贪心算法求解题目
- 格式:doc
- 大小:37.50 KB
- 文档页数:4
贪心算法是一种在解决问题的过程中追求局部最优的算法,对于一个有多种属性的事物来说,贪心算法会优先满足某种条件,追求局部最优的同时希望达到整体最优的效果。
以下是一些经典的贪心算法问题:1. 背包问题:给定一组物品,每个物品都有自己的重量和价值,背包的总容量有限。
贪心算法需要选择物品以最大化背包中物品的总价值,同时不超过背包的总容量。
这种问题可以有多种变体,例如分数背包问题和完全背包问题。
2. 硬币找零问题:给定一组硬币的面值和数量,以及需要找零的金额。
贪心算法需要选择硬币以最小化找零的总数量。
这个问题可以通过从大到小排序硬币,并从最大面值的硬币开始选择,直到找零的金额达到所需的总金额。
3. 区间选点问题:给定一系列闭区间,每个闭区间都有一个起始点和结束点。
贪心算法需要选择尽量少的点,使得每个闭区间内至少有一个点被选中。
这个问题可以通过对结束点进行排序,并从左到右选择结束点,直到下一个要选择的结束点与上一个选择的结束点之间的距离大于当前选择的结束点与上一个选择的结束点之间的距离为止。
4. 区间覆盖问题:给定一系列闭区间,贪心算法需要选择尽量少的区间,使得所有区间都被覆盖。
这个问题可以通过对每个闭区间的左端点进行排序,并从左到右选择左端点,直到下一个要选择的左端点与上一个选择的左端点之间的距离大于当前选择的左端点与上一个选择的左端点之间的距离为止。
5. 排班问题:给定一组员工和他们的班次需求,以及一组工作日的日程安排。
贪心算法需要为员工分配班次,以最小化总工作时间并满足所有工作日的需求。
这个问题可以通过从可用的班次中选择最长的班次,并从左到右分配员工,直到所有员工都被分配到一个班次为止。
这些问题是贪心算法的经典示例,它们展示了贪心算法在解决优化问题中的广泛应用。
贪心算法1.喷水装置(一)描述现有一块草坪,长为20米,宽为2米,要在横中心线上放置半径为Ri的喷水装置,每个喷水装置的效果都会让以它为中心的半径为实数Ri(0<Ri<15)的圆被湿润,这有充足的喷水装置i(1<i<600)个,并且一定能把草坪全部湿润,你要做的是:选择尽量少的喷水装置,把整个草坪的全部湿润。
输入第一行m表示有m组测试数据每一组测试数据的第一行有一个整数数n,n表示共有n个喷水装置,随后的一行,有n个实数ri,ri表示该喷水装置能覆盖的圆的半径。
输出输出所用装置的个数样例输入252 3.2 4 4.5 6101 2 3 1 2 1.2 3 1.1 1 2样例输出25根据日常生活知道,选择半径越大的装置,所用的数目越少。
因此,可以先对半径排序,然后选择半径大的。
另外,当装置刚好喷到矩形的顶点时,数目最少。
此时只要装置的有效喷水距离的和不小于20时,输出此时的装置数目即可。
2.喷水装置(二)时间限制:3000 ms | 内存限制:65535 KB难度:4描述有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。
请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。
输入对于每一组输入,输出最多能够安排的活动数量。
每组的输出占一行样例输入221 1010 1131 1010 1111 20样例输出12提示注意:如果上一个活动在T时间结束,下一个活动最早应该在T+1时间开始。
解题思路:这是一个贪心法中选择不相交区间的问题。
先对活动结束时间从小到大排序,排序的同时活动的起始时间也要跟着变化。
而且,结束时间最小的活动一定会安排,不然这段时间就白白浪费了。
后一个活动的起始时间如果比前一个活动的结束时间大,即两个活动没有相交时间,就把这个活动也安排上。
贪心算法题目汇总
贪心算法是一种常用的算法思想,它在许多计算机科学问题中都有广泛的应用。
贪心算法通常是一种优化问题,通过取局部最优解来达到全局最优解的目的。
下面是一些常见的贪心算法题目:
1. 区间选点问题:给定n个区间,每个区间都有左右端点,要求在每个区间中选择一个点使得所选点的数量最小,且每个区间至少包含一个选中的点。
2. 钞票找零问题:给定若干种面额的钞票和一个需要找零的金额,要求找到最少的钞票数目使得找零金额准确。
3. 会议室安排问题:给定n个会议的开始和结束时间,要求选出尽可能多的会议进行安排,使得每个会议的时间不重叠。
4. 最优装载问题:有一艘载重量为C的船和n个货箱,每个货箱有自己的重量和价值,要求在载重不超过C的情况下,选取价值最高的货箱进行装载。
5. 贪心法解决哈夫曼编码问题:给定n个权值不同的字符,构建一棵哈夫曼树,使得所有字符的编码长度之和最小。
以上是一些常见的贪心算法题目,它们都有一些共性:都是优化问题,都可以用贪心的思想来解决。
在实际的算法设计中,贪心算法是一种非常实用、高效的算法思想。
- 1 -。
列举用贪心算法求解的经典问题贪心算法是一种简单而高效的问题求解方法,通常用于求解最优化问题。
它通过每一步选择当前状态下的最优解,最终得到全局最优解。
贪心算法的核心思想是:每一步都做出一个局部最优的选择,并认为这个选择一定可以达到全局最优。
以下是一些经典问题,可以用贪心算法求解:1. 零钱兑换问题(Coin Change Problem):给定一些不同面额的硬币和一个目标金额,找到最少的硬币数量,使得硬币总额等于目标金额。
贪心算法可以按照硬币的面额从大到小进行选择,每次选择尽量大面额的硬币。
2. 区间调度问题(Interval Scheduling Problem):给定一些区间,找到最多的不相交区间。
贪心算法可以按照区间的结束时间进行排序,每次选择结束时间最早的区间,确保选择的区间不重叠。
3. 分糖果问题(Candy Problem):给定一个数组表示每个孩子的评分,要求给这些孩子分糖果,满足以下要求:每个孩子至少分到一个糖果,评分高的孩子要比相邻孩子分到的糖果多。
贪心算法可以从左到右进行两次遍历,分别处理评分递增和评分递减的情况。
4. 跳跃游戏问题(Jump Game Problem):给定一个非负整数数组,表示每个位置的最大跳跃长度,判断是否能从第一个位置跳到最后一个位置。
贪心算法可以记录当前能够到达的最远位置,并且更新为更远的位置。
5. 任务调度器问题(Task Scheduler Problem):给定一串任务,每个任务需要一定的冷却时间,要求以最短的时间完成所有任务。
贪心算法可以按照出现次数进行排序,优先执行出现次数最多的任务,并在冷却时间内执行其他任务。
6. 区间覆盖问题(Interval Covering Problem):给定一些区间,找到最少的区间数,使得它们的并集覆盖了所有输入区间。
贪心算法可以根据区间的起始位置进行排序,每次选择最早结束的区间,并将它添加到最终结果中。
以上仅是一些经典问题的例子,实际上还有很多问题可以用贪心算法来求解。
贪心算法几个经典例子c语言1. 零钱兑换问题题目描述:给定一些面额不同的硬币和一个总金额,编写一个函数来计算可以凑成总金额所需的最少的硬币个数。
如果没有任何一种硬币组合能够凑出总金额,返回 -1。
贪心策略:每次选择面额最大的硬币,直到凑出总金额或者无法再选择硬币为止。
C语言代码:int coinChange(int* coins, int coinsSize, int amount){int count = 0;for(int i = coinsSize - 1; i >= 0; i--){while(amount >= coins[i]){amount -= coins[i];count++;}}return amount == 0 ? count : -1;}2. 活动选择问题题目描述:有 n 个活动,每个活动都有一个开始时间和结束时间,选择一些活动使得它们不冲突,且能够参加的活动数最多。
贪心策略:每次选择结束时间最早的活动,直到所有活动都被选择或者无法再选择为止。
C语言代码:typedef struct{int start;int end;}Activity;int cmp(const void* a, const void* b){return ((Activity*)a)->end - ((Activity*)b)->end;}int maxActivities(Activity* activities, int n){qsort(activities, n, sizeof(Activity), cmp);int count = 1;int end = activities[0].end;for(int i = 1; i < n; i++){if(activities[i].start >= end){count++;end = activities[i].end;}}return count;}3. 跳跃游戏题目描述:给定一个非负整数数组,你最初位于数组的第一个位置。
贪心算法是一种在每一步选择中都采取当前情况下的局部最优选择,并希望导致结果是全局最优解的算法。
下面是一些贪心算法的题目和解答:1. 旅行商问题(Travelling Salesman Problem):问题描述:给定一个城市列表和一个距离列表,要求找出一条路径,使得路径上的所有城市都经过,且总距离最短。
贪心算法解法:首先对城市按照距离进行排序,然后从最近的两个城市开始,每次都选择距离当前位置最近的两个城市,直到遍历完所有城市。
由于贪心算法每次选择的都是当前情况下的最优解,因此最终得到的路径总距离是最短的。
2. 背包问题(Knapsack Problem):问题描述:给定一组物品,每个物品都有自己的重量和价值,要求在不超过背包总重量的情况下,如何选择物品使得背包中物品的总价值最大。
贪心算法解法:按照物品的重量对物品进行排序,然后每次选择重量最小的物品,直到背包已满或无物品可选。
由于贪心算法每次选择的都是当前情况下的最优解,因此最终得到的方案总是可以找到一个大于等于当前最优解的方案。
3. 网格找零问题(Currency Change Problem):问题描述:给定一组面值不同的硬币,要求用最少的组合方式从一定金额中找零。
贪心算法解法:首先对硬币面值进行排序,然后每次使用当前面值最小的硬币进行组合,直到金额为零或无硬币可选。
贪心算法在此问题中的思路是每次选择最小的硬币进行使用,这样可以保证找零的最小数量。
以上题目和解答只是贪心算法的一部分应用,实际上贪心算法在许多其他领域也有广泛的应用,例如网页布局优化、任务调度、网络流等等。
贪心算法的优势在于其简单易懂、易于实现,但也有其局限性,例如无法处理一些存在冲突的情况或最优解不唯一的问题。
因此在实际应用中需要根据具体问题选择合适的算法。
c++贪心算法经典例题和详解贪心算法(Greedy Algorithm)是一种优化问题解决方法,其基本思想是每一步都选择当前状态下的最优解,以期望达到全局最优解。
贪心算法的特点是每一步都要做出一个局部最优的选择,而这些局部最优选择最终构成了全局最优解。
下面是一个经典的贪心算法例题以及详解:例题:活动选择问题(Activity Selection Problem)假设有一个需要在同一时段使用同一个资源的活动集合,每个活动都有一个开始时间和结束时间。
设计一个算法,使得能够安排最多数量的互不相交的活动。
# 输入:-活动的开始时间数组`start[]`。
-活动的结束时间数组`end[]`。
# 输出:-选择的互不相交的活动的最大数量。
# 算法详解:1. 首先,将活动按照结束时间从小到大排序。
2. 选择第一个活动,并将其加入最终选择的集合中。
3. 对于剩下的活动,选择下一个结束时间最早且与前一个活动不冲突的活动。
4. 重复步骤3,直到所有活动都被选择。
```cpp#include <iostream>#include <algorithm>#include <vector>using namespace std;// 定义活动结构体struct Activity {int start, end;};// 比较函数,用于排序bool compareActivities(Activity a, Activity b) {return a.end < b.end;}// 贪心算法解决活动选择问题void activitySelection(vector<Activity>& activities) {// 按照结束时间排序sort(activities.begin(), activities.end(), compareActivities);// 第一个活动总是被选中cout << "Selected activity: (" << activities[0].start << ", " << activities[0].end << ")" << endl;// 选择其余活动int lastSelected = 0;for (int i = 1; i < activities.size(); i++) {// 如果当前活动的开始时间大于等于上一个选择的活动的结束时间,则选择该活动if (activities[i].start >= activities[lastSelected].end) {cout << "Selected activity: (" << activities[i].start << ", " << activities[i].end << ")" << endl;lastSelected = i;}}}int main() {vector<Activity> activities = {{1, 2}, {3, 4}, {0, 6}, {5, 7}, {8, 9}, {5, 9}};cout << "Activities before sorting:" << endl;for (const Activity& activity : activities) {cout << "(" << activity.start << ", " << activity.end << ") ";}cout << endl;activitySelection(activities);return 0;}```在这个例子中,我们首先定义了一个活动的结构体`Activity`,然后编写了一个比较函数`compareActivities` 用于排序。
c++贪心算法经典例题摘要:一、贪心算法简介1.贪心算法的定义2.贪心算法的特点3.贪心算法适用的问题类型二、C++贪心算法经典例题1.背包问题a.0-1 背包问题b.完全背包问题c.动态背包问题2.最小生成树a.Kruskal 算法b.Prim 算法3.单源点最短路径a.Dijkstra 算法b.Floyd-Warshall 算法4.最长公共子序列a.贪心算法实现b.动态规划实现正文:一、贪心算法简介贪心算法(Greedy Algorithm)是一种求解最优解的方法。
它是在对问题求解时,总是做出在当前看来是最好的选择。
贪心算法并不追求整体最优解,只希望得到较为满意的解。
贪心算法的关键是贪心策略的选择,必须满足无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
贪心算法适用的问题类型包括背包问题、最小生成树、单源点最短路径和最长公共子序列等。
二、C++贪心算法经典例题1.背包问题背包问题(Knapsack Problem)是一种典型的贪心算法问题。
它描述的是有一个背包,有一定的容量,需要装载若干物品,每个物品有一定的价值和重量,要求在不超过背包容量的前提下,如何选择装载物品使得背包中的物品总价值最大。
背包问题可以分为0-1 背包问题、完全背包问题和动态背包问题。
2.最小生成树最小生成树(Minimum Spanning Tree,简称MST)是一种图论中的算法问题。
给定一个加权连通图,求解一个生成树,使得该生成树中所有边的权值之和最小。
最小生成树的经典算法有Kruskal 算法和Prim 算法。
3.单源点最短路径单源点最短路径(Single Source Shortest Path)问题是在一个图中,从源点出发到其他所有顶点的最短路径。
经典算法包括Dijkstra 算法和Floyd-Warshall 算法。
4.最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)问题是求两个序列中最长的公共子序列。
贪⼼算法例题简单说明
1.选择不相交区间问题
贪⼼思路:按照结束时间的顺序排序,结束时间越早,后⾯就能放越多的事。
2.区间选点问题
贪⼼思路:从前往后扫每个区间的树⽊,数⽬的那个区间,从后往前种树。
3.区间覆盖问题
贪⼼思路:预处理完了之后,要找到右端点坐标最⼤的⼀个,直到到边。
这⾥我就要说⼀下了⼀定要注意上下的边界问题:
1.两个圆相切肯定不对,覆盖不全
2.覆盖圆与边相切也不对,覆盖不全
4.流⽔作业调度问题
贪⼼思路:
5.带期限和带罚款的单位时间任务调度
贪⼼思路:罚款越⼤,越要完成,所以罚款⼤的要先处理,将罚款⼤的放在能放区间的最后。
贪心算法经典例题贪心算法是一种求解最优问题的算法思想,其核心理念是每一步都选择当前最优的策略,从而达到全局最优解。
贪心算法可以应用于许多经典问题,下面将介绍几个常见的贪心算法经典例题及相关参考内容。
1. 会议室安排问题题目描述:给定一组会议的开始时间和结束时间,求解如何安排会议,使得尽可能多的会议可以在同一时间段内进行。
解题思路:贪心算法可以通过每次选择结束时间最早的会议来求解。
首先将会议按照结束时间排序,选择第一个会议作为首先安排的会议,然后依次选择后续结束时间不冲突的会议进行安排。
相关参考内容:- 《算法导论》第16章:贪心算法(ISBN: 9787115265955)- 《数据结构与算法分析》第13章:贪心算法(ISBN: 9787302483626)2. 零钱兑换问题题目描述:给定一定面额的硬币,求解如何用最少的硬币数量兑换指定金额的零钱。
解题思路:贪心算法可以通过每次选择面额最大且不超过目标金额的硬币来求解。
从面额最大的硬币开始,尽可能多地选择当前面额的硬币,并减去已经选择的硬币金额,直到金额为0。
相关参考内容:- 《算法导论》第16章:贪心算法(ISBN: 9787115265955)- 《算法4》第1章:基础(ISBN: 9787302444627)3. 区间调度问题题目描述:给定一组区间,求解如何选择尽可能多的不重叠区间。
解题思路:贪心算法可以通过每次选择结束时间最早的区间来求解。
首先将区间按照结束时间排序,选择第一个区间作为首先选择的区间,然后依次选择后续结束时间不与已经选择的区间重叠的区间进行选择。
相关参考内容:- 《算法导论》第16章:贪心算法(ISBN: 9787115265955)- 《数据结构与算法分析》第13章:贪心算法(ISBN: 9787302483626)4. 分糖果问题题目描述:给定一组孩子和一组糖果,求解如何分配糖果,使得最多的孩子能够得到满足。
解题思路:贪心算法可以通过每次选择糖果最小且能满足当前孩子的糖果来求解。
列举用贪心算法求解的经典问题
1. 零钱兑换问题:给定一些面值不同的硬币和一个金额,要求用最少的硬币凑出这个金额。
2. 最小生成树问题:给定一个无向带权图,要求用最小的权值构建一棵生成树。
3. 背包问题:给定一些物品和一个背包,每个物品有对应的价值和重量,要求在背包容量限制下,选取物品使得总价值最大。
4. 活动安排问题:有若干个活动需要分配一段时间,每个活动有对应的开始时间和结束时间,要求选取尽可能多的活动,使得任两个安排的活动时间不重叠。
5. 单源最短路径问题:给定一个有向带权图和一个起始节点,要求求出从起始节点到其他所有节点的最短路径。
6. 任务调度问题:有若干个需要完成的任务和多个可执行任务的处理器,要求将任务分配给处理器,使得执行总时间最小。
7. 区间覆盖问题:给定一些区间,要求用尽可能少的区间覆盖整个线段。
8. 哈夫曼编码问题:给定一些字符及其对应的出现概率,要求用最短的编码方式表示这些字符。
贪心算法的例子
贪心算法是一种解决优化问题的算法,它通常用于在一组选择中作出最优决策。
在贪心算法中,每次选择都是当前状态下的最优解,而不考虑将来可能出现的情况。
下面是一些贪心算法的例子。
1. 零钱兑换问题
假设你有一些硬币,每个硬币的面值分别为1、5、10、50、100。
现在要找零n元,最少需要多少个硬币呢?在贪心算法中,我们每次选择最大面值的硬币,直到凑够n元为止。
2. 区间覆盖问题
假设你有一些区间,每个区间用起点和终点表示。
现在要用尽可能少的区间覆盖所有的点,怎么办?在贪心算法中,我们每次选择覆盖范围最大的区间,直到所有点都被覆盖为止。
3. 最小生成树问题
假设你有一个连通无向图,每条边都有一个权值。
现在要选择一些边,构成一棵树,使得总权值最小,怎么办?在贪心算法中,我们每次选择与当前树相连的边中,权值最小的边,直到所有点都被覆盖为止。
4. 背包问题
假设你有一个背包,容量为C,有一些物品,每个物品有重量w 和价值v。
现在要选择一些物品,放入背包中,使得总重量不超过C,总价值最大,怎么办?在贪心算法中,我们每次选择单位价值最大的物品,直到背包装满为止。
这些都是贪心算法的例子,贪心算法虽然看起来简单,但是它在某些情况下可以得到最优解,而且时间复杂度也比较低。
贪心算法练习题贪心算法是一种常用的解决问题的思想和方法,它通常用于求解优化问题。
贪心算法的核心思想是:在每一步选择中都采取当前状态下最优的选择,从而希望最终能够达到全局最优。
在实际应用中,贪心算法常用于解决一些分类问题,如最小生成树、最短路径、背包问题等。
下面,将给出一些贪心算法的练习题,帮助读者更好地理解和掌握贪心算法的应用。
1. 零钱兑换问题假设我们有不同面额的硬币,如 1 美元、2 美元、5 美元等,我们希望找零 n 美元的时候,最少需要多少个硬币。
请用贪心算法解决此问题,并给出相应的代码实现。
2. 区间覆盖问题给定一个区间集合,选择尽可能少的区间,使得这些区间的并集能够覆盖全部的区间。
请使用贪心算法解决此问题,并给出相应的代码实现。
3. 活动选择问题给定 n 个活动的开始时间和结束时间,选择尽可能多的不相交的活动。
请使用贪心算法解决此问题,并给出相应的代码实现。
4. 任务调度问题假设我们有 n 个任务和 m 台执行任务的机器,每个任务需要一个单位的时间,在每台机器上只能执行一个任务。
如何安排任务,使得所有任务都能够被执行,并且时间最短。
请使用贪心算法解决此问题,并给出相应的代码实现。
以上是一些常见的贪心算法练习题,通过解决这些问题,读者可以更加深入地理解和掌握贪心算法的应用。
当然,在实际应用中,贪心算法并不是万能的,它只能求解一些特定类型的优化问题,对于其他类型问题的求解可能并不适用。
因此,在使用贪心算法时,需要仔细分析问题的特性,判断是否适用贪心算法,并注意贪心选择的合理性。
通过不断练习和实践,读者可以逐渐掌握贪心算法的应用技巧,提高问题求解的效率和准确性。
最后,希望读者能够善于思考,灵活运用贪心算法解决实际问题,并在实践中不断学习和进步。
贪心算法作为一种常用的解决问题的思想和方法,对于提高算法设计和分析能力具有重要意义。
贪心法3.1 排队接水有n 个人在一个水龙头前排队接水,假如每个人接水的时间为T i ,请编程找出这n 个人排队的一种顺序,使得n 个人的平均等待时间最小。
【输入】输入文件共两行,第一行为n ;第二行分别表示第1个人到第n 个人每人的接水时间T 1,T 2,…,T n ,每个数据之间有1个空格。
【输出】输出文件有两行,第一行为一种排队顺序,即1到n 的一种排列;第二行为这种排列方案下的平均等待时间(输出结果精确到小数点后两位)。
【样例】 water.in water.out 10 3 2 7 8 1 4 9 6 10 5 56 12 1 99 1000 234 33 55 99 812 291.90 【算法分析】 平均等待时间是每个人的等待时间之和再除以n ,因为n 是一个常数,所以等待时间之和最小,也就是平均等待时间最小。
假设是按照1~n 的自然顺序排列的,则这个问题就是求以下公式的最小值:∑∑==⎪⎪⎭⎫⎝⎛=+⋯⋯+++⋯⋯++++++=ni i j j n T T T T T T T T T T total 1121321211)()()(如果用穷举的方法求解,就需要我们产生n 个人的所有不同排列,然后计算每种排列所需要等待的时间之和,再“打擂台”得到最小值,但这种方法需要进行n!次求和以及判断,时间复杂度很差! 其实,我们认真研究一下上面的公式,发现可以改写成如下形式:∑=--+=++⋯⋯+-+-+=ni i n n T i n T T T n T n nT total 11321)1(2)2()1(这个公式何时取最小值呢?对于任意一种排列k 1, k 2, k 3, …, k n ,当1k T ≤2k T ≤3k T ≤…≤n k T 时,total取到最小值。
如何证明呢?方法如下: 因为n j i k k k k k T T j n T i n T n nT total +⋯++-+⋯++-+⋯+-+=)1()1()1(21假设i <j ,而i k T <j k T ,这是的和为total 1,而把k i 和kj 互换位置,设新的和为total 2,则:))(())(1())(1())1()1(()1()1(12i j i j i j j i i j k k k k k k k k k k T T i j T T j n T T i n T j n T i n T j n T i n total total total --=-+---+-=+-++--+-++-=-=∆我们发现上述△total 恒大于0,所以也说明了任何次序的改变,都会导致等待时间的增加。
贪心算法例题
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。
以下是一个贪心算法的例子:
问题描述:有100个人在一酒吧,一次酒局中大家都决定向其他每个人敬酒,但只有距离较近的人之间才能互敬。
酒局结束后,每人都记录下他们之间互敬了多少次。
现给出所有人的互敬次数,找出互敬次数最多的那个人。
贪心策略:从最多互敬次数的人开始,每次都选择能互敬次数最多的人,直到达到最大互敬次数为止。
具体实现:
1. 首先将所有人的互敬次数存入一个数组中。
2. 从数组中找到互敬次数最多的人,假设其互敬次数为max_times。
3. 从数组中删除所有互敬次数小于max_times的人,因为他们的互敬次数已经确定不会超过max_times。
4. 重复步骤2和3,直到数组为空。
这个贪心算法的例子中,每次选择都是基于当前情况下的最优选择,希望通过这种方式达到全局最优的结果。
oj贪心算法题目
贪心算法是一种常见的算法思想,它通过每一步的最优选择来达到整体的最优解。
在 OJ (Online Judge) 上也有许多贪心算法题目,比如:
1. 会场安排问题:有 n 个会议需要在同一天举行,每个会议有开始时间和结束时间,同一时间只能举办一个会议,如何安排使得举办的会议最多?
2. 区间选点问题:有 n 个区间,每个区间有左右端点,需要选取尽可能少的点,使得每个区间至少包含一个点,如何选点使得点的个数最少?
3. 分配糖果问题:有 n 个孩子需要分配糖果,每个孩子有一个评分,需要满足以下条件:每个孩子至少分配到一颗糖果,评分较高的孩子应该比评分低的孩子分配到更多的糖果,最少需要分配多少颗糖果?
4. 跳跃游戏问题:给定一个非负整数数组,每个元素代表你在该位置可以跳跃的最大长度,如何判断是否能够到达最后一个位置?
这些题目都可以通过贪心算法来解决,需要根据具体情况选择合适的贪心策略。
- 1 -。
贪心算法例题1木板制造问题描述现在需要制造N块木板,每块木板都有一个长度L和宽度W。
用来制造木板的机器在使用之前需要花1分钟时间进行调节,而且,如果在制造完一块木板L0×W0之后继续制造木板L1×W1,那么除非满足L0≤L1且W0≤W1,否则在制造L1×W1之前仍要花费1分钟进行调节。
现在给出欲制造的N块木板的尺寸,你的任务是确定至少需要花多长时间调节机器。
时间复杂度要求实现O(N2)时间复杂度的算法。
本题算法的最优时间复杂度为Θ(NlogN)。
2 雷达安装问题描述在笛卡尔坐标系上,我们认为海岸线是x轴,陆地在x轴下方,海洋在x轴上方,而每个岛屿都认为是海中的一个点。
现在要在海岸线上安装一些雷达,雷达的覆盖半径为d。
如果某个岛屿与离它最近的雷达之间的距离不超过d,这个岛屿就被监视了。
现在有N个岛屿需要监视,给出这N个岛屿的坐标,你的任务是确定为了监视所有的岛屿至少需要安装多少个雷达。
时间复杂度要求实现Θ(NlogN)时间复杂度的算法,而这也是本题时间复杂度的下限。
3 修理牛棚问题描述农夫约翰的牛棚是N个房间一个紧挨着一个排成一行的结构,每个房间的宽度都是1。
在一个暴风雨的夜晚,牛棚所有的天花板都被吹走了。
好在许多牛正在度假,所以牛棚没有住满,有些房间里面有牛,有些没有。
一共有S (1≤S≤N)个房间是有牛居住的。
农夫约翰打算至少先把有牛居住的房间的屋顶修好。
他的木材提供商只愿意提供M块木板,但是每块木板都可以是任意长度的。
农夫约翰想知道他至少需要购买多长的木板才能把牛都盖住。
时间复杂度要求实现O(NlogN)复杂度的算法。
本题算法的最优时间复杂度为Θ(N)。
贪心算法经典例题贪心算法是一种基于当前最优解的选择方法,它的思想在算法设计中占有重要地位。
贪心算法常被用于解决许多问题,如背包问题、区间覆盖问题等。
在本文中,我们将介绍一种经典的贪心算法例题。
例题描述假设有一组有限数量的钞票,其面额分别为1元、5元、10元、50元、100元、500元、1000元、5000元。
现在需要用这些钞票凑出一个给定的金额。
编写一个函数,返回最少需要几张钞票。
分析这个问题可以用贪心算法来解决。
根据贪心策略,我们应该选择面额最大的钞票,使其不超过目标金额。
如果目标金额减去选定的钞票面额后仍然大于0,则继续选择面额最大的钞票,反之,选择面额次大的钞票,直到凑出目标金额。
每次选择的钞票数量加1,最终得到的数量即为所需钞票的最小数量。
代码实现下面是这个例题的代码实现:```pythondef min_coin_count(target_amount, coins):# 从大到小排序coins.sort(reverse=True)# 计数器count = 0# 遍历所有钞票面额for coin in coins:# 计算当前钞票最多可以用几张max_count = target_amount // coin# 更新计数器和目标金额count += max_counttarget_amount -= max_count * coinreturn count```测试我们用以下代码对这个函数进行测试:```pythonamount = 427coins = [1, 5, 10, 50, 100, 500, 1000, 5000]print(min_coin_count(amount, coins)) # 输出结果为 7```结果说明,我们可以用七张钞票凑出 427 元,这是最小的钞票数量。
总结贪心算法作为一种常用的算法思想,在算法设计中具有重要作用。
本文介绍了一种经典的贪心算法例题,并给出了具体的代码实现和测试。