电磁干扰滤波器的构造原理与应用
- 格式:doc
- 大小:34.50 KB
- 文档页数:13
电子知识随着电子设备、运算机和家用电器的大量涌现与普遍普及,电网干扰正日趋严峻并形成一种公害,因为那个干扰可致使电子设备无法正常工作。
专门是瞬态电磁干扰,其电压幅度高、上升速度快、持续时刻短、随机性强、容易对数字电路产生严峻干扰,常令人们防不胜防,这已引发国内外电子界在高度重视。
电磁干扰滤波器(EMI FILTER)亦称电源噪声滤波器,是最近几年来被推行应用的一种组合器件,它能有效的抗击电网噪声,提高电子设备的抗干扰能力系统的靠得住性。
因此,被普遍应用于智能化温度测控系统、电子测量仪器、运算机机房设备、开关电源等领域。
一、电磁干扰滤波器的构造原理及应用一、构造原理二、大体电路及典型应用二、电磁干扰滤波器的技术参数及测试方式一、要紧技术参数IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方式,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时刻及输入负载等参数,超级适合做振荡和串扰等高频效应计算与仿真。
IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并非说明这些被记录参数如何利用,这些参数需要由利用IBIS模型仿真工具来读取。
欲利用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方式;提供用于仿真可被运算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。
IBIS模型优势能够归纳为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方式更快仿真速度;可用于系统板级或多板信号完整性分析仿真。
可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。
IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情形上升时刻条件下信号行为及一些用物理测试无法解决情形;模型能够免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界普遍仿真平台。
电磁干扰滤波器的工作原理
电磁干扰滤波器(EMI滤波器)是一种用来消除电磁噪声干扰的装置。
它的作用是将输入信号中的高频噪声信号滤除或降低到可以接受的水平,同时保持信号的原始形式。
EMI 滤波器被广泛用在各种电子设备中,包括计算机、电视、无线电、电话等等。
EMI滤波器有不同的工作原理,其中最常见的三种是:电感滤波、电容滤波和复合滤波。
下面将详细介绍每种原理的具体工作方式。
1. 电感滤波
电感滤波是最基本的滤波器类型。
电感是一种电流变化率导致的反应阻力,具有阻抗的特性。
当电流通过电感时,电感会产生一个反向电势,这可以用来抵消高频噪声电流。
电感滤波器的基本构件是一个电感线圈和一些固定电容器。
具体来说,当滤波器输入一个信号时,电感线圈会产生一个反向电势,这会使电感上的高频噪声电流减少。
然后,固定电容器将剩余的高频信号滤除,只保留低频信号。
3. 复合滤波
复合滤波结合了电感和电容的滤波原理。
它包括两个或多个电容和电感线圈。
当电容和电感线圈在一起运作时,它们能够消除更高级别的音频信号干扰。
复合滤波器也可以被称为双滤波器。
当输入信号从电容进入电感时,高频噪声信号会被抵消。
然后,低频信号通过第二个电容器时进一步过滤,以确保所有高频噪声信号被滤除。
最终,输出信号被传送到设备输出端口。
综上所述,以上三种工作原理是EMI滤波器用来消除高频噪声干扰信号的主要方式。
在实际应用中,EMI滤波器常常结合多种滤波原理使用,以确保设备的稳定性和可靠性。
汽车电磁干扰滤波器原理
汽车电磁干扰滤波器的原理是通过对电磁信号进行滤波和抑制,从而减少或消除汽车电子系统中的干扰。
具体原理如下:
1. 电磁信号传播路径阻断:滤波器通过选择合适的电阻、电容、电感等元件,将电磁信号的传播路径进行阻断,使其无法干扰到汽车电子系统。
2. 电磁信号频率选择性:滤波器通过选择合适的频率范围进行滤波,只允许特定频率范围内的信号通过,而将其他频率范围的信号进行抑制。
这样可以过滤掉大部分干扰信号,提高系统对于有用信号的接收和处理能力。
3. 返还干扰信号:滤波器可以通过适当的配置,将一部分干扰信号返还给电源线路或其他终端,使其不会影响到汽车电子系统。
这种方法也被称为“反射型”滤波器。
4. 地线隔离:滤波器还可以通过在地线上增加隔离元件,将地线与电源线路隔离开来,从而防止地线上的干扰信号影响到电源线路。
综上所述,汽车电磁干扰滤波器通过选择合适的滤波元件和配置方式,可以有效地减少或消除汽车电子系统中的电磁干扰。
EMI滤波器的设计原理2008-06-04 19:17电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。
它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。
1 电磁干扰滤波器的构造原理及应用1.1 构造原理电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。
根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。
这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。
若从形成特点看,噪声干扰分串模干扰与共模干扰两种。
串模干扰是两条电源线之间(简称线对线)的噪声。
共模干扰则是两条电源线对大地(简称线对地)的噪声。
因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
此外,电磁干扰滤波器就对串模、共模干扰都起到抑制作用.1.2 基本电路及其典型应用电磁干扰滤波器的基本电路如图1所示。
该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。
电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
L的电感量与EMI滤波器的额定电流I有关,参见表1。
需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。
此外,适当增加电感量,可改善低频衰减特性。
电磁干扰滤波器的应用原理1. 电磁干扰滤波器简介电磁干扰滤波器是一种用于减少电子设备中电磁干扰的装置。
它通过滤除不必要的电磁信号,降低设备间的相互干扰,以提高设备的可靠性和性能。
2. 电磁干扰滤波器的工作原理电磁干扰滤波器的工作原理基于以下几个方面:2.1 滤波器组件电磁干扰滤波器主要由以下几个组件组成:•电容器:用于阻止高频电磁干扰信号通过,将其短路到地。
•电感器:用于阻断高频电磁干扰信号,将其引流到地。
•滤波器之间的连接线:用于连接滤波器组件,构成一个完整的滤波器电路。
2.2 工作原理当电子设备产生干扰信号时,这些干扰信号会通过设备的电源线、通信线等传播到其他设备中,造成相互干扰。
电磁干扰滤波器通过将电容器和电感器连接在电源线或通信线上,起到滤除干扰信号的作用。
电容器阻止高频干扰信号通过,将其短路到地;电感器阻断高频干扰信号,将其引流到地。
通过这样的组合和连接方式,滤波器可以有效地减少干扰信号的传播。
3. 电磁干扰滤波器在电子设备中的应用电磁干扰滤波器广泛应用于各种电子设备中,包括但不限于:3.1 电源线滤波器电源线滤波器用于降低电源线上的电磁干扰,以保证设备正常运行。
它通常被放置在设备的电源输入端,能够有效滤除电源线上的高频噪声信号。
3.2 通信线滤波器通信线滤波器用于减少通信线上的电磁干扰,以提高通信的可靠性和稳定性。
它通常被放置在通信线的两端,阻隔外界的干扰信号。
3.3 视频信号滤波器视频信号滤波器用于减少视频信号中的噪声和杂波,以提高视频质量。
它通常被放置在视频信号输入端或输出端,用于滤除干扰信号。
3.4 射频滤波器射频滤波器用于滤除射频信号中的杂散干扰,以保证无线通信的质量。
它通常被放置在射频信号输入或输出端,用于滤除干扰信号。
4. 电磁干扰滤波器的选择和安装4.1 选择滤波器的参数选择适当的滤波器,需要考虑以下几个参数:•频率范围:不同设备的干扰频率范围不同,需要根据实际情况选择合适的滤波器频率范围。
电磁干扰滤波电容器使用方法与作用电磁干扰是一种常见的干扰现象,长期以来一直困扰着无线通信、计算机、医疗等领域的工程师和用户。
为了降低电磁干扰的影响,工程师们常常会采用电磁干扰滤波电容器。
本文将简要介绍电磁干扰滤波电容器的使用方法和作用。
一、电磁干扰滤波电容器的概念电磁干扰滤波电容器,又称电容式噪声滤波器,是一种抑制电磁干扰的器件。
它可以将电路中不希望的高频噪声信号直接短路至地,从而有效防止噪声信号对其他电路的干扰。
二、电磁干扰滤波电容器的使用方法1、选择合适的电容值电磁干扰滤波电容器的电容值一般在几微法到数百微法之间,具体值需要根据实际电路的特点来选择。
一般来说,电路中的电容值越大,其滤波效果就越好,但是过大的电容值也会对电路产生负面影响。
2、放置位置的选择电磁干扰滤波电容器一般应放置在电源端,即电源的正电极与地之间。
如果电源只有一个极性,就只在该极性钎接电容器,如果是双极性电源,则在正负两极性钎接电容器。
3、并联电容器在某些情况下,一个电磁干扰滤波电容器可能无法完全抑制电磁干扰。
这时,可以采用并联电容器来增强滤波效果。
三、电磁干扰滤波电容器的作用1、抑制电磁干扰电磁干扰滤波电容器可以将电路中的高频噪声信号直接短路至地,从而有效抑制电磁干扰,保护其他电路的正常运行。
2、提高系统抗干扰能力电磁干扰滤波电容器用于电路设计中,可以提高系统的抗干扰能力,保证系统的稳定性和可靠性。
3、保护设备电磁干扰滤波电容器可以有效地保护设备,降低电子器件的失效率,提高设备的使用寿命。
四、总结电磁干扰滤波电容器是电路设计中常用的一种抗干扰器件。
使用时需要选择合适的电容值和放置位置,对于那些对于只通过一个电容器无法完全抑制干扰的电路,采用并联电容器可以增强滤波效果。
在实际应用中,电磁干扰滤波电容器可以抑制电磁干扰,提高系统抗干扰能力,保护设备等。
EMI滤波器的设计原理随着电子设备、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。
特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。
电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。
它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。
1 电磁干扰滤波器的构造原理及应用1.11 构造原理电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。
根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。
这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。
若从形成特点看,噪声干扰分串模干扰与共模干扰两种。
串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。
因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。
1.2 基本电路及典型应用电磁干扰滤波器的基本电路如图1所示。
该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。
电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
电磁干扰(EMI)滤波器电路1、功能定义所谓电磁干扰(EMI),是因电磁波造成设备、传输通道或系统性能降低的一种电磁现象。
EMI以辐射和传导两种方式传播。
辐射方式:能量通过磁场或电场耦合,或以干扰源与受扰设备间的电磁波形式传播。
传导方式:能量通过电源线、数据线、公共地线等而产生或接收。
传导干扰有差模(DM对称模式)和共模(CM非对称模式)两种类型。
目前抑制EMI的技术措施有屏蔽、接地(浮地、单点接地和接地网)与滤波。
我这里所说的即为滤波电路,它主要用于高频开关电源和电子镇流器的输入回路及电源的输出回路中中。
该电路用于滤除电源的输入和输出的噪声(150kHz~30MHz),消减对直流稳压电源的传导干扰。
2、适用范围A、CISPR标准(电机、家用电器、照明设备等射频干扰设备)B、VDE0871标准(有目的的高频波发生器的电磁兼容标准)C、FCC标准(工业、科学、医疗设备的电磁兼容标准)D、VCCI标准(在工业和商业区使用的家用电器及其类似装置)3、设计规范3.1 电路原理图及其描述该电路主要对输入进行滤波,削弱对稳压电源或电子镇流器的输入的传导干扰。
其中,C1、C2和C4、C5及Lc用于滤除共模噪声,C3和C6用于滤除差模噪声。
输出端一般接一电解电容,负载电流大时还需接高频电容,用于消除负载端对输入的噪声干扰。
C1=C2、C4=C5、C3=C6,Lc=(7~30)mH、磁材使用铁氧体材料。
EMI滤波器有C型(纯电容)、L型(一个电感和一个电容)、T型(两只电感和一个电容)、π型(一个电感和两只电容)、双π型(对称绕在同一磁芯上的两个电感和两只电容)等。
上图中电路为最常用的电路(至少对我来说,呵呵~~。
电动机的电磁干扰与滤波器设计优化电动机的电磁干扰问题一直以来都是工程师们关注的焦点之一。
电动机在运行过程中会产生较大的电磁辐射,对周围的电子设备和通信系统造成干扰,严重的甚至会导致设备的正常工作受阻。
因此,电机技术领域一直在研究如何有效减少电动机的电磁干扰,并提出了滤波器设计优化的解决方案。
一、电动机电磁干扰的产生原因电动机的电磁干扰主要是由于电机内部的电流变化引起的。
当电动机启动、停止或调速时,其电流波形会发生变化,从而产生电磁波。
除此之外,电动机的转子运转时,也会产生磁场的变化,进一步引起电磁干扰。
这些干扰信号会通过电源线、信号线等途径传播到其他设备或系统,造成干扰。
二、电磁干扰的影响电动机的电磁干扰会对电子设备和通信系统产生不同程度的影响,主要表现在以下几个方面:1. 降低设备的抗干扰性能:电磁干扰信号会干扰其他设备的正常工作,使其抗干扰性能下降,影响设备的稳定性和可靠性。
2. 损坏电子元器件:电磁干扰信号的能量较大,可能造成电子元器件的损坏,减少设备的寿命。
3. 无线电干扰:电磁干扰信号传播到通信系统或无线电设备中,会产生杂音、信号丢失等问题,影响通信质量。
4. 电磁辐射:电动机的电磁干扰信号会产生辐射,对人体健康和周围环境造成潜在威胁。
三、滤波器在电磁干扰控制中的作用滤波器是一种常见的电磁干扰控制手段,通过设计合理的滤波器可以有效减少电动机产生的电磁干扰。
滤波器的主要作用是将电机输出端的高频噪声滤除,使输出电压变为纯净的正弦波形。
滤波器通过对电机产生的电磁干扰信号进行滤波,降低其幅值和频率范围,从而减少对其他设备和系统的干扰。
四、滤波器设计优化的方法为了提高滤波器的滤波效果,需要进行设计优化。
以下是一些常用的滤波器设计优化方法:1. 选择合适的滤波器类型:根据电动机产生的干扰频率范围选择合适的滤波器类型,如低通滤波器、带通滤波器等。
2. 电感和电容的选取:通过合理选择电感和电容的数值,可以提高滤波器的频率响应和滤波效果。
电磁环滤波的原理和应用概述电磁环滤波是一种常见的电磁干扰抑制方法,它通过利用电磁环的特殊结构和材料特性来滤除或减弱电磁干扰信号。
本文将介绍电磁环滤波的基本原理和应用场景。
原理电磁环滤波的原理基于电磁感应和电磁波传播的特性。
当电磁信号经过电磁环时,由于电磁感应的作用,电磁环内部会产生感应电流,这些感应电流会根据电磁环的特殊结构和材料特性,将电磁干扰信号滤除或减弱。
具体原理如下:1.电磁波传递:电磁波在空间中传播时,会遇到各种障碍物和材料,这些障碍物和材料会对电磁波的传播产生影响。
电磁环作为一种障碍物,可以通过其特殊的结构和材料特性,影响电磁波的传播。
2.电磁感应:当电磁波通过电磁环时,由于电磁感应的作用,电磁环内部会产生感应电流。
这些感应电流会根据电磁环的结构和材料特性,抵消或减弱进入电磁环的电磁干扰信号。
3.滤波效果:通过调整电磁环的结构和材料特性,可以实现对特定频率范围内的电磁干扰信号的滤波效果。
不同的电磁环结构和材料特性可以实现不同的滤波效果。
应用场景电磁环滤波在电子设备、通信系统、医疗设备等领域有广泛的应用。
以下是几个常见的应用场景:1.电子设备:电子设备中常需对电磁干扰进行抑制,以确保设备的正常工作。
电磁环滤波器可以在电路板上部署,对进入设备的电磁干扰信号进行滤波,从而保障设备的性能和可靠性。
2.通信系统:通信系统中,电磁干扰是影响通信质量和稳定性的重要因素。
电磁环滤波器可以在通信线路、天线等设备上应用,有效减弱接收和发送信号中的电磁干扰,提高通信质量和稳定性。
3.医疗设备:医疗设备对电磁环境要求较高,需要防止外部电磁干扰对设备的影响。
电磁环滤波器可以应用在医疗设备中的电源线路、传感器等组件上,有效减少电磁干扰的影响,保障医疗设备的准确性和可靠性。
优势和不足电磁环滤波器相比其他电磁干扰抑制方法,在一些情况下具有以下优势:•简单易用:电磁环滤波器结构简单,制造成本低,易于安装和维护。
•宽频带性能:电磁环滤波器在特定频率范围内具有较好的滤波效果,可以适用于多种频率的电磁干扰信号。
汽车电磁干扰滤波器原理
汽车电磁干扰滤波器的原理是通过滤波器中的电路元件对传导和辐射的电磁干扰信号进行滤除,保障汽车电子设备的正常运行。
汽车电磁干扰滤波器的核心元件是滤波器电感和滤波器电容。
滤波器电感主要通过其自身的电感作用来阻止高频干扰信号的通过,使之沿着滤波器的负载回路流入地,并将地抗作为自身的外界。
滤波器电感的电感值越大,其对于高频干扰信号的阻止作用就越强。
滤波器电容主要通过其自身的电容作用来将高频干扰信号引入,使其能够流入地,并将地电容作为自身的外界。
滤波器电容的电容值越大,其对于高频干扰信号的引入作用就越强。
滤波器电感和滤波器电容联合起来使用,可以有效地滤除汽车系统中的电磁干扰信号。
同时,在选用滤波器电感和滤波器电容时,也需要根据具体的应用需求和系统特点进行调整和选择,以达到滤波效果的最优化。
电动机的电磁干扰与滤波器设计随着电动机在各个领域的广泛应用,电磁干扰问题逐渐引起人们的重视。
电动机的正常工作会产生一定的电磁干扰,这种干扰可能对周围的电子设备造成不良影响。
为了解决这一问题,设计滤波器成为一种常见的方法。
本文将探讨电动机的电磁干扰问题以及滤波器的设计原理与方法。
一、电动机的电磁干扰原因电动机的电磁干扰主要由以下几个方面产生:1. 电源线谐波干扰:电动机的工作过程中,会引起电源线上谐波电流的流动,这些谐波电流通过电源线传播到其他电子设备中,产生干扰。
2. 电动机的辐射干扰:电动机在运行中会产生高频辐射,这些辐射信号可以通过空气传播到其他设备中,引起干扰。
3. 电动机的传导干扰:电动机内部的电磁干扰信号可以通过电源线、信号线等传导到其他设备中,造成干扰现象。
二、滤波器的设计原理滤波器是一种用于抑制电磁干扰的设备,其设计原理基于滤除电动机所产生的干扰信号。
常见的滤波器设计原理包括:1. 低通滤波器:低通滤波器可以滤除高频信号,阻止高频干扰信号进入被干扰设备。
它通过设置合适的截止频率,使高频信号被削弱或者滤除。
2. 阻抗匹配滤波器:阻抗匹配滤波器通过设计合适的阻抗来阻隔电磁干扰信号的传导路径,减少传导干扰。
3. 带通滤波器:带通滤波器可以选择性地通过某个频率范围内的信号,抑制其他频率的信号。
它可以针对电动机产生的特定频率信号进行滤波。
三、滤波器的设计方法滤波器的设计方法可以根据具体情况进行选择,下面介绍一些常见的设计方法:1. 降低电动机的电磁辐射强度:通过合理的电机设计和隔离措施,减少电动机产生的电磁辐射。
例如,采用磁屏蔽、外壳接地等方法来减少电磁辐射。
2. 优化电动机的绕组结构:通过设计合适的绕组结构和绝缘措施,减少电动机内部的干扰信号传导到其他设备中。
例如,采用特殊的绝缘材料、减少绕组的分布电容等方法。
3. 使用合适的滤波器:根据电动机产生的干扰信号的特点,选择适合的滤波器进行应用。
EMI滤波器的设计原理1 电磁干扰滤波器的构造原理及应用1.1 构造原理1.2 基本电路及其典型应用电磁干扰滤波器的基本电路如图1所示。
电磁干扰的屏蔽方法EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。
电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEE C63.12-1987)。
”对于无线收发设备来说,采用非连续频谱可部分实现EMC性能,但是很多有关的例子也表明EMC并不总是能够做到。
例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。
EMC问题来源所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。
EMI有两条途径离开或进入一个电路:辐射和传导。
信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源 .... .、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。
很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。
EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。
对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。
如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。
无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。
金属屏蔽效率可用屏蔽效率(SE)对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为SE dB=A+R+B其中A:吸收损耗(dB) R:反射损耗(dB) B:校正因子(dB)(适用于薄屏蔽罩内存在多个反射的情况)一个简单的屏蔽罩会使所产生的电磁场强度降至最初的十分之一,即SE等于20dB;而有些场合可能会要求将场强降至为最初的十万分之一,即SE 要等于100dB。
电磁干扰滤波电容器的使用方法概要电磁干扰滤波电容器的使用方法概要随着现代电子技术的迅猛发展,我们的生活中越来越多的电子设备和电子产品,而这些设备和产品都需要进行电磁兼容性(EMC)测试,以保证它们正常工作并不会对周围的电磁环境造成影响。
其中,电磁干扰滤波电容器作为一种常见的电子元器件,被广泛应用于电磁兼容性测试中。
电磁干扰滤波电容器是一种用于抑制电磁噪声和电磁干扰的元器件,其作用是将电路中的高频干扰滤除,使电子设备和产品不受到电磁波的干扰。
因此,在电磁兼容性测试中,其使用方法十分重要。
首先,我们需要了解电磁干扰滤波电容器的基本原理。
电磁干扰滤波电容器是通过其本身的特性来抑制高频噪声的传播和干扰。
其内部结构是一对薄金属箔片和介质材料,当交流信号经过电容器时,会通过箔片与介质之间的电场来滤除高频噪声。
其次,我们需要选择合适的电磁干扰滤波电容器。
在选择电磁干扰滤波电容器时,需要考虑到电容器的电容值、额定电压、尺寸等参数。
一般来说,电容值越大,电压等级越高的电容器对于抑制高频噪声的效果越好,但也会带来更高的成本和更大的尺寸。
因此,根据电子设备和产品的实际情况来选择合适的电磁干扰滤波电容器是非常必要的。
然后,我们需要正确安装电磁干扰滤波电容器。
在安装电磁干扰滤波电容器时,需要注意以下几点:1. 确保电容器的极性正确,一般来说电容器上会标记有正负极;2. 尽可能地缩短电容器的引线长度,以减小电容器的电感;3. 在电路板上尽量靠近噪声源、或靠近电磁干扰物的位置安装电容器,这样可以将噪声滤除在本身形成的环境内;4. 在同一电路中,可以多个电容并联使用,以获得更好的抑制效果。
最后,我们需要进行电磁兼容性测试。
在进行电磁兼容性测试时,需要使用专业的测试设备(如干扰发生器、电磁场探头等),根据具体的测试要求、场景和参数来进行测试。
测试过程中,可以通过优化电磁干扰滤波电容器的安装位置、增加电容数量等方法来提高电磁兼容性测试的效果。
电子知识随着电子设备、计算机和家用电器的大量涌现与广泛普及,电网干扰正日益严重并形成一种公害,因为这个干扰可导致电子设备无法正常工作。
特别是瞬态电磁干扰,其电压幅度高、上升速率快、持续时间短、随机性强、容易对数字电路产生严重干扰,常使人们防不胜防,这已引起国内外电子界在高度重视。
电磁干扰滤波器(EMI FILTER)亦称电源噪声滤波器,是近年来被推广应用的一种组合器件,它能有效的抵制电网噪声,提高电子设备的抗干扰能力系统的可靠性。
因此,被广泛应用于智能化温度测控系统、电子测量仪器、计算机机房设备、开关电源等领域。
一、电磁干扰滤波器的构造原理及应用1、构造原理2、基本电路及典型应用二、电磁干扰滤波器的技术参数及测试方法1、主要技术参数IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。
IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。
欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。
IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。
可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。
IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。
IBIS模型核由一个包含电流、电压和时序方面信息列表组成。
IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。
非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。
实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。
大多数器件IBIS模型均可从互联网上免费获得。
可以在同一个板上仿真几个不同厂商推出器件。
IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。
IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。
欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。
IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。
可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。
IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。
IBIS模型核由一个包含电流、电压和时序方面信息列表组成。
IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。
非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。
实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。
大多数器件IBIS模型均可从互联网上免费获得。
可以在同一个板上仿真几个不同厂商推出器件。
IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。
IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。
欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。
IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。
可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。
IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。
IBIS模型核由一个包含电流、电压和时序方面信息列表组成。
IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。
非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。
实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。
大多数器件IBIS模型均可从互联网上免费获得。
可以在同一个板上仿真几个不同厂商推出器件。
IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。
IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。
欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。
IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。
可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。
IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。
IBIS模型核由一个包含电流、电压和时序方面信息列表组成。
IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。
非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。
实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。
大多数器件IBIS模型均可从互联网上免费获得。
可以在同一个板上仿真几个不同厂商推出器件。
IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。
IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。
欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。
IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。
可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。
IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。
IBIS模型核由一个包含电流、电压和时序方面信息列表组成。
IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。
非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。
实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。
大多数器件IBIS模型均可从互联网上免费获得。
可以在同一个板上仿真几个不同厂商推出器件。
IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。
IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。
欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。
IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。