算法分析贪心算法习题
- 格式:pptx
- 大小:81.21 KB
- 文档页数:19
贪心算法1.喷水装置(一)描述现有一块草坪,长为20米,宽为2米,要在横中心线上放置半径为Ri的喷水装置,每个喷水装置的效果都会让以它为中心的半径为实数Ri(0<Ri<15)的圆被湿润,这有充足的喷水装置i(1<i<600)个,并且一定能把草坪全部湿润,你要做的是:选择尽量少的喷水装置,把整个草坪的全部湿润。
输入第一行m表示有m组测试数据每一组测试数据的第一行有一个整数数n,n表示共有n个喷水装置,随后的一行,有n个实数ri,ri表示该喷水装置能覆盖的圆的半径。
输出输出所用装置的个数样例输入252 3.2 4 4.5 6101 2 3 1 2 1.2 3 1.1 1 2样例输出25根据日常生活知道,选择半径越大的装置,所用的数目越少。
因此,可以先对半径排序,然后选择半径大的。
另外,当装置刚好喷到矩形的顶点时,数目最少。
此时只要装置的有效喷水距离的和不小于20时,输出此时的装置数目即可。
2.喷水装置(二)时间限制:3000 ms | 内存限制:65535 KB难度:4描述有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。
请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。
输入对于每一组输入,输出最多能够安排的活动数量。
每组的输出占一行样例输入221 1010 1131 1010 1111 20样例输出12提示注意:如果上一个活动在T时间结束,下一个活动最早应该在T+1时间开始。
解题思路:这是一个贪心法中选择不相交区间的问题。
先对活动结束时间从小到大排序,排序的同时活动的起始时间也要跟着变化。
而且,结束时间最小的活动一定会安排,不然这段时间就白白浪费了。
后一个活动的起始时间如果比前一个活动的结束时间大,即两个活动没有相交时间,就把这个活动也安排上。
c++贪心算法经典例题
经典的贪心算法例题有很多,以下是其中几个常见的例题:
1. 分糖果问题:
有一群小朋友,每个人都有一个评分。
现在需要给他们分糖果,要求评分高的小朋友比他旁边评分低的小朋友拥有更多的糖果。
求至少需要准备多少糖果。
2. 区间覆盖问题:
给定一个区间集合,每个区间表示一个工作时间段。
现在需要选择尽可能少的区间,覆盖整个时间范围。
求最少需要选择多少个区间。
3. 最佳买卖股票时机:
给定一个股票的价格列表,可以任意次数买入和卖出股票。
但是同一时间只能持有一支股票,求能够获得的最大利润。
4. 最大会议安排:
给定一系列的会议,每个会议有开始时间和结束时间。
要求安排尽可能多的会议,使得它们不会发生时间上的冲突。
5. 跳跃游戏:
给定一个非负整数数组,每个元素表示在该位置上能够跳跃的最大长度。
初始位置在第一个元素,判断能否跳到最后一个元素。
以上仅是一些常见的例题,贪心算法广泛应用于各种问题中。
在解决实际问题时,需要根据具体情况设计贪心策略,找到合适的贪心策略才能得到正确的解答。
贪心算法题目汇总
贪心算法是一种常用的算法思想,它在许多计算机科学问题中都有广泛的应用。
贪心算法通常是一种优化问题,通过取局部最优解来达到全局最优解的目的。
下面是一些常见的贪心算法题目:
1. 区间选点问题:给定n个区间,每个区间都有左右端点,要求在每个区间中选择一个点使得所选点的数量最小,且每个区间至少包含一个选中的点。
2. 钞票找零问题:给定若干种面额的钞票和一个需要找零的金额,要求找到最少的钞票数目使得找零金额准确。
3. 会议室安排问题:给定n个会议的开始和结束时间,要求选出尽可能多的会议进行安排,使得每个会议的时间不重叠。
4. 最优装载问题:有一艘载重量为C的船和n个货箱,每个货箱有自己的重量和价值,要求在载重不超过C的情况下,选取价值最高的货箱进行装载。
5. 贪心法解决哈夫曼编码问题:给定n个权值不同的字符,构建一棵哈夫曼树,使得所有字符的编码长度之和最小。
以上是一些常见的贪心算法题目,它们都有一些共性:都是优化问题,都可以用贪心的思想来解决。
在实际的算法设计中,贪心算法是一种非常实用、高效的算法思想。
- 1 -。
c语言贪心算法题目
问题描述:
给定一个非负整数数组nums,你的任务是通过在数组中选择一些数,使得这些数的和最大,并且所选的数不能相邻。
请编写一个C程序,实现该任务。
函数原型:
int maxSum(int* nums, int numsSize);
输入参数:
- nums: 非负整数数组nums
- numsSize:数组nums的大小
输出:
返回所选数的最大和
示例:
输入:[1,2,3,1]
输出:4
解释:选择索引为0和2的元素,即nums[0]=1和nums[2]=3,它们的和为4,满足选取数的和最大且不相邻的要求。
提示:
1. 贪心算法是一种优化问题的解决方法,它每次都选择当前最优的解,希望通过局部最优解的选择来达到全局最优解。
2. 对于本题,可以使用动态规划的思想来解决。
通过定义一个dp数组,dp[i]表示选择索引为0到i之间的元素,所选数的最大和。
则对于元素nums[i],有两种选择:选或不选。
- 如果选择nums[i],则dp[i] = nums[i] + dp[i-2]
- 如果不选择nums[i],则dp[i] = dp[i-1]
- 因此,对于每个i,我们选择使得dp[i]最大的方案,直到求得dp[numsSize-1],即所选数的最大和。
3. 初始化dp数组时,dp[0]=nums[0],dp[1]=max(nums[0], nums[1]),从第三个元素开始遍历数组即可。
《算法设计与分析》课程实验报告实验序号:07实验项目名称:实验8 贪心算法(一)一、实验题目1.删数问题问题描述:键盘输入一个高精度的正整数N(不超过250 位),去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的非负整数。
编程对给定的N 和k,寻找一种方案使得剩下的数字组成的新数最小。
若输出前有0则舍去2.区间覆盖问题问题描述:设x1,x2,...xn是实轴上的n个点。
用固定长度为k的闭区间覆盖n个点,至少需要多少个这样的固定长度的闭区间?请你设计一个有效的算法解决此问题。
3.会场安排问题问题描述:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。
设计一个有效的贪心算法进行安排。
(这个问题实际上是著名的图着色问题。
若将每一个活动作为图的一个顶点,不相容活动间用边相连。
使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。
)4.导弹拦截问题问题描述:某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。
但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。
某天,雷达捕捉到敌国的导弹来袭。
由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
给定导弹依次飞来的高度(雷达给出的高度数据是≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
二、实验目的(1)通过实现算法,进一步体会具体问题中的贪心选择性质,从而加强对贪心算法找最优解步骤的理解。
(2)掌握通过迭代求最优的程序实现技巧。
(3)体会将具体问题的原始数据预处理后(特别是以某种次序排序后),常能用贪心求最优解的解决问题方法。
三、实验要求(1)写出题1的最优子结构性质、贪心选择性质及相应的子问题。
(2)给出题1的贪心选择性质的证明。
(3)(选做题):写出你的算法的贪心选择性质及相应的子问题,并描述算法思想。
贪心算法是一种在每一步选择中都采取当前情况下的局部最优选择,并希望导致结果是全局最优解的算法。
下面是一些贪心算法的题目和解答:1. 旅行商问题(Travelling Salesman Problem):问题描述:给定一个城市列表和一个距离列表,要求找出一条路径,使得路径上的所有城市都经过,且总距离最短。
贪心算法解法:首先对城市按照距离进行排序,然后从最近的两个城市开始,每次都选择距离当前位置最近的两个城市,直到遍历完所有城市。
由于贪心算法每次选择的都是当前情况下的最优解,因此最终得到的路径总距离是最短的。
2. 背包问题(Knapsack Problem):问题描述:给定一组物品,每个物品都有自己的重量和价值,要求在不超过背包总重量的情况下,如何选择物品使得背包中物品的总价值最大。
贪心算法解法:按照物品的重量对物品进行排序,然后每次选择重量最小的物品,直到背包已满或无物品可选。
由于贪心算法每次选择的都是当前情况下的最优解,因此最终得到的方案总是可以找到一个大于等于当前最优解的方案。
3. 网格找零问题(Currency Change Problem):问题描述:给定一组面值不同的硬币,要求用最少的组合方式从一定金额中找零。
贪心算法解法:首先对硬币面值进行排序,然后每次使用当前面值最小的硬币进行组合,直到金额为零或无硬币可选。
贪心算法在此问题中的思路是每次选择最小的硬币进行使用,这样可以保证找零的最小数量。
以上题目和解答只是贪心算法的一部分应用,实际上贪心算法在许多其他领域也有广泛的应用,例如网页布局优化、任务调度、网络流等等。
贪心算法的优势在于其简单易懂、易于实现,但也有其局限性,例如无法处理一些存在冲突的情况或最优解不唯一的问题。
因此在实际应用中需要根据具体问题选择合适的算法。
c++贪心算法经典例题摘要:一、贪心算法简介1.贪心算法的定义2.贪心算法的特点3.贪心算法适用的问题类型二、C++贪心算法经典例题1.背包问题a.0-1 背包问题b.完全背包问题c.动态背包问题2.最小生成树a.Kruskal 算法b.Prim 算法3.单源点最短路径a.Dijkstra 算法b.Floyd-Warshall 算法4.最长公共子序列a.贪心算法实现b.动态规划实现正文:一、贪心算法简介贪心算法(Greedy Algorithm)是一种求解最优解的方法。
它是在对问题求解时,总是做出在当前看来是最好的选择。
贪心算法并不追求整体最优解,只希望得到较为满意的解。
贪心算法的关键是贪心策略的选择,必须满足无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
贪心算法适用的问题类型包括背包问题、最小生成树、单源点最短路径和最长公共子序列等。
二、C++贪心算法经典例题1.背包问题背包问题(Knapsack Problem)是一种典型的贪心算法问题。
它描述的是有一个背包,有一定的容量,需要装载若干物品,每个物品有一定的价值和重量,要求在不超过背包容量的前提下,如何选择装载物品使得背包中的物品总价值最大。
背包问题可以分为0-1 背包问题、完全背包问题和动态背包问题。
2.最小生成树最小生成树(Minimum Spanning Tree,简称MST)是一种图论中的算法问题。
给定一个加权连通图,求解一个生成树,使得该生成树中所有边的权值之和最小。
最小生成树的经典算法有Kruskal 算法和Prim 算法。
3.单源点最短路径单源点最短路径(Single Source Shortest Path)问题是在一个图中,从源点出发到其他所有顶点的最短路径。
经典算法包括Dijkstra 算法和Floyd-Warshall 算法。
4.最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)问题是求两个序列中最长的公共子序列。
贪心法(一)1、纪念品分组(group.pas)【问题描述】元旦快到了,校学生会让乐乐负责新年晚会的纪念品发放工作。
为使得参加晚会的同学所获得的纪念品价值相对均衡,他要把购来的纪念品根据价格进行分组,但每组最多只能包括两件纪念品,并且每组纪念品的价格之和不能超过一个给定的整数。
为了保证在尽量短的时间内发完所有纪念品,乐乐希望分组的数目最少。
你的任务是写一个程序,找出所有分组方案中分组数最少的一种,输出最少的分组数目。
【输入】输入文件group . in包含n+2行:第1行包括一个整数w,为每组纪念品价格之和的上限。
第2行为一个整数n,表示购来的纪念品的总件数。
第3~n+2行每行包含一个正整数pi(5<=p:<=w),表示所对应纪念品的价格。
【输出】输出文件group.out仅一行,包含一个整数,即最少的分组数目。
【输入输出样例】【限制】50%的数据满足:1<=n<=15100%的数据满足:1<=n<=30000,80<=w<=2002、独木舟(kaj.bas)【问题描述】我们计划组织一个独木舟旅行。
租用的独木舟都是一样的,最多乘两人,而且载重有一个限度。
现在要节约费用,所以要尽可能地租用最少的舟。
你的任务是读入独木舟的载重量,参加旅行的人数以及每个人的体重,计算出所需要的租船数目。
【输入格式】输入文件名为kaj.in,其第一行是w(8O≤w≤200),表示每条独木舟最大的载重量。
第二行是整数n(1≤n≤30000,参加旅行的人数。
接下来的n行,每行是一个整数Ti(5 ≤Ti≤w),表示每个人的重量。
【输出格式】输出文件仅一行,表示最少的租船数目。
【样例输入】1009902020305060708090【样例输出】63.修复牛棚(barn.bas)【问题描述】农夫约翰在一个呈一字排开的牛棚里养了一群牛。
这个牛棚有很多隔间,每个隔间的大小都是一样的。
一个隔间里只能放一头牛。
列举用贪心算法求解的经典问题
1. 零钱兑换问题:给定一些面值不同的硬币和一个金额,要求用最少的硬币凑出这个金额。
2. 最小生成树问题:给定一个无向带权图,要求用最小的权值构建一棵生成树。
3. 背包问题:给定一些物品和一个背包,每个物品有对应的价值和重量,要求在背包容量限制下,选取物品使得总价值最大。
4. 活动安排问题:有若干个活动需要分配一段时间,每个活动有对应的开始时间和结束时间,要求选取尽可能多的活动,使得任两个安排的活动时间不重叠。
5. 单源最短路径问题:给定一个有向带权图和一个起始节点,要求求出从起始节点到其他所有节点的最短路径。
6. 任务调度问题:有若干个需要完成的任务和多个可执行任务的处理器,要求将任务分配给处理器,使得执行总时间最小。
7. 区间覆盖问题:给定一些区间,要求用尽可能少的区间覆盖整个线段。
8. 哈夫曼编码问题:给定一些字符及其对应的出现概率,要求用最短的编码方式表示这些字符。
贪心法例题
贪心法是一种常见的算法思想,在解决一些优化问题时被广泛应用。
下面是几个贪心法的例题:
1. 分发糖果
给定一个数组 ratings,表示一群孩子的评分,现在需要给这些孩子分发糖果。
规定每个孩子至少分配到一个糖果,且评分更高的孩子必须得到更多的糖果。
问最少需要准备多少个糖果。
2. 会议室安排
给定一组会议,每个会议有开始时间和结束时间,现在需要在有限的会议室内安排这些会议,使得尽可能多的会议得以举行。
请问最多可以安排多少个会议。
3. 分割回文串
给定一个字符串 s,将其分割成一些子串,使得每个子串都是回文串。
请问最少需要分割多少次。
4. 零钱兑换
给定一组硬币的面值和一个总金额 amount,现在需要用这些硬币来找零。
请问最少需要多少个硬币才能凑出总金额。
以上例题均可以使用贪心法来解决,具体实现方式需要根据题目要求进行调整。
贪心法在实际应用中的效果取决于问题本身的特点,不适用于所有问题。
- 1 -。
贪心算法练习题贪心算法是一种常用的解决问题的思想和方法,它通常用于求解优化问题。
贪心算法的核心思想是:在每一步选择中都采取当前状态下最优的选择,从而希望最终能够达到全局最优。
在实际应用中,贪心算法常用于解决一些分类问题,如最小生成树、最短路径、背包问题等。
下面,将给出一些贪心算法的练习题,帮助读者更好地理解和掌握贪心算法的应用。
1. 零钱兑换问题假设我们有不同面额的硬币,如 1 美元、2 美元、5 美元等,我们希望找零 n 美元的时候,最少需要多少个硬币。
请用贪心算法解决此问题,并给出相应的代码实现。
2. 区间覆盖问题给定一个区间集合,选择尽可能少的区间,使得这些区间的并集能够覆盖全部的区间。
请使用贪心算法解决此问题,并给出相应的代码实现。
3. 活动选择问题给定 n 个活动的开始时间和结束时间,选择尽可能多的不相交的活动。
请使用贪心算法解决此问题,并给出相应的代码实现。
4. 任务调度问题假设我们有 n 个任务和 m 台执行任务的机器,每个任务需要一个单位的时间,在每台机器上只能执行一个任务。
如何安排任务,使得所有任务都能够被执行,并且时间最短。
请使用贪心算法解决此问题,并给出相应的代码实现。
以上是一些常见的贪心算法练习题,通过解决这些问题,读者可以更加深入地理解和掌握贪心算法的应用。
当然,在实际应用中,贪心算法并不是万能的,它只能求解一些特定类型的优化问题,对于其他类型问题的求解可能并不适用。
因此,在使用贪心算法时,需要仔细分析问题的特性,判断是否适用贪心算法,并注意贪心选择的合理性。
通过不断练习和实践,读者可以逐渐掌握贪心算法的应用技巧,提高问题求解的效率和准确性。
最后,希望读者能够善于思考,灵活运用贪心算法解决实际问题,并在实践中不断学习和进步。
贪心算法作为一种常用的解决问题的思想和方法,对于提高算法设计和分析能力具有重要意义。
java贪心算法几个经典例子
1. 零钱兑换问题
给定面额为1、5、10、25的硬币,以及一个需要兑换的金额,问最少需要多少硬币才能兑换成功。
解法:每次选择面额最大的硬币兑换,直到兑换完毕为止。
2. 分糖果问题
有m个糖果,要分给n个孩子,每个孩子至少分到一个糖果,且每个孩子分到的糖果数应尽量相近,求最小的糖果差。
解法:将m个糖果按照大小排序,依次将糖果分给n个孩子,每次将糖果分给最少的孩子。
3. 区间覆盖问题
给定多个区间,问最少需要选多少个区间才能覆盖全集。
解法:每次选择与当前未被覆盖的部分交集最大的区间添加到答案中,直到所有部分被覆盖完毕为止。
4. 任务调度问题
有n个任务需要完成,每个任务需要占用不同的时间,同时每个任务都有一个
最后期限,问如何调度任务才能最大程度地避免超时。
解法:将所有任务按照最后期限排序,依次将任务安排到最后期限之前的最近空闲时间点,尽量将任务时间安排得紧凑。
算法作业——第4章贪⼼算法第4章 贪⼼算法 习题贪⼼算法 习题第4章【+】阅读、掌握课本经典范例代码的实现:(1)活动安排问题;(2)最优装载问题;(3)哈夫曼编码;(4)单源最短路径;(5)最⼩⽣成树;(6)多机调度问题。
【第1题】单项选择题(1)下⾯是贪⼼算法的基本要素的是( )。
A.重叠⼦问题B.构造最优解C.贪⼼选择性质D.定义最优解(2)下⾯问题( )不能使⽤贪⼼法解决。
A.单源最短路径问题B. n皇后问题C.最⼩花费⽣成树问题D.背包问题(3)采⽤贪⼼算法的最优装载问题的主要计算量在于将集装箱依其重量从⼩到⼤排序,故算法的时间复杂度为( )。
A.O(n)B.O(n2)C.O(n3)D.O(nlog2n)(4)关于0-1背包问题以下描述正确的是( )。
A.可以使⽤贪⼼算法找到最优解B.能找到多项式时间的有效算法C.使⽤教材介绍的动态规划⽅法可求解任意0-1背包问题D.对于同⼀背包与相同的物品,做背包问题取得的总价值⼀定⼤于等于做0-1背包问题(5)⼀棵哈夫曼树共有215个结点,对其进⾏哈夫曼编码,共能得到( )个不同的码字。
A.107B.108C.214D.215【第2题】求解哈夫曼编码中如何体现贪⼼思路?【第3题】举反例证明0-1背包问题若使⽤的算法是按照vi/wi的⾮递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装⼊背包,则此⽅法不⼀定能得到最优解(此题说明0-1背包问题与背包问题的不同)。
*【第4题】给定数轴X上n个不同点的集合,{x1,x2,...,xn},其中,x1<x2<...<xn。
现在⽤若⼲个长度为1的闭区间来覆盖这些点。
设计⼀个算法找到最少的闭区间个数和位置。
证明算法的正确性并估计算法的时间复杂度。
【第5题】(编程)求解硬币问题。
有1分、2分、5分、10分、50分和100分的硬币各若⼲枚,现在要⽤这些硬币来⽀付W元,最少需要多少枚硬币。
说明:⽤结构体数组A存放硬币数据,A[i].v存放硬币i的⾯额,A[i].c存放硬币i的枚数。
贪心算法例题
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。
以下是一个贪心算法的例子:
问题描述:有100个人在一酒吧,一次酒局中大家都决定向其他每个人敬酒,但只有距离较近的人之间才能互敬。
酒局结束后,每人都记录下他们之间互敬了多少次。
现给出所有人的互敬次数,找出互敬次数最多的那个人。
贪心策略:从最多互敬次数的人开始,每次都选择能互敬次数最多的人,直到达到最大互敬次数为止。
具体实现:
1. 首先将所有人的互敬次数存入一个数组中。
2. 从数组中找到互敬次数最多的人,假设其互敬次数为max_times。
3. 从数组中删除所有互敬次数小于max_times的人,因为他们的互敬次数已经确定不会超过max_times。
4. 重复步骤2和3,直到数组为空。
这个贪心算法的例子中,每次选择都是基于当前情况下的最优选择,希望通过这种方式达到全局最优的结果。
贪心算法例题1木板制造问题描述现在需要制造N块木板,每块木板都有一个长度L和宽度W。
用来制造木板的机器在使用之前需要花1分钟时间进行调节,而且,如果在制造完一块木板L0×W0之后继续制造木板L1×W1,那么除非满足L0≤L1且W0≤W1,否则在制造L1×W1之前仍要花费1分钟进行调节。
现在给出欲制造的N块木板的尺寸,你的任务是确定至少需要花多长时间调节机器。
时间复杂度要求实现O(N2)时间复杂度的算法。
本题算法的最优时间复杂度为Θ(NlogN)。
2 雷达安装问题描述在笛卡尔坐标系上,我们认为海岸线是x轴,陆地在x轴下方,海洋在x轴上方,而每个岛屿都认为是海中的一个点。
现在要在海岸线上安装一些雷达,雷达的覆盖半径为d。
如果某个岛屿与离它最近的雷达之间的距离不超过d,这个岛屿就被监视了。
现在有N个岛屿需要监视,给出这N个岛屿的坐标,你的任务是确定为了监视所有的岛屿至少需要安装多少个雷达。
时间复杂度要求实现Θ(NlogN)时间复杂度的算法,而这也是本题时间复杂度的下限。
3 修理牛棚问题描述农夫约翰的牛棚是N个房间一个紧挨着一个排成一行的结构,每个房间的宽度都是1。
在一个暴风雨的夜晚,牛棚所有的天花板都被吹走了。
好在许多牛正在度假,所以牛棚没有住满,有些房间里面有牛,有些没有。
一共有S (1≤S≤N)个房间是有牛居住的。
农夫约翰打算至少先把有牛居住的房间的屋顶修好。
他的木材提供商只愿意提供M块木板,但是每块木板都可以是任意长度的。
农夫约翰想知道他至少需要购买多长的木板才能把牛都盖住。
时间复杂度要求实现O(NlogN)复杂度的算法。
本题算法的最优时间复杂度为Θ(N)。