非牛顿流体)
- 格式:pptx
- 大小:1.79 MB
- 文档页数:18
什么是非牛顿流体公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]什么是非牛顿流体1 非牛顿流体的定义自然界最常见的流体以空气和水为代表,通常被认为是牛顿流体,熊老师在上课时讲过,它们的主要特征是切应力和切应变率之间的关系服从牛顿内摩擦定律或胡克定律,在流体力学的发展史上,经典流体力学的研究对象主要局限在牛顿流体的范畴,迄今为止已经形成了比较完整的理论体系。
但是,还有不少材料既不是虎克固体,也不是牛顿流体。
这些材料同时具有固体和流体的性质,哪种性质为主决定于进行观察时间的长短以及材料变形的大小。
有许多真实的材料样子像流体,即它们在受到应力时连续地改变它们的形状,但它们不能用牛顿关于常粘度的定律来描述,这类流体叫做非牛顿流体。
现在去医院作血液测试的项目之一,己不再是“血粘度检查”,而是“血液流变学捡查”(简称血流变),产生这样的变化就是因为血液不是牛顿流体,恒定不变的“粘度”不是它的一种属性。
牛顿于1687年发表了以水为工作介质的一维剪切流动的实验结果。
实验是在两平行平板间充满水时进行的,下平板固定不动,上平板在其自身平面内以等速U向右运动。
此时,附着于上、下平板的流体质点的速度,分别是U和0,两平板间的速度呈线性分布,斜率是粘度系数。
由此得到了着名的牛顿粘性定律。
斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量是应变率张量的线性函数、流体各向同性及流体静止时应变率为零的三项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及被广泛应用的N·S方程。
后来人们在进一步的研究中知道,牛顿粘性实验定律,对于描述像水和空气这样低分子量的简单流体是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与剪切应变率之间己不再满足线性关系。
为区别起见,人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。
2 常见的非牛顿流体早在人类出现之前,非牛顿流体就己存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体。
非牛顿流体非牛顿流体,又称假流体,是指在外力作用下其黏度随应力变化的物质。
相比牛顿流体,非牛顿流体在不同应力下表现出不同的流动行为,从而引发了许多有趣的研究和应用。
非牛顿流体的研究起源于物理学家艾萨克·牛顿对流体力学的研究中发现的其黏度不随剪切速率变化的物质,即牛顿流体。
然而,在实际应用中,许多流体并不符合牛顿流体的特性。
有些流体在剪切力作用下表现出凝固行为,这被称为剪切稀化;而另一些流体则表现出溶解行为,称为剪切稠化。
剪切稀化是指在外力作用下,一些非牛顿流体的黏度随着剪切速率的增加而减小。
这种流体的黏度随着外力的增加而发生变化,具有了一种可逆性。
这种流体的一个典型例子是玉米浆。
当玉米浆处于静止状态时,其黏度较高,表现出稠糊状;而当玉米浆受到剪切力作用时,其黏度会大幅度减小,变得更加流动。
剪切稠化则是指在外力作用下,一些非牛顿流体的黏度随剪切速率的增加而增加。
与剪切稀化相反,这种流体的黏度随着外力的增加而变得更加粘稠。
一个典型的例子是底漆涂料。
底漆涂料在施加较低的剪切力之前,呈现出较低的黏度,但随着施加的剪切力增加,其黏度会显著增加,变得更加粘稠。
非牛顿流体的研究对许多领域都有重要的应用价值。
例如在食品工业中,非牛顿流体的研究可用于改善食品的质感和口感。
通过调整非牛顿流体的黏度,可以改变食品的口感和浓稠度,从而提升食品的美观和口味。
此外,在油漆和涂料工业中,非牛顿流体的研究也具有重要的应用价值。
通过理解非牛顿流体的流动行为,可以控制油漆和涂料的黏度,从而提高涂层的质量和稳定性。
此外,非牛顿流体还可以应用于石油工业,例如在油井钻探和输送过程中,非牛顿流体可以提供更好的润滑和减少摩擦。
非牛顿流体的研究也为医学和生物学领域提供了许多有益的应用。
例如,在血液流变学中,非牛顿流体的研究可以帮助科学家更好地了解血液在血管中的流动行为,从而为心血管疾病的诊断和治疗提供依据。
此外,非牛顿流体的研究还可以应用于药物传输和药剂学中,以帮助科学家更好地设计给药系统,提高药物的传递效率和疗效。
非牛顿流体原理
非牛顿流体是指不符合牛顿流体力学的流体行为特征的流体。
与牛顿流体不同的是,非牛顿流体的粘度随应力变化而变化,即流体的流变性质与施加的剪切力有关。
非牛顿流体的一种经典示例是混凝土。
在施加剪切力之前,混凝土具有较高的粘度,表现出强烈的抗剪切性。
然而,一旦开始施加剪切力,混凝土的粘度会明显降低,出现流动的现象。
非牛顿流体的流变性质可以通过多种方式来说明。
其中一种常见的方式是使用黏度-剪切速率关系曲线(称为流变曲线)。
流变曲线描述了非牛顿流体的剪切应力与剪切速率之间的关系。
根据流变曲线的形状,非牛顿流体可以分为不可压缩流体和可压缩流体。
不可压缩非牛顿流体的黏度与剪切速率呈指数关系,即剪切速率越大,黏度越小。
可压缩非牛顿流体的黏度则与剪切速率的关系更为复杂,可能呈现出剪切变稀(剪切速率增加而黏度减小)、剪切变稠(剪切速率增加而黏度增大)甚至其他形式。
非牛顿流体的流变行为广泛应用于工程和科学领域。
例如,在油漆、涂料和胶水等工业中常用到的物料就是非牛顿流体。
理解和控制非牛顿流体的流变行为对于设计和制造高性能材料具有重要意义。
总之,非牛顿流体的流变性质与施加的剪切力有关,具有与牛
顿流体不同的特点。
通过对流变曲线的研究,我们可以更好地理解和应用非牛顿流体的特性。
非牛顿流体简介
非牛顿流体是一类具有特殊性质的物质,其粘度(流动性)不是恒定的,而是随着施加在物质上的应力或应变率的变化而变化。
与牛顿流体不同,牛顿流体的粘度在给定的温度和压力下是恒定的,例如水和空气。
非牛顿流体的行为无法用牛顿的粘度定律来描述,通常表现出更复杂的特性。
非牛顿流体可进一步分为以下几种类型:
1. 剪切稀化流体(或称拟塑性流体):这类流体的粘度随着剪切应力的增加而降低。
典型例子包括油漆和墨水,这使得它们在涂抹时更容易流动。
2. 剪切增稠流体(或称稠化流体):相对于剪切稀化流体,这类流体在施加剪切力时其粘度增加。
生活中的例子包括玉米淀粉和水的混合物,当快速搅拌这种混合物时,它会表现出像固体一样的性质。
3. 触变性流体:这类流体的粘度随时间变化,但这种变化是在特定的应力或剪切力作用下发生的。
一些油泥和胶体就属于这种类型,它们在搅拌后的一段时间内变得更加流动。
4. 视变性流体:这类流体在受到震动或振动时,其粘度会发生变化。
一些高分子溶液就属于这种类型。
非牛顿流体的这些特性使其在许多工业和科学应用中非常有用,从食品加工到高科技材料,再到医疗设备和消防领域都有应用。
研究这些材料的流变学特性有助于我们设计更出色的产品和工艺,以满足特定的应用需求。
非牛顿流体原理
非牛顿流体原理是指那些在外力作用下,其流动行为不遵循牛顿流体力学定律的物质。
与牛顿流体不同的是,非牛顿流体的粘度是随着应力变化而变化的,即其内部的粘滞力随剪切速率或剪切应力的不同而不同。
非牛顿流体可以分为剪切稀化流体和剪切增稠流体两种类型。
剪切稀化流体的粘度随着剪切应力的增加而减小。
这类流体的例子包括血液、果冻和塑料溶液等。
在剪切作用下,流体内部的微观结构会发生改变,使其粘度降低,流动性增强。
剪切增稠流体的粘度则随着剪切应力的增加而增加。
这类流体的例子包括淀粉水溶液、糊状物等。
在剪切作用下,流体内部的微观结构会形成或加强,使其粘度增大,流动性减弱。
非牛顿流体的存在和性质可以通过多种因素来解释,例如流体内部的多相结构、聚合物链的排列和交联等。
非牛顿流体的研究对于理解各种复杂的流体行为以及应用于各个工程领域具有重要意义。
总之,非牛顿流体的粘度随着剪切应力变化而变化,不符合牛顿流体的流动规律。
通过对非牛顿流体的研究,我们能够更好地理解和应用这些特殊的流体性质。
非牛顿型流体名词解释非牛顿型流体又称非牛顿流体是指流体中存在某些非牛顿流体的性质,使其黏度小于牛顿流体。
在油气井的生产过程中,经常遇到由于高温高压造成的大量低渗透率的油层或渗透率很小的油藏,在进行井下作业过程中需要借助于特殊钻头将井筒内钻屑清理干净以便实现油井生产,在此过程中可能会遇到油水界面过渡带和完井液堵塞造成井眼坍塌的情况,因此需要研究这两种情况对油气井影响的机理及解决办法,而低渗透率油藏一般具有较强的不稳定性,同时伴随着地应力和地层损伤效应,这些因素使得该类油藏具备了“黏弹性”,导致了该类油藏具有非牛顿流体的性质,即较低的黏度。
流体类型:黏性流体、高分子溶液、胶体等。
黏度:液体或气体在流动时所表现出的一种特性,用于描述液体或气体的一些性质。
若液体在固体中运动的难易程度叫做流动性,若气体或液体在空气中运动的难易程度叫做流动状态,若粘滞性是描述流体在运动时内部阻力的一种特性,那么他们的数值都是相等的,用a表示。
粘度是测定液体或气体粘滞性的物理量,指流体抵抗流动的能力。
在静止流体中测定,称为运动粘度;在流动流体中测定,称为动力粘度。
粘度是液体或固体内部各微粒间的内摩擦或分子间的吸引力,这种内摩擦或分子间的吸引力就是粘滞力,它使流体层之间或固体层之间产生相对运动。
黏度可分为动力粘度、运动粘度、相对粘度和条件粘度等,其中以运动粘度为最常用。
测量仪器:常用的粘度测量仪器有毛细管粘度计、蠕动泵粘度计和旋转粘度计。
21世纪是一个信息化的时代,人们利用网络进行交流已成为日常生活的主要方式,人们可以在网上与他人进行文字、图片、语音等多种形式的交流,但是人们并没有意识到其实交流也可以是另外一种形式——视频。
视频即是把图像、声音、文字等组合成视频文件。
在网上通过视频软件就可以看到自己想要观看的东西,视频广泛地应用于各个领域,如医疗诊断、教育培训、金融、旅游等。
视频技术还包括文件传输协议的定义、格式和视频的编码标准。
非牛顿流体什么原理
非牛顿流体是指在外力作用下,其黏度随着剪切速率的变化而发生改变的流体。
其独特的性质是由于其中包含了一些特殊的物质或结构。
一个常见的非牛顿流体是胶体,它由微小的颗粒悬浮在液体中形成。
这些颗粒之间的相互作用会阻碍其流动。
当无外力作用时,胶体呈现固态的特性,黏度很高。
但是一旦外力施加在胶体上,颗粒之间的排列发生改变,使得黏度减小,流动性增加。
另一种非牛顿流体是溶液中的高分子聚合物。
这些聚合物的长链会在液体中交错,形成类似网状结构。
当外力施加在聚合物上时,链之间的空间发生改变,使得液体黏度的大小随着剪切速率的变化而变化。
非牛顿流体的黏度随剪切速率的变化可以通过多种模型来解释。
其中最常用的是幂律模型和赫氏模型。
幂律模型描述了流体黏度与剪切速率之间的幂函数关系,而赫氏模型则是通过描述流体中的分子结构变化来解释黏度的变化。
非牛顿流体的这种特殊性质在很多领域中有着广泛的应用,例如生物学中的血液流动、化工工艺中的胶体悬浮液体输送等。
了解非牛顿流体的原理和性质对于这些应用的研究和优化具有重要的意义。