Z,ME,T)DIMENSION X(NP),Y(NP),Z(NP),ME(2,NE),T(2,6)T=0N1=ME(1,IE);N2=ME(2,IE)X1=X(N1);Y1=Y(N1);Z1=Z(N1)X2=X(N2);Y2=Y(N2);Z2=Z(N2)BL=SQRT((X2-X1)**2+(Y2-Y1)**2+(Z2-Z1)**2)CX=(X2-X1)/BLCY=(Y2-Y1)/BLCZ=(Z2-Z1)/BLT(1,1)=CX;T(2,4)=CXT(1,2)=CY;T(2,5)=CYT(1,3)=CZ;T(2,6)=CZRETURNEND!生成单元联系数组LMTSUBROUTINE FLMT(NP,NE,NN,NNM,NR,RR,ND,NF,NDF,ME,IT,LMT)DIMENSION IT(NF,NP),LMT(NDF,NE),ME(ND,NE),RR(2,NR)NN=0;NNM=0;IT=0;LMT=0N=0DO I=1,NPC=0DO K=1,NRKR=RR(1,K)IF(KR.EQ.I) C=RR(2,K)ENDDONC=C !NC=0,提取了整数部分C=C-NC !C=0.***,例如C=0.111DO J=1,NFC=C*10.0 !例如C=1.21L=C+0.1 !提取C整数部分,例如L=1,即提取了约束RR(2,K)十分位 !上的数字,这里"+0.1"是为了防止四舍五入是出现错误 C=C-LIF(L.EQ.0)THENN=N+1IT(J,I)=NELSEIT(J,I)=0ENDIFENDDOENDDONN=NNNM=NN+1DO IE=1,NEDO I=1,NDNI=ME(I,IE)DO J=1,NFLMT((I-1)*NF+J,IE)=IT(J,NI)ENDDOENDDOENDDORETURNEND!二维总刚中对角线元地址数组SUBROUTINE FMAXA(NNM,NE,LMT,MAXA,NWK,NPF,NDF)DIMENSION MAXA(NPF),LMT(NDF,NE)MAXA=0;NWK=0MAXA(1)=1DO I=2,NNMIP=I-1IG=IPDO IE=1,NEDO J=1,NDFIF(LMT(J,IE).EQ.IP) THENDO K=1,NDFIF(LMT(K,IE).GT.0.AND.LMT(K,IE).LE.IG) IG=LMT(K,IE)ENDDOEND IFENDDOENDDOMAXA(I)= MAXA(I-1)+IP-IG+1ENDDONWK= MAXA(NNM)-1RETURNEND!生成一维存储结构总刚度矩阵SUBROUTINE CONKB(NP,NE,NM,NWK,ME,X,Y,Z,AE,NAE,LMT,MAXA,CKK,NNM)DIMENSION CKK(NWK),X(NP),Y(NP),Z(NP),AE(2,NM),NAE(NE),LMT(6,NE),ME(2,NE),& MAXA(NNM),AK(6,2),AKE(2,2),T(2,6),TT(6,2),TAK(6,6)CKK=0DO 10 IE=1,NETAK=0CALL FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)CALL FT(IE,NP,NE,X,Y,Z,ME,T)CALL MAT(2,6,T,TT)AK=MATMUL(TT,AKE)TAK=MATMUL(AK,T) !总体坐标系下的单元刚度矩阵DO 220 I=1,6DO 220 J=1,6NI=LMT(I,IE)NJ=LMT(J,IE)IF((NJ-NI).GE.0.AND.NI*NJ.GT.0) THENIJ=MAXA(NJ)+NJ-NICKK(IJ)=CKK(IJ)+TAK(I,J)ENDIF220 CONTINUE10 CONTINUERETURNEND!生成荷载矩阵SUBROUTINE LP(V,PP,IT,PF,NN,NCF,NF,NP,NPF)DIMENSION V(NN),PP(NPF),IT(NF,NP),PF(4,NCF)V=0PP=0DO I=1,NFDO J=1,NPDO K=1,NCFIF(J.EQ.PF(1,K).AND.IT(I,J).NE.0)THENV(IT(I,J))=PF(I+1,K)ENDIFENDDOENDDOENDDODO K=1,NCFDO I=1,NPIF(I.EQ.PF(1,K))THENPP(NF*(I-1)+1)=PF(2,K)PP(NF*(I-1)+2)=PF(3,K)PP(NF*(I-1)+3)=PF(4,K)ENDIFENDDOENDDORETURNEND!对一维结构总刚度矩阵进行矩阵分解(LDLT)SUBROUTINE LDLT(A,MAXA,NN,ISH,IOUT,NWK,NNM) DIMENSION A(NWK),MAXA(NNM)IF(NN.EQ.1) RETURNDO 200 N=1,NNKN=MAXA(N)KL=KN+1KU=MAXA(N+1)-1KH=KU-KLIF(KH)304,240,210210 K=N-KHIC=0KLT=KUDO 260 J=1,KHKLT=KLT-1IC=IC+1KI=MAXA(K)ND=MAXA(K+1)-KI-1IF(ND) 260,260,270270 KK=MIN0(IC,ND)C=0.0DO 280 L=1,KK280 C=C+A(KI+L)*A(KLT+L)A(KLT)=A(KLT)-C260 K=K+1240 K=NB=0.0DO 300 KK=KL,KUK=K-1KI=MAXA(K)C=A(KK)/A(KI)IF(ABS(C).LT.1.0E+07) GOTO 290WRITE(IOUT,2010) N,CSTOP290 B=B+C*A(KK)300 A(KK)=CA(KN)=A(KN)-B304 IF(A(KN)) 310,310,200310 IF(ISH.EQ.0) GOTO 320IF(A(KN).EQ.0.0) A(KN)=-1.0E-16GOTO 200320 WRITE(IOUT,2000) N,A(KN)STOP200 CONTINUERETURN2000 FORMAT(//,' Stop-stiffness matrix not positive definite',//,'no positive& pivot for equation',I4,&//,' pivot =',E20.10)2010 FORMAT(//,' Stop-strum sequence check failed + because of multiplier& growth for column &number',I4,//,' Multiplier = ',E20.8)END!回代,求得节点位移SUBROUTINE REBACK(A,V,MAXA,NN,NWK,NNM)DIMENSION A(NWK),V(NN,1),MAXA(NNM)NIP=1DO IP=1,NIPDO 400 N=1,NNKL=MAXA(N)+1KU=MAXA(N+1)-1IF(KU-KL) 400,410,410410 K=NC=0.0DO 420 KK=KL,KUK=K-1420 C=C+A(KK)*V(K,IP)V(N,IP)=V(N,IP)-C400 CONTINUEDO 480 N=1,NNK=MAXA(N)480 V(N,IP)=V(N,IP)/A(K)IF(NN.EQ.1)RETURNN=NNDO 500 L=2,NNKL=MAXA(N)+1KU=MAXA(N+1)-1IF(KU-KL) 500,510,510510 K=NDO 520 KK=KL,KUK=K-1520 V(K,IP)=V(K,IP)-A(KK)*V(N,IP)500 N=N-1ENDDORETURNEND!求解杆件内力、支反力和位移SUBROUTINE DISPLS(NP,NE,NPF,NM,NN,IT,FTOOL,DIST,AE,NAE,X,Y, Z,PP,FF,SG,SM,ME,& NR,RR,NF)DIMENSION IT(3,NP),DIST(NPF),FTOOL(NPF),X(NP),Y(NP),Z(NP),T(2,6),TT(6,2), AE(2,NM),&ME(2,NE),NAE(NE),UE(6),U(2),AKE(2,2),FE1(2),FE(6),FF(NPF),PP(NPF),&SG(NE),SM(NE),FF2(NPF),RR(2,NR),FL(3*NR)SG=0;SM=0;FF=0;FF2=0DO I=1,NPDO J=1,NFLAB=IT(J,I)IF(LAB.EQ.0) THENDIST(3*(I-1)+J)=0.0ELSEIF(B.LE.NN) THENDIST(3*(I-1)+J)=FTOOL(LAB)ENDIFENDDOENDDODO IE=1,NEN1=ME(1,IE);N2=ME(2,IE)DO J=1,NFUE(J)=DIST(3*(N1-1)+J)UE(3+J)=DIST(3*(N2-1)+J)ENDDOCALL FT(IE,NP,NE,X,Y,Z,ME,T)CALL FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)U=MATMUL(T,UE)FE1=MATMUL(AKE,U)CALL MAT(2,6,T,TT)FE=MATMUL(TT,FE1)DO J=1,NFFF(3*(N1-1)+J)=FF(3*(N1-1)+J)+FE(J)FF(3*(N2-1)+J)=FF(3*(N2-1)+J)+FE(3+J)ENDDOISW=NAE(IE)AO=AE(2,ISW)SG(IE)=FE1(2)SM(IE)=FE1(2)/AODO I=1,NPFFF2(I)=FF(I)-PP(I)ENDDOENDDODO I=1,NPDO J=1,NFLAB=IT(J,I)IF(LAB.EQ.0)THENK=K+1FL(K)=FF2(3*(I-1)+J)ENDIFENDDOENDDOWRITE(12,*)' 'WRITE(12,*)'****************************************'WRITE(12,*)'*********The Results of Calculation**********'WRITE(12,*)'****************************************'WRITE(12,600)WRITE(12,610)(I,DIST(3*I-2)*1000,DIST(3*I-1)*1000,&DIST(3*I)*1000, I=1,NP)WRITE(12,620)WRITE(12,630)(IE,SG(IE),SM(IE)/1000,IE=1,NE)WRITE(12,640)WRITE(12,650)(INT(RR(1,I)),FL(3*I-2),FL(3*I-1),FL(3*I),I=1,NR)600 FORMAT(6X,'The Joint Displacement'/2x,'Joint',6X,'X(mm)',8X,'Y(mm)',6X,'Z(mm)') 610 FORMAT(1X,I4,2X,1P3E12.2)620 FORMAT(//6X,'The Terminal Forces'/2x,'Member', 6X,'FN(kN)',6X,'σ(MPa)')630 FORMAT(3X,I4,2X,F8.2,6X,F8.2)640 FORMAT(//6X,'The Bearing Force'/2x,'Joint',8X,'X',8X,'Y',8X,'Z')650 FORMAT(2X,I4,2X,3F10.2)RETURNEND3、算例以下图所示空间桁架为例:圆形桁架穹项,其几何尺寸如图(a)所示,整体坐标系原点取在拱顶,集中荷载P作用于拱顶,各杆截面面积A和弹性模量E都相同(取E=210GPa,A=0.04m2);各杆件及结点编号如图(b)所示。
桁架结构% 变量说明% NPOIN NELEM NVFIX NFPOIN NFPRES% 总结点数,单元数, 约束个数, 受力结点数, 非结点力数% COORD LNODS YOUNG% 结构节点坐标数组, 单元定义数组, 弹性模量% FPOIN FPRES FORCE FIXED% 结点力数组,非结点力数组,总体荷载向量, 约束信息数组% HK DISP% 总体刚度矩阵,结点位移向量%**************************************************format short e%设定输出类型clear %清除内存变量FP1=fopen('6-6.txt','rt'); %打开初始数据文件%读入控制数据NELEM=fscanf(FP1,'%d',1); %单元数NPOIN=fscanf(FP1,'%d',1); %结点数NVFIX=fscanf(FP1,'%d',1); %约束数NFPOIN=fscanf(FP1,'%d',1); %结点荷载数NFPRES=fscanf(FP1,'%d',1); %非结点荷载数YOUNG=fscanf(FP1,'%f',1); %弹性模量% 读取结构信息LNODS=fscanf(FP1,'%f',[4,NELEM])'% 单元定义:左、右结点号,面积,惯性矩(共计 NELEM组)COORD=fscanf(FP1,'%f',[2,NPOIN])'% 坐标: x,y坐标(共计 NPOIN 组)FPOIN=fscanf(FP1,'%f',[3,NFPOIN])'% 节点力(共计 NFPOIN 组):结点号、X方向力(向右正),% Y方向力(向上正),FPRES=fscanf(FP1,'%f',[4,NFPRES])' % 均布力(共计% NFPRES 组):单元号、荷载类型、荷载大小、距离左端长度FIXED=fscanf(FP1,'%f',NVFIX)'% 约束信息:约束对应的位移编码(共计 NVFIX 组)%---------------------------------------------------------HK=zeros(2*NPOIN,2*NPOIN); % 张成总刚矩阵并清零FORCE=zeros(2*NPOIN,1); % 张成总荷载向量并清零%形成总刚for i=1:NELEM % 对单元个数循环% 生成局部单刚(局部坐标) 右手坐标系EK=ele_EK(i,LNODS,COORD,YOUNG);T=zbzh(i,LNODS,COORD); % 坐标转换矩阵EKT=T'*EK*T; % 生成整体单刚(整体坐标系)% 组成总刚按2*2子块加入总刚中(共计4块)for j=1:2 %对行进行循环---按结点号循环N1=LNODS(i,j)*2; % j结点第2个位移的整体编码for k=1:2 %对列进行循环---按结点号循环N2=LNODS(i,k)*2; % k结点第2个位移的整体编码HK((N1-1):N1,(N2-1):N2)=HK((N1-1):N1,(N2-1):N2)...+EKT(j*2-1:j*2,k*2-1:k*2);endendend% 由结点力与非结点力生成总荷载向量列阵for i=1:NFPOIN % 对结点荷载个数进行循环N1=FPOIN(i,1); % 作用荷载的结点号N1=N1*2-2; % 该结点号对应第一个位移编码 - 1for j=1:2FORCE(N1+j)=FORCE(N1+j)+FPOIN(i,j+1);%取结点荷载endend% 计算由非结点荷载引起的等效结点荷载for i=1:NFPRES % 对非结点荷载个数进行循环F0=ele_FPRES(i,FPRES,LNODS,COORD); %计算单元固端力% 对单元局部杆端力要进行坐标转换T=zbzh(i,LNODS,COORD); % 坐标转换矩阵F0=T'*F0;ele=FPRES(i,1); % 取荷载所在的单元号NL=LNODS(ele,1); NR=LNODS(ele,2); %单元的左右结点号% 将单元固端力变成等效结点荷载(注意固端力与等效结点荷载符号相反)FORCE((3*NL-2):3*NL)=FORCE((3*NL-2):3*NL)-F0(1:3);FORCE((3*NR-2):3*NR)=FORCE((3*NR-2):3*NR)-F0(4:6);end% 总刚、总荷载进行边界条件处理for j=1:NVFIX % 对约束个数进行循环N1=FIXED(j);HK(1:2*NPOIN,N1)=0; HK(N1,1:2*NPOIN)=0; HK(N1,N1)=1;% 将零位移约束对应的行、列变成零,主元变成1FORCE(N1)=0;end%---------------------------------------------------------DISP=HK\FORCE % 方程求解,HK先求逆再与力向量左乘%---------------------------------------------------------% 求结构各个单元内力EDISP=zeros(4,1); % 单元位移列向量清零for i=1:NELEM % 对单元个数进行循环for j=1:2 %对杆端循环% i单元左右端结点号*2 = 该结点的最后一个位移编码N1=LNODS(i,j)*2;% 取一端的单元位移列向量EDISP(2*j-1:2*j)=DISP(N1-1:N1);end% 生成局部单刚(局部坐标) 右手坐标系EK=ele_EK(i,LNODS,COORD,YOUNG);T=zbzh(i,LNODS,COORD); % 坐标转换矩阵FE=EK*T*EDISP; %计算局部坐标杆端力(由结点位移产生)for j=1:NFPRESif FPRES(j,1) == i %成立时,当前单元上有非结点荷载F0=ele_FPRES(j,FPRES,LNODS,COORD);%单元固端力FE=FE+F0; % 考虑由非结点荷载引起的杆端力endendFE % 打印杆端力end%-------------------------------------------------------------------------------- % 计算桁架单元刚度矩阵函数 EK% 入口参数:单元号、单元信息数组、结点坐标、弹性模量% 出口参数:局部桁架单元刚度矩阵EKfunction EK=ele_EK(i,LNODS,COORD,YOUNG)NL=LNODS(i,1); NR=LNODS(i,2); %左右结点号dx=COORD(NR,1)-COORD(NL,1); % x 坐标差dy=COORD(NR,2)-COORD(NL,2); % y 坐标差L=sqrt(dx^2+dy^2); %单元长度A=LNODS(i,3); %面积;E=YOUNG;% 生成单刚(局部坐标) 右手坐标系EK =[E*A/L 0 -E*A/L 0 ;...0 0 0 0 ;...-E*A/L 0 E*A/L 0 ;...0 0 0 0 ];return%---------------------------------------------------------------------------------%计算单元固端力函数(正方向:X向右 Y向上 M逆时针)% 入口参数:荷载序号,荷载信息,单元信息,结点坐标% 出口参数:单元固端力——左右两端的轴力、剪力、弯矩function F0=ele_FPRES(iFPRES,FPRES,LNODS,COORD)ele=FPRES(iFPRES,1); %取荷载所在的单元号G=FPRES(iFPRES,3); %单元荷载大小C=FPRES(iFPRES,4); %单元荷载与左端距离NL=LNODS(ele,1); NR=LNODS(ele,2); %单元的左右结点号dx=COORD(NR,1)-COORD(NL,1); % x 坐标差dy=COORD(NR,2)-COORD(NL,2); % y 坐标差L=sqrt(dx^2+dy^2); %单元长度% 计算公式中一些常出现的项D=L-C; C1=C/L; C2=C1*C1; C3=C1*C2;B1=D/L; B2=B1/L;F0=[0;0;0;0;0;0]; %单元固端力清零switch FPRES(iFPRES,2)case 1 %均布荷载F0(2)=-G*C*(2-2*C2+C3)/2.0;F0(3)=-G*C*C*(6-8*C1+3*C2)/12.0;F0(5)=-G*C-F0(2);F0(6)=G*C*C*C1*(4-3*C1)/12.0;case 2 %横向集中力F0(2)=-G*B1*B2*(L+2*C);F0(3)=-G*C*B1*B1;F0(5)=-G*C2*(L+2*D)/L;F0(6)=G*D*C2;case 3 %纵向集中力F0(1)=-G*B1;F0(4)=-G*C1;endreturn%-------------------------------------------------------------------------------- % 形成第i单元的坐标转换矩阵函数 T(4,4)% 入口参数:单元号,单元信息,结点坐标% 出口参数:坐标转换矩阵(整体向局部投影)function T=zbzh(i,LNODS,COORD)NL=LNODS(i,1); %左结点号NR=LNODS(i,2); %右结点号dx=COORD(NR,1)-COORD(NL,1); % x 坐标差dy=COORD(NR,2)-COORD(NL,2); % y 坐标差L=sqrt(dx^2+dy^2); % 单元长度c=dx/L; % cos a (与 x 轴夹角余弦) s=dy/L; % sin aT=[ c s 0 0;...-s c 0 0;...0 0 c s0 0 -s c ];return6-6.txt文件数据:4 45 2 0 2.95e111 2 0.001 13 2 0.001 11 3 0.001 14 3 0.001 10 00.4 00.4 0.30 0.32 2e4 03 0 -2.5e41 2 4 7 8。
桁架结构建模课程设计一、课程目标知识目标:1. 让学生掌握桁架结构的基本概念、分类及特点;2. 使学生了解桁架结构在工程中的应用及优势;3. 培养学生对桁架结构建模软件的操作能力。
技能目标:1. 能够运用所学知识对桁架结构进行分类和分析;2. 掌握桁架结构建模的基本步骤,能够独立完成简单桁架结构的建模;3. 学会利用建模软件对桁架结构进行受力分析和优化设计。
情感态度价值观目标:1. 培养学生热爱科学、追求真理的精神;2. 培养学生具备团队合作意识,学会在团队中发挥个人优势;3. 增强学生对我国建筑事业的认同感,激发为我国建筑事业贡献力量的意愿。
课程性质:本课程属于工程专业课程,旨在培养学生对桁架结构建模的实际操作能力。
学生特点:学生具备一定的力学基础和计算机操作能力,对工程实践有较高的兴趣。
教学要求:结合实际工程案例,注重理论与实践相结合,提高学生的实际操作能力。
通过本课程的学习,使学生能够将所学知识应用于实际工程中,为我国建筑事业培养具备实践能力的优秀人才。
课程目标分解为具体学习成果,以便后续教学设计和评估。
二、教学内容1. 桁架结构基本概念:介绍桁架的定义、分类及特点,使学生了解桁架结构在工程中的应用。
教材章节:第一章 桁架结构概述2. 桁架结构受力分析:讲解桁架结构的受力特点,分析桁架结构在受力过程中的内力分布。
教材章节:第二章 桁架结构受力分析3. 桁架结构建模方法:介绍桁架结构建模的基本原理和常用建模软件,指导学生掌握建模步骤。
教材章节:第三章 桁架结构建模方法4. 桁架结构建模实践:结合实际工程案例,指导学生运用建模软件进行桁架结构建模。
教材章节:第四章 桁架结构建模实践5. 桁架结构优化设计:分析桁架结构优化设计的方法,指导学生利用建模软件对桁架结构进行优化。
教材章节:第五章 桁架结构优化设计6. 桁架结构建模案例分析:选取典型桁架结构建模案例,分析其建模过程及优化方法。
教材章节:第六章 桁架结构建模案例分析教学内容安排和进度:共安排6个课时,每个课时对应上述一个教学内容。
新代桁架系统编程教程引言:新代桁架系统是一种新兴的结构系统,通过桁架结构的优势,能够在建筑领域中发挥重要作用。
而对于新代桁架系统的编程,更是为设计师和工程师们提供了更多的可能性。
本教程将以新代桁架系统编程为主题,为读者详细介绍如何进行新代桁架系统的编程。
一、新代桁架系统的概述新代桁架系统是一种基于传统桁架结构的升级改进,它采用了更加先进的设计理念和工艺技术。
新代桁架系统在结构强度、搭建速度和灵活性方面都有显著的提升,因此在建筑领域中得到了广泛应用。
而新代桁架系统的编程则是为了更好地实现其功能和优势。
二、新代桁架系统编程的基础知识1. 桁架结构的原理和特点:了解桁架结构的基本原理和特点,包括节点、杆件、受力分析等内容,为后续的编程打下基础。
2. 编程软件的选择:选择合适的编程软件,例如Rhino、Grasshopper等,以及相应的插件或脚本工具,为编程工作提供支持。
3. 编程语言的学习:学习一种适合新代桁架系统编程的语言,例如Python、C#等,掌握其基本语法和常用函数,为编程工作做好准备。
三、新代桁架系统编程的实践步骤1. 数据准备:收集和整理与新代桁架系统相关的数据,包括结构参数、材料属性、受力要求等,为后续的编程工作提供输入。
2. 桁架生成:通过编程软件,根据输入的数据和设计要求,生成新代桁架系统的初始结构模型,并进行初步的受力分析。
3. 结构优化:通过编程工具,对新代桁架系统进行优化设计,以提高结构的性能和效率,例如减少材料使用量、优化节点连接等。
4. 受力分析:利用编程软件进行新代桁架系统的受力分析,验证结构的稳定性和强度,确保其满足设计要求。
5. 结果展示:通过编程软件将优化后的新代桁架系统进行可视化展示,以便设计师和工程师们更好地理解和评估结构的性能。
四、新代桁架系统编程的应用案例1. 建筑结构设计:通过新代桁架系统的编程,实现建筑结构的设计和优化,提高结构的稳定性和安全性。
2. 建筑外观设计:利用新代桁架系统的编程,实现建筑外观的设计和变形效果,为建筑增添独特的艺术魅力。
空间桁架静力分析程序及算例1、变量及数组说明2、空间桁架结构有限元分析程序源代码!主程序(读入文件,调用总计算程序,输出结果)CHARACTER IDFUT*20,OUTFUT*20WRITE(*,*) 'Input Data File name:'READ (*,*)IDFUTOPEN (11,FILE=IDFUT,STATUS='OLD')WRITE(*,*) 'Output File name:'READ (*,*)OUTFUTOPEN(12,FILE=OUTFUT,STATUS='UNKNOWN')WRITE(12,*)'*****************************************'WRITE(12,*)'* Program for Analysis of Space Trusses *'WRITE(12,*)'* School of Civil Engineering CSU *'WRITE(12,*)'* 2012.6.25 Designed By MuZhaoxiang *'WRITE(12,*)'*****************************************'WRITE(12,*)' 'WRITE(12,*)'*****************************************'WRITE(12,*)'*************The Input Data****************'WRITE(12,*)'*****************************************'WRITE(12,100)READ(11,*)NF,NP,NE,NM,NR,NCF,NDWRITE(12,110)NF,NP,NE,NM,NR,NCF,ND100 FORMAT(6X,'The General Information'/2X,'NF',5X,'NP',5X,'NE',5X,'NM',5X,'NR',& 5X,'NCF',5X,'ND')110 FORMAT(2X,I2,6I7)NPF=NF*NPNDF=ND*NFCALL ANALYSE(NF,NP,NE,NM,NR,NCF,ND,NPF,NDF)END!********************************************************************!总计算程序SUBROUTINE ANALYSE(NF,NP,NE,NM,NR,NCF,ND,NPF,NDF)DIMENSION X(NP),Y(NP),Z(NP),MM(NE),ME(ND,NE),IT(NF,NP),RR(ND,NR), NAE(NE),&AE(1,2),PF(4,NCF),LMT(NDF,NE),MAXA(NPF),CKK(1000),V(NPF),DIST(NPF),&PP(NPF),FF(NPF),SG(NE),SM(NE)READ(11,*)(X(I),Y(I),Z(I),I=1,NP)READ(11,*)(MM(I),ME(1,I),ME(2,I),NAE(I),I=1,NE)READ(11,*)(RR(1,J),RR(2,J),J=1,NR)READ(11,*)(AE(1,J),J=1,2)WRITE(12,120)WRITE(12,121)(I,X(I),Y(I),Z(I),I=1,NP)WRITE(12,130)WRITE(12,131)(MM(I),ME(1,I),ME(2,I),NAE(I),I=1,NE)WRITE(12,140)WRITE(12,141)(INT(RR(1,J)),RR(2,J),J=1,NR)WRITE(12,150)WRITE(12,151)(AE(1,J),J=1,2)IF(NCF/=0)THENREAD(11,*)((PF(I,J),I=1,4),J=1,NCF)WRITE(12,160)WRITE(12,161)(INT(PF(1,J)),PF(2,J),PF(3,J),PF(4,J),J=1,NCF)ENDIF120 FORMAT(/6X,'The Information of Joints'/2x,'Joint',5X,'X',5X,'Y',5X,'Z')121 FORMAT(1X,I4,3F8.1)130 FORMAT(/6X,'The Information of Members'/2x,'Member',2X,'START',4X,'END',6X,'NAE')131 FORMAT(1X,I4,3I8)140 FORMAT(/6X,'The Information of SUPPORTS'/2x,'Joint',5X,'S')141 FORMAT(1X,I4,F8.3)150 FORMAT(/6X,'The Information of Sections'/4x,'E0',8X,'A0')151 FORMAT(1X,1PE8.2,F8.4)160 FORMAT(/6X,'The Loading at Joints'/2x,'Joint',5X,'FX',5X,'FY',7X,'FZ')161 FORMAT(1X,I4,3F8.2)CALL FLMT(NP,NE,NN,NNM,NR,RR,ND,NF,NDF,ME,IT,LMT)CALL FMAXA(NNM,NE,LMT,MAXA,NWK,NPF,NDF)CALL LP(V,PP,IT,PF,NN,NCF,NF,NP,NPF)CALL CONKB(NP,NE,NM,NWK,ME,X,Y,Z,AE,NAE,LMT,MAXA,CKK,NNM)ISH=1CALL LDLT(CKK,MAXA,NN,ISH,IOUT,NWK,NNM)CALL REBACK(CKK,V,MAXA,NN,NWK,NNM)CALL DISPLS(NP,NE,NPF,NM,NN,IT,V,DIST,AE,NAE,X,Y,Z,PP,FF,SG,SM,ME,NR,RR,NF)END!********************************************************************!矩阵转置子程序SUBROUTINE MAT(M,N,A,B)DIMENSION A(M,N),B(N,M)DO I=1,MDO J=1,NB(J,I)=A(I,J)END DOEND DORETURNEND!单元刚度矩阵的形成SUBROUTINE FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)DIMENSION X(NP),Y(NP),Z(NP),ME(2,NE),NAE(NE),AE(2,NM) ,AKE(2,2) N1=ME(1,IE)N2=ME(2,IE)X1=X(N1);Y1=Y(N1);Z1=Z(N1)X2=X(N2);Y2=Y(N2);Z2=Z(N2)BL=SQRT((X2-X1)**2+(Y2-Y1)**2+(Z2-Z1)**2)NMI=NAE(IE)E0=AE(1,NMI);A0=AE(2,NMI)C=E0*A0/BLAKE(1,1)=CAKE(1,2)=-CAKE(2,1)=-CAKE(2,2)=CRETURNEND!单元坐标转换矩阵SUBROUTINE FT(IE,NP,NE,X,Y,Z,ME,T)DIMENSION X(NP),Y(NP),Z(NP),ME(2,NE),T(2,6)T=0N1=ME(1,IE);N2=ME(2,IE)X1=X(N1);Y1=Y(N1);Z1=Z(N1)X2=X(N2);Y2=Y(N2);Z2=Z(N2)BL=SQRT((X2-X1)**2+(Y2-Y1)**2+(Z2-Z1)**2)CX=(X2-X1)/BLCY=(Y2-Y1)/BLCZ=(Z2-Z1)/BLT(1,1)=CX;T(2,4)=CXT(1,2)=CY;T(2,5)=CYT(1,3)=CZ;T(2,6)=CZRETURNEND!生成单元联系数组LMTSUBROUTINE FLMT(NP,NE,NN,NNM,NR,RR,ND,NF,NDF,ME,IT,LMT)DIMENSION IT(NF,NP),LMT(NDF,NE),ME(ND,NE),RR(2,NR)NN=0;NNM=0;IT=0;LMT=0N=0DO I=1,NPC=0DO K=1,NRKR=RR(1,K)IF(KR.EQ.I) C=RR(2,K)ENDDONC=C !NC=0,提取了整数部分C=C-NC !C=0.***,例如C=0.111DO J=1,NFC=C*10.0 !例如C=1.21L=C+0.1 !提取C整数部分,例如L=1,即提取了约束RR(2,K)十分位 !上的数字,这里"+0.1"是为了防止四舍五入是出现错误 C=C-LIF(L.EQ.0)THENN=N+1IT(J,I)=NELSEIT(J,I)=0ENDIFENDDOENDDONN=NNNM=NN+1DO IE=1,NEDO I=1,NDNI=ME(I,IE)DO J=1,NFLMT((I-1)*NF+J,IE)=IT(J,NI)ENDDOENDDOENDDORETURNEND!二维总刚中对角线元地址数组SUBROUTINE FMAXA(NNM,NE,LMT,MAXA,NWK,NPF,NDF)DIMENSION MAXA(NPF),LMT(NDF,NE)MAXA=0;NWK=0MAXA(1)=1DO I=2,NNMIP=I-1IG=IPDO IE=1,NEDO J=1,NDFIF(LMT(J,IE).EQ.IP) THENDO K=1,NDFIF(LMT(K,IE).GT.0.AND.LMT(K,IE).LE.IG) IG=LMT(K,IE)ENDDOEND IFENDDOENDDOMAXA(I)= MAXA(I-1)+IP-IG+1ENDDONWK= MAXA(NNM)-1RETURNEND!生成一维存储结构总刚度矩阵SUBROUTINE CONKB(NP,NE,NM,NWK,ME,X,Y,Z,AE,NAE,LMT,MAXA,CKK,NNM)DIMENSION CKK(NWK),X(NP),Y(NP),Z(NP),AE(2,NM),NAE(NE),LMT(6,NE),ME(2,NE),& MAXA(NNM),AK(6,2),AKE(2,2),T(2,6),TT(6,2),TAK(6,6)CKK=0DO 10 IE=1,NETAK=0CALL FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)CALL FT(IE,NP,NE,X,Y,Z,ME,T)CALL MAT(2,6,T,TT)AK=MATMUL(TT,AKE)TAK=MATMUL(AK,T) !总体坐标系下的单元刚度矩阵DO 220 I=1,6DO 220 J=1,6NI=LMT(I,IE)NJ=LMT(J,IE)IF((NJ-NI).GE.0.AND.NI*NJ.GT.0) THENIJ=MAXA(NJ)+NJ-NICKK(IJ)=CKK(IJ)+TAK(I,J)ENDIF220 CONTINUE10 CONTINUERETURNEND!生成荷载矩阵SUBROUTINE LP(V,PP,IT,PF,NN,NCF,NF,NP,NPF)DIMENSION V(NN),PP(NPF),IT(NF,NP),PF(4,NCF)V=0PP=0DO I=1,NFDO J=1,NPDO K=1,NCFIF(J.EQ.PF(1,K).AND.IT(I,J).NE.0)THENV(IT(I,J))=PF(I+1,K)ENDIFENDDOENDDOENDDODO K=1,NCFDO I=1,NPIF(I.EQ.PF(1,K))THENPP(NF*(I-1)+1)=PF(2,K)PP(NF*(I-1)+2)=PF(3,K)PP(NF*(I-1)+3)=PF(4,K)ENDIFENDDOENDDORETURNEND!对一维结构总刚度矩阵进行矩阵分解(LDLT)SUBROUTINE LDLT(A,MAXA,NN,ISH,IOUT,NWK,NNM) DIMENSION A(NWK),MAXA(NNM)IF(NN.EQ.1) RETURNDO 200 N=1,NNKN=MAXA(N)KL=KN+1KU=MAXA(N+1)-1KH=KU-KLIF(KH)304,240,210210 K=N-KHIC=0KLT=KUDO 260 J=1,KHKLT=KLT-1IC=IC+1KI=MAXA(K)ND=MAXA(K+1)-KI-1IF(ND) 260,260,270270 KK=MIN0(IC,ND)C=0.0DO 280 L=1,KK280 C=C+A(KI+L)*A(KLT+L)A(KLT)=A(KLT)-C260 K=K+1240 K=NB=0.0DO 300 KK=KL,KUK=K-1KI=MAXA(K)C=A(KK)/A(KI)IF(ABS(C).LT.1.0E+07) GOTO 290WRITE(IOUT,2010) N,CSTOP290 B=B+C*A(KK)300 A(KK)=CA(KN)=A(KN)-B304 IF(A(KN)) 310,310,200310 IF(ISH.EQ.0) GOTO 320IF(A(KN).EQ.0.0) A(KN)=-1.0E-16GOTO 200320 WRITE(IOUT,2000) N,A(KN)STOP200 CONTINUERETURN2000 FORMAT(//,' Stop-stiffness matrix not positive definite',//,'no positive& pivot for equation',I4,&//,' pivot =',E20.10)2010 FORMAT(//,' Stop-strum sequence check failed + because of multiplier& growth for column &number',I4,//,' Multiplier = ',E20.8)END!回代,求得节点位移SUBROUTINE REBACK(A,V,MAXA,NN,NWK,NNM)DIMENSION A(NWK),V(NN,1),MAXA(NNM)NIP=1DO IP=1,NIPDO 400 N=1,NNKL=MAXA(N)+1KU=MAXA(N+1)-1IF(KU-KL) 400,410,410410 K=NC=0.0DO 420 KK=KL,KUK=K-1420 C=C+A(KK)*V(K,IP)V(N,IP)=V(N,IP)-C400 CONTINUEDO 480 N=1,NNK=MAXA(N)480 V(N,IP)=V(N,IP)/A(K)IF(NN.EQ.1)RETURNN=NNDO 500 L=2,NNKL=MAXA(N)+1KU=MAXA(N+1)-1IF(KU-KL) 500,510,510510 K=NDO 520 KK=KL,KUK=K-1520 V(K,IP)=V(K,IP)-A(KK)*V(N,IP)500 N=N-1ENDDORETURNEND!求解杆件力、支反力和位移SUBROUTINE DISPLS(NP,NE,NPF,NM,NN,IT,FTOOL,DIST,AE,NAE,X,Y, Z,PP,FF,SG,SM,ME,& NR,RR,NF)DIMENSION IT(3,NP),DIST(NPF),FTOOL(NPF),X(NP),Y(NP),Z(NP),T(2,6),TT(6,2), AE(2,NM),&ME(2,NE),NAE(NE),UE(6),U(2),AKE(2,2),FE1(2),FE(6),FF(NPF),PP(NPF),&SG(NE),SM(NE),FF2(NPF),RR(2,NR),FL(3*NR)SG=0;SM=0;FF=0;FF2=0DO I=1,NPDO J=1,NFLAB=IT(J,I)IF(LAB.EQ.0) THENDIST(3*(I-1)+J)=0.0ELSEIF(B.LE.NN) THENDIST(3*(I-1)+J)=FTOOL(LAB)ENDIFENDDOENDDODO IE=1,NEN1=ME(1,IE);N2=ME(2,IE)DO J=1,NFUE(J)=DIST(3*(N1-1)+J)UE(3+J)=DIST(3*(N2-1)+J)ENDDOCALL FT(IE,NP,NE,X,Y,Z,ME,T)CALL FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)U=MATMUL(T,UE)FE1=MATMUL(AKE,U)CALL MAT(2,6,T,TT)FE=MATMUL(TT,FE1)DO J=1,NFFF(3*(N1-1)+J)=FF(3*(N1-1)+J)+FE(J)FF(3*(N2-1)+J)=FF(3*(N2-1)+J)+FE(3+J)ENDDOISW=NAE(IE)AO=AE(2,ISW)SG(IE)=FE1(2)SM(IE)=FE1(2)/AODO I=1,NPFFF2(I)=FF(I)-PP(I)ENDDOENDDODO I=1,NPDO J=1,NFLAB=IT(J,I)IF(LAB.EQ.0)THENK=K+1FL(K)=FF2(3*(I-1)+J)ENDIFENDDOENDDOWRITE(12,*)' 'WRITE(12,*)'****************************************'WRITE(12,*)'*********The Results of Calculation**********'WRITE(12,*)'****************************************'WRITE(12,600)WRITE(12,610)(I,DIST(3*I-2)*1000,DIST(3*I-1)*1000,&DIST(3*I)*1000, I=1,NP)WRITE(12,620)WRITE(12,630)(IE,SG(IE),SM(IE)/1000,IE=1,NE)WRITE(12,640)WRITE(12,650)(INT(RR(1,I)),FL(3*I-2),FL(3*I-1),FL(3*I),I=1,NR)600 FORMAT(6X,'The Joint Displacement'/2x,'Joint',6X,'X(mm)',8X,'Y(mm)',6X,'Z(mm)') 610 FORMAT(1X,I4,2X,1P3E12.2)620 FORMAT(//6X,'T he Terminal Forces'/2x,'Member', 6X,'FN(kN)',6X,'σ(MPa)')630 FORMAT(3X,I4,2X,F8.2,6X,F8.2)640 FORMAT(//6X,'The Bearing Force'/2x,'Joint',8X,'X',8X,'Y',8X,'Z')650 FORMAT(2X,I4,2X,3F10.2)RETURNEND3、算例以下图所示空间桁架为例:圆形桁架穹项,其几何尺寸如图(a)所示,整体坐标系原点取在拱顶,集中荷载P作用于拱顶,各杆截面面积A和弹性模量E都相同(取E=210GPa,A=0.04m2);各杆件及结点编号如图(b)所示。
空间桁架静力分析程序及算例1、变量及数组说明2、空间桁架结构有限元分析程序源代码!主程序(读入文件,调用总计算程序,输出结果)CHARACTER IDFUT*20,OUTFUT*20WRITE(*,*) 'Input Data File name:'READ (*,*)IDFUTOPEN (11,FILE=IDFUT,STATUS='OLD')WRITE(*,*) 'Output File name:'READ (*,*)OUTFUTOPEN(12,FILE=OUTFUT,STATUS='UNKNOWN')WRITE(12,*)'*****************************************'WRITE(12,*)'* Program for Analysis of Space Trusses *'WRITE(12,*)'* School of Civil Engineering CSU *'WRITE(12,*)'* 2012.6.25 Designed By MuZhaoxiang *'WRITE(12,*)'*****************************************'WRITE(12,*)' 'WRITE(12,*)'*****************************************'WRITE(12,*)'*************The Input Data****************'WRITE(12,*)'*****************************************'WRITE(12,100)READ(11,*)NF,NP,NE,NM,NR,NCF,NDWRITE(12,110)NF,NP,NE,NM,NR,NCF,ND100 FORMAT(6X,'The General Information'/2X,'NF',5X,'NP',5X,'NE',5X,'NM',5X,'NR',& 5X,'NCF',5X,'ND')110 FORMAT(2X,I2,6I7)NPF=NF*NPNDF=ND*NFCALL ANALYSE(NF,NP,NE,NM,NR,NCF,ND,NPF,NDF)END!********************************************************************!总计算程序SUBROUTINE ANALYSE(NF,NP,NE,NM,NR,NCF,ND,NPF,NDF)DIMENSION X(NP),Y(NP),Z(NP),MM(NE),ME(ND,NE),IT(NF,NP),RR(ND,NR), NAE(NE),&AE(1,2),PF(4,NCF),LMT(NDF,NE),MAXA(NPF),CKK(1000),V(NPF),DIST(NPF),&PP(NPF),FF(NPF),SG(NE),SM(NE)READ(11,*)(X(I),Y(I),Z(I),I=1,NP)READ(11,*)(MM(I),ME(1,I),ME(2,I),NAE(I),I=1,NE)READ(11,*)(RR(1,J),RR(2,J),J=1,NR)READ(11,*)(AE(1,J),J=1,2)WRITE(12,120)WRITE(12,121)(I,X(I),Y(I),Z(I),I=1,NP)WRITE(12,130)WRITE(12,131)(MM(I),ME(1,I),ME(2,I),NAE(I),I=1,NE)WRITE(12,140)WRITE(12,141)(INT(RR(1,J)),RR(2,J),J=1,NR)WRITE(12,150)WRITE(12,151)(AE(1,J),J=1,2)IF(NCF/=0)THENREAD(11,*)((PF(I,J),I=1,4),J=1,NCF)WRITE(12,160)WRITE(12,161)(INT(PF(1,J)),PF(2,J),PF(3,J),PF(4,J),J=1,NCF)ENDIF120 FORMAT(/6X,'The Information of Joints'/2x,'Joint',5X,'X',5X,'Y',5X,'Z')121 FORMAT(1X,I4,3F8.1)130 FORMAT(/6X,'The Information of Members'/2x,'Member',2X,'START',4X,'END',6X,'NAE')131 FORMAT(1X,I4,3I8)140 FORMAT(/6X,'The Information of SUPPORTS'/2x,'Joint',5X,'S')141 FORMAT(1X,I4,F8.3)150 FORMAT(/6X,'The Information of Sections'/4x,'E0',8X,'A0')151 FORMAT(1X,1PE8.2,F8.4)160 FORMAT(/6X,'The Loading at Joints'/2x,'Joint',5X,'FX',5X,'FY',7X,'FZ')161 FORMAT(1X,I4,3F8.2)CALL FLMT(NP,NE,NN,NNM,NR,RR,ND,NF,NDF,ME,IT,LMT)CALL FMAXA(NNM,NE,LMT,MAXA,NWK,NPF,NDF)CALL LP(V,PP,IT,PF,NN,NCF,NF,NP,NPF)CALL CONKB(NP,NE,NM,NWK,ME,X,Y,Z,AE,NAE,LMT,MAXA,CKK,NNM)ISH=1CALL LDLT(CKK,MAXA,NN,ISH,IOUT,NWK,NNM)CALL REBACK(CKK,V,MAXA,NN,NWK,NNM)CALL DISPLS(NP,NE,NPF,NM,NN,IT,V,DIST,AE,NAE,X,Y,Z,PP,FF,SG,SM,ME,NR,RR,NF)END!********************************************************************!矩阵转置子程序SUBROUTINE MAT(M,N,A,B)DIMENSION A(M,N),B(N,M)DO I=1,MDO J=1,NB(J,I)=A(I,J)END DOEND DORETURNEND!单元刚度矩阵的形成SUBROUTINE FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)DIMENSION X(NP),Y(NP),Z(NP),ME(2,NE),NAE(NE),AE(2,NM) ,AKE(2,2) N1=ME(1,IE)N2=ME(2,IE)X1=X(N1);Y1=Y(N1);Z1=Z(N1)X2=X(N2);Y2=Y(N2);Z2=Z(N2)BL=SQRT((X2-X1)**2+(Y2-Y1)**2+(Z2-Z1)**2)NMI=NAE(IE)E0=AE(1,NMI);A0=AE(2,NMI)C=E0*A0/BLAKE(1,1)=CAKE(1,2)=-CAKE(2,1)=-CAKE(2,2)=CRETURNEND!单元坐标转换矩阵SUBROUTINE FT(IE,NP,NE,X,Y,Z,ME,T)DIMENSION X(NP),Y(NP),Z(NP),ME(2,NE),T(2,6)T=0N1=ME(1,IE);N2=ME(2,IE)X1=X(N1);Y1=Y(N1);Z1=Z(N1)X2=X(N2);Y2=Y(N2);Z2=Z(N2)BL=SQRT((X2-X1)**2+(Y2-Y1)**2+(Z2-Z1)**2)CX=(X2-X1)/BLCY=(Y2-Y1)/BLCZ=(Z2-Z1)/BLT(1,1)=CX;T(2,4)=CXT(1,2)=CY;T(2,5)=CYT(1,3)=CZ;T(2,6)=CZRETURNEND!生成单元联系数组LMTSUBROUTINE FLMT(NP,NE,NN,NNM,NR,RR,ND,NF,NDF,ME,IT,LMT)DIMENSION IT(NF,NP),LMT(NDF,NE),ME(ND,NE),RR(2,NR)NN=0;NNM=0;IT=0;LMT=0N=0DO I=1,NPC=0DO K=1,NRKR=RR(1,K)IF(KR.EQ.I) C=RR(2,K)ENDDONC=C !NC=0,提取了整数部分C=C-NC !C=0.***,例如C=0.111DO J=1,NFC=C*10.0 !例如C=1.21L=C+0.1 !提取C整数部分,例如L=1,即提取了约束RR(2,K)十分位 !上的数字,这里"+0.1"是为了防止四舍五入是出现错误 C=C-LIF(L.EQ.0)THENN=N+1IT(J,I)=NELSEIT(J,I)=0ENDIFENDDOENDDONN=NNNM=NN+1DO IE=1,NEDO I=1,NDNI=ME(I,IE)DO J=1,NFLMT((I-1)*NF+J,IE)=IT(J,NI)ENDDOENDDOENDDORETURNEND!二维总刚中对角线元地址数组SUBROUTINE FMAXA(NNM,NE,LMT,MAXA,NWK,NPF,NDF)DIMENSION MAXA(NPF),LMT(NDF,NE)MAXA=0;NWK=0MAXA(1)=1DO I=2,NNMIP=I-1IG=IPDO IE=1,NEDO J=1,NDFIF(LMT(J,IE).EQ.IP) THENDO K=1,NDFIF(LMT(K,IE).GT.0.AND.LMT(K,IE).LE.IG) IG=LMT(K,IE)ENDDOEND IFENDDOENDDOMAXA(I)= MAXA(I-1)+IP-IG+1ENDDONWK= MAXA(NNM)-1RETURNEND!生成一维存储结构总刚度矩阵SUBROUTINE CONKB(NP,NE,NM,NWK,ME,X,Y,Z,AE,NAE,LMT,MAXA,CKK,NNM)DIMENSION CKK(NWK),X(NP),Y(NP),Z(NP),AE(2,NM),NAE(NE),LMT(6,NE),ME(2,NE),& MAXA(NNM),AK(6,2),AKE(2,2),T(2,6),TT(6,2),TAK(6,6)CKK=0DO 10 IE=1,NETAK=0CALL FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)CALL FT(IE,NP,NE,X,Y,Z,ME,T)CALL MAT(2,6,T,TT)AK=MATMUL(TT,AKE)TAK=MATMUL(AK,T) !总体坐标系下的单元刚度矩阵DO 220 I=1,6DO 220 J=1,6NI=LMT(I,IE)NJ=LMT(J,IE)IF((NJ-NI).GE.0.AND.NI*NJ.GT.0) THENIJ=MAXA(NJ)+NJ-NICKK(IJ)=CKK(IJ)+TAK(I,J)ENDIF220 CONTINUE10 CONTINUERETURNEND!生成荷载矩阵SUBROUTINE LP(V,PP,IT,PF,NN,NCF,NF,NP,NPF)DIMENSION V(NN),PP(NPF),IT(NF,NP),PF(4,NCF)V=0PP=0DO I=1,NFDO J=1,NPDO K=1,NCFIF(J.EQ.PF(1,K).AND.IT(I,J).NE.0)THENV(IT(I,J))=PF(I+1,K)ENDIFENDDOENDDOENDDODO K=1,NCFDO I=1,NPIF(I.EQ.PF(1,K))THENPP(NF*(I-1)+1)=PF(2,K)PP(NF*(I-1)+2)=PF(3,K)PP(NF*(I-1)+3)=PF(4,K)ENDIFENDDOENDDORETURNEND!对一维结构总刚度矩阵进行矩阵分解(LDLT)SUBROUTINE LDLT(A,MAXA,NN,ISH,IOUT,NWK,NNM) DIMENSION A(NWK),MAXA(NNM)IF(NN.EQ.1) RETURNDO 200 N=1,NNKN=MAXA(N)KL=KN+1KU=MAXA(N+1)-1KH=KU-KLIF(KH)304,240,210210 K=N-KHIC=0KLT=KUDO 260 J=1,KHKLT=KLT-1IC=IC+1KI=MAXA(K)ND=MAXA(K+1)-KI-1IF(ND) 260,260,270270 KK=MIN0(IC,ND)C=0.0DO 280 L=1,KK280 C=C+A(KI+L)*A(KLT+L)A(KLT)=A(KLT)-C260 K=K+1240 K=NB=0.0DO 300 KK=KL,KUK=K-1KI=MAXA(K)C=A(KK)/A(KI)IF(ABS(C).LT.1.0E+07) GOTO 290WRITE(IOUT,2010) N,CSTOP290 B=B+C*A(KK)300 A(KK)=CA(KN)=A(KN)-B304 IF(A(KN)) 310,310,200310 IF(ISH.EQ.0) GOTO 320IF(A(KN).EQ.0.0) A(KN)=-1.0E-16GOTO 200320 WRITE(IOUT,2000) N,A(KN)STOP200 CONTINUERETURN2000 FORMAT(//,' Stop-stiffness matrix not positive definite',//,'no positive& pivot for equation',I4,&//,' pivot =',E20.10)2010 FORMAT(//,' Stop-strum sequence check failed + because of multiplier& growth for column &number',I4,//,' Multiplier = ',E20.8)END!回代,求得节点位移SUBROUTINE REBACK(A,V,MAXA,NN,NWK,NNM)DIMENSION A(NWK),V(NN,1),MAXA(NNM)NIP=1DO IP=1,NIPDO 400 N=1,NNKL=MAXA(N)+1KU=MAXA(N+1)-1IF(KU-KL) 400,410,410410 K=NC=0.0DO 420 KK=KL,KUK=K-1420 C=C+A(KK)*V(K,IP)V(N,IP)=V(N,IP)-C400 CONTINUEDO 480 N=1,NNK=MAXA(N)480 V(N,IP)=V(N,IP)/A(K)IF(NN.EQ.1)RETURNN=NNDO 500 L=2,NNKL=MAXA(N)+1KU=MAXA(N+1)-1IF(KU-KL) 500,510,510510 K=NDO 520 KK=KL,KUK=K-1520 V(K,IP)=V(K,IP)-A(KK)*V(N,IP)500 N=N-1ENDDORETURNEND!求解杆件内力、支反力和位移SUBROUTINE DISPLS(NP,NE,NPF,NM,NN,IT,FTOOL,DIST,AE,NAE,X,Y, Z,PP,FF,SG,SM,ME,&NR,RR,NF)DIMENSION IT(3,NP),DIST(NPF),FTOOL(NPF),X(NP),Y(NP),Z(NP),T(2,6),TT(6,2), AE(2,NM),&ME(2,NE),NAE(NE),UE(6),U(2),AKE(2,2),FE1(2),FE(6),FF(NPF),PP(NPF),&SG(NE),SM(NE),FF2(NPF),RR(2,NR),FL(3*NR)SG=0;SM=0;FF=0;FF2=0DO I=1,NPDO J=1,NFLAB=IT(J,I)IF(LAB.EQ.0) THENDIST(3*(I-1)+J)=0.0ELSEIF(B.LE.NN) THENDIST(3*(I-1)+J)=FTOOL(LAB)ENDIFENDDOENDDODO IE=1,NEN1=ME(1,IE);N2=ME(2,IE)DO J=1,NFUE(J)=DIST(3*(N1-1)+J)UE(3+J)=DIST(3*(N2-1)+J)ENDDOCALL FT(IE,NP,NE,X,Y,Z,ME,T)CALL FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)U=MATMUL(T,UE)FE1=MATMUL(AKE,U)CALL MAT(2,6,T,TT)FE=MATMUL(TT,FE1)DO J=1,NFFF(3*(N1-1)+J)=FF(3*(N1-1)+J)+FE(J)FF(3*(N2-1)+J)=FF(3*(N2-1)+J)+FE(3+J)ENDDOISW=NAE(IE)AO=AE(2,ISW)SG(IE)=FE1(2)SM(IE)=FE1(2)/AODO I=1,NPFFF2(I)=FF(I)-PP(I)ENDDOENDDODO I=1,NPDO J=1,NFLAB=IT(J,I)IF(LAB.EQ.0)THENK=K+1FL(K)=FF2(3*(I-1)+J)ENDIFENDDOENDDOWRITE(12,*)' 'WRITE(12,*)'****************************************'WRITE(12,*)'*********The Results of Calculation**********'WRITE(12,*)'****************************************'WRITE(12,600)WRITE(12,610)(I,DIST(3*I-2)*1000,DIST(3*I-1)*1000,&DIST(3*I)*1000, I=1,NP)WRITE(12,620)WRITE(12,630)(IE,SG(IE),SM(IE)/1000,IE=1,NE)WRITE(12,640)WRITE(12,650)(INT(RR(1,I)),FL(3*I-2),FL(3*I-1),FL(3*I),I=1,NR)600 FORMAT(6X,'The Joint Displacement'/2x,'Joint',6X,'X(mm)',8X,'Y(mm)',6X,'Z(mm)') 610 FORMAT(1X,I4,2X,1P3E12.2)620 FORMAT(//6X,'The Terminal Forces'/2x,'Member', 6X,'FN(kN)',6X,'σ(MPa)')630 FORMAT(3X,I4,2X,F8.2,6X,F8.2)640 FORMAT(//6X,'The Bearing Force'/2x,'Joint',8X,'X',8X,'Y',8X,'Z')650 FORMAT(2X,I4,2X,3F10.2)RETURNEND3、算例以下图所示空间桁架为例:圆形桁架穹项,其几何尺寸如图(a)所示,整体坐标系原点取在拱顶,集中荷载P作用于拱顶,各杆截面面积A和弹性模量E都相同(取E=210GPa,A=0.04m2);各杆件及结点编号如图(b)所示。