浅析地下水对工程建设的影响及对策
- 格式:doc
- 大小:30.00 KB
- 文档页数:3
地下水对工程建设的影响解析摘要:地下水会以其水位、流动性等多方面因素对工程建设产生影响。
本文主要对降低地下水位引起地基沉降,地下水的不合理流动引起流沙和机械潜蚀,地下水对位于其下的建筑产生浮托作用以及地下水对混凝土的腐蚀等问题作论述。
关键词:地下水流动;钢筋混凝土腐蚀;沉降;流沙和潜蚀引言地下水水位、静压及动压、地下水中所含离子及化合物是影响建筑工程的主要因素。
在工程建设中,要尽可能降低其对工程的伤害。
1、地下水位与沉降作用在进行基础建设的过程中,特别是在沿海地区。
深基础建设会碰到地下水位过高的问题,这时就要人工降低地下水位。
如果降水所采取的措施不正确,随着时间的延续,外荷不变空隙水不断外排,导致发生地基固结沉降。
抽水井的设计不合理在井内水位下降的同时,周围的地下水会向抽水井中流。
形成漏斗。
由于水的流动没有规律性,这样形成的漏斗状结构往往是不对称分布的。
因而承压能力也是不均匀的。
这样就造成了地基的沉降。
固结沉降会引发地表建筑的不均匀下沉,影响到建筑物的结构改变,比如,主承重墙断裂、倾斜、倒塌,框架结构的会出现框架的断裂、塌落等。
由于人工降低地下水位时的不合理施工引发的地基沉降带来的影响是巨大的。
因此在施工过程中,要充分考虑底层结构,施工设备等多方面因素,力求避免或降低其对工程的影响。
[1]2、动水压力与流砂和机械潜蚀动水压力是指地下水进行渗流时,作用在单位体积土颗粒上的力[2]。
地下水流动时的动水压等于土体的重度时,由于达到平衡,土颗粒之间的力就不复存在。
土颗粒处于不受力的漂浮状态。
这是流砂形成的临界状态,固此时的水力坡度称为临界水力坡度。
流沙根据其严重程度可分为轻微,中等,重度流沙三类。
流沙对建筑工程的危害是从地基处开始。
在基础施工中,如果没有解决好这一问题,基础就会和砂层一起发生流动。
这样,基础的持力层就会发生变化。
上层建筑就会发生滑移,这对建筑的危害是很大的。
如果渗流水力坡度小于临界水力坡度,土中的细小颗粒也会被地下渗流带走形成孔洞。
浅谈地下水作用对工程建筑物的影响摘要:地下水常构成工程建设的不利因素,对地质环境和建筑物的低级稳定性均产生影响。
地下水可使地基软化,降低地基承受力;地下水常常是滑坡、地面沉降和地面塌陷的主要原因。
因此,为了确保工程建设的安全和稳定,研究地下水对工程建设的危害和防治措施十分有必要。
关键词:地下水工程建筑物基坑防治1、地下水的物理和化学性质由于地下水在运动过程中与各种岩土体相互作用,而岩土中的可溶性物质(很多是矿物)随水迁移、聚集,使地下水成为一种复杂的溶液,这种复杂的地下水溶液通常具有温度、颜色、透明度、气味、味道和导电性等等的物理性质。
在地下水中常见的气体有:O2、N2、H2S、CO2等,地下水中气体分子能够很好地反映地球化学环境。
地下水中含有的离子有:地下水中含量最多、分布最广的离子有七种,即:Cl-、SO2-4、HCO3-、Na+、K+、Ca2+、Mg2+。
地下水中的化合物有:Fe2O3、Al2O3、H2SiO3等。
由于地下水具有如上的物理性质和化学成分,因此在地下水中通常具有如下的化学性质:①.地下水的矿化度。
②.地下水的酸碱度。
③.地下水的硬度。
④.地下水的侵蚀性,具体地说,即为侵蚀性的CO2和游离的CO2。
另外,SO2-4与混凝土中的某些成分相互作用,生成含水硫酸盐结晶,体积膨胀,使混凝土结构破坏,,也称为结晶式侵蚀。
另外,镁盐和混凝土中的Ca(OH)2作用,形成Mg(OH)2和易溶于水的CaCl2,而使混凝土结构破坏。
2、地下水对工程建筑的危害①.地下水位的变化,对工程建筑的危害影响极大,如地下水位上升,可引起浅基础地基承载力的降低,在有地震砂土液化的地区会引起液化的加剧,岩土体产生变形、滑移、崩塌失稳等不良的地质作用。
再有,在寒冷地区产生地下水的冻胀影响。
其实就建筑物本身而言,若是地下水位在基础底面以下压缩层内发生上升变化,水浸湿和软化岩土,因而使地基土的强度降低,压缩性增大,建筑物则会产生过大的沉降,导致地基严重变形。
地下水对地铁工程的影响及防治对策研究地下水是指位于地表下方自由渗透的水。
在地铁工程中,地下水的存在和流动对工程建设和运行产生着重要的影响。
本文将探讨地下水对地铁工程的影响,并提出相应的防治对策。
地下水对地铁工程的影响主要表现在以下几个方面:1. 工程建设影响:地铁施工过程中,需要进行地表开挖和地下挖掘等工程活动,这些活动会破坏地下水的平衡状态,导致水位下降或上升。
特别是在地势低洼地区,地下水脆弱性较高,更容易受到影响。
2. 结构稳定问题:地下水的流动会对地铁隧道和车站结构的稳定性产生影响。
地下水对砂土地层具有一定的冲刷和侵蚀作用,可能引起土体松动和沉降,进而对地铁隧道和车站等工程结构造成不可预测的损害。
3. 地下设备受损:地铁线路穿越地下水域时,地下水渗漏可能导致线路隧道和设备受潮腐蚀,进而影响地铁设备的正常运行。
1. 地下水监测:在地铁工程建设过程中,应进行地下水监测,及时掌握地下水位的变化情况。
通过监测数据分析,可以判断地下水对工程的影响程度,提前采取相应的措施。
2. 工程水封:在施工过程中,采取合理的施工方案和水密封技术,阻止地下水的渗入。
可采用水封帷幕、注浆技术等手段,阻隔地下水渗漏,保护地铁工程安全。
3. 排水处理:对于地铁隧道和车站等地下工程,在建设前应进行充分的排水处理,将地下水排出,保持工程周边的地下水位稳定。
应建立排水系统,及时排除地下水,避免工程进水问题。
4. 设备防护:对于地铁线路穿越地下水域的区段,应采取合理的设备防护措施。
可以选择耐腐蚀的材料,加强设备维护和保养,减少地下水对设备的损害。
地下水对地铁工程产生的影响是一个复杂的问题,需要综合考虑地区的地质条件、水文特征和工程建设需求等因素,并制定相应的防治对策。
通过合理的规划和科学的管理,可以减轻地下水对地铁工程的影响,确保工程的顺利建设和安全运营。
地下水位变化对城市建设与发展的影响分析1. 前言地下水位是指地下水面与地面之间的垂直距离,是城市发展中重要的自然资源之一。
地下水位的变化对城市建设与发展具有重要影响。
本文将分析地下水位变化对城市建设与发展的影响,并探讨相应应对措施,以期为城市规划和管理提供参考。
2. 地下水位变化对城市建设的影响2.1 城市供水地下水是重要的饮用水和工业用水来源之一。
当地下水位降低时,城市供应用水将受到限制,可能导致供应不足和质量问题。
为了满足日益增长的需求,可能需要增加抽取量或开采新的深层地下水资源,这将增加成本并可能引发环境问题。
2.2 土壤稳定性地下水起到维持土壤稳定性和支撑建筑物基础的作用。
当地下含水层降低时,土壤会失去饱和状态,导致土壤干燥收缩、沉陷或坡面滑动等问题。
这将对城市建筑物的稳定性和安全性产生不利影响,可能引发建筑物倾斜、裂缝和损坏等问题。
2.3 地下工程施工地下水位的变化对地下工程施工具有重要影响。
当地下水位较高时,施工过程中可能会遇到水涌、涌泉和渗流等问题,增加了施工难度和风险。
而当地下水位较低时,可能会导致基坑围护结构失稳、坍塌等安全问题。
3. 地下水位变化对城市发展的影响3.1 生态环境地下水是维持生态环境平衡的重要组成部分。
当地下水位降低时,湿地、河流和湖泊等生态系统将受到损害。
这将导致生物多样性减少、湿地退化以及河流干涸等问题,进而影响城市周边的生态环境质量。
3.2 土地利用地下水位变化也会对土地利用产生重要影响。
当地下水位降低时,原本适宜农业或园林绿化的土壤可能变得干燥贫瘠,限制了土地的利用价值。
此外,地下水位下降还可能导致土壤盐碱化和水土流失等问题,进一步限制了土地的可持续利用。
3.3 经济发展地下水位变化对城市经济发展也具有重要影响。
一方面,地下水位降低可能导致农田灌溉条件恶化,影响农业生产。
另一方面,供水受限和土壤稳定性问题也会对工业生产和城市建设带来不利影响。
这将制约城市经济的可持续发展。
地下水对工程建设的影响【摘要】地下水是水资源的重要组成部分。
生产、生活与工程建设使得地下水发生变化,一定条件下,也会引起沼泽化、盐渍化、滑坡等不利自然现象,在工程建设中还会产生地面沉降、地面塌陷、流砂、管涌、浮托作用、基坑突涌以及对钢筋混凝土的腐蚀作用等现象,因此,了解和掌握地下水的不利影响对工程建设有着重大的意义。
【关键词】工程建设;地下水;影响;防治措施一、前言。
地下水作为地球上重要的水体,与人类社会有着密切的关系。
地下水的贮存有如在地下形成一个巨大的水库,以其稳定的供水条件、良好的水质,而成为农业灌溉、工矿企业以及城市生活用水的重要水源,成为人类社会必不可少的重要水资源,尤其是在地表缺水的干旱、半干旱地区,地下水常常成为当地的主要供水水源。
生产、生活与工程建设使得地下水发生变化,在工程建设中,会引起地面沉降、地面塌陷、流沙、管涌、浮托作用、基坑突涌以及对钢筋混凝土的腐蚀作用等现象。
下面主要介绍了地下水对工程建设的不利影响、产生原因以及防治措施。
二、地下水对工程建设的不利影响、产生原因以及防治措施。
1、地面沉降在松散沉积层中进行深基础施工时,往往需要人工降低地下水水位。
若降水不当,会使周围地基土层产生固结沉降,轻者造成邻近建筑物或地下管线的不均匀沉降;重者使建筑物基础下的土体颗粒流失,甚至被掏空,导致建筑物开裂和危及安全。
如果抽水井滤网和砂滤层的设计不合理或施工质量差,则抽水时会将软土层中的黏粒、粉粒甚至细砂等细小土颗粒随同地下水一起带出地面,使周围地面土层很快产生不均匀沉降,造成地面建筑物和地下管线不同程度的损坏。
另一方面,尽管开始抽水时,井内水位下降,井外含水层中的地下水不断流向滤管,经过一段时间后,在井周围形成漏斗状的弯曲水面——降水漏斗。
在这一降水漏斗范围内的软土层会发生渗透固结而造成地基土沉降。
而且,由于土层的不均匀性和边界条件的复杂性,降水漏斗往往是不对称的,因而使周围建筑物或地下管线产生不均匀沉降,甚至开裂。
浅析地下水对工程建设的影响及对策
2009年05月07日星期四 15:01
颜於滕(中国矿业大学建筑工程学院,江苏徐州221116)
摘要:文章分析了地下水对土体的作用及影响,并结合相关工程案例,有针对性地提出了勘测、设计,施工等各阶段防治地下水的相关措施,以便有效地防范由地下水引发的工程事故。
关键词:地下水;土体;工程建设;建筑工
中图分类号:U448 文献标识码:A 文章编号:1009-2374(2009)09-0186-02 统计分析显示,大多数地质灾害及各类岩土工程事故大多与地下水作用有关。
杭州地铁坍塌事故,上海轨道交通4号线流沙事故还有各地煤矿突水事故一次又一次给我们敲响了警钟。
分析地下水与土体间的作用,寻找防治地下水的相关措施,防范甚至杜绝地下水工程事故显得尤为重要。
一、地下水对土体作用及影响
(一)地下水浮力与抗浮验算
强大的地下水浮力作用往往会造成地下室底板开裂,严重时影响基础稳定性。
位于高地下水位的淤泥地基上(如我国长三角地区)的地下构筑物主要是考虑抗浮力验算。
建筑物抗浮力R可表示为:
G、Q、?鬃——恒载、活载、可变荷载准永久系数;
YGi、YQi——恒载和活载的分项系数。
结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。
(二)边坡稳定分析
由于雨水渗入、水库蓄水使得地下水位上升,土体上部荷重增大;孔隙水压力提高,有效应力降低,相应抗剪强度降低;土的抗滑力小于滑动力,最终引发边坡失去稳定并沿滑动面下滑。
边坡变形破坏给工程建设带来的危害非常广泛,常造成生命财产的巨大损失,目前边坡灾害已成为仅次于地震的第二大地质灾害。
(三)沙土的振动液化
饱和沙土受到振动后趋于密实,导致孔隙水压力骤然上升,据有效应力原理?滓=?滓'+u,土颗粒间的有效应力相应减少,由库伦强度理论知,土的抗剪强度降低。
在周期性的振动荷载(如地震荷载)作用下,孔隙水压力逐渐累计,甚至可以完全抵消有效应力,使土处于悬浮状态,而接近液体的性质,这时土便被液化。
沙土液化时一般在地表裂缝中喷水冒沙、地基失效并发生过大的沉降(以液化著名的新泻市为例,全市22%的钢筋混凝土房屋破坏,有20栋以上产生了超过1.5m的沉降)。
为了保护建筑物的安全,一般应避免采用未经加固处理的可液化土层作为天然地基持力层。
可采用将桩基础深入液化深度下的稳定土层或采用振动加密、砂桩挤密、强夯等措施加密。
(四)流沙现象
地下水在渗流过程中对土产生的作用用动水力描述(以GD表示,单位
KN/m3),当至下而上渗流的动水力等于土的有效重度?酌'(即-GD=?酌')时,土粒间有效应力消失,土粒处于悬浮状态,可随水而自由流动,就产生了流沙。
流沙现象是一种危害极大的工程地质灾害。
例如在地下水位以下开挖地基,如果不进行降水处理,基坑外水头大于坑内,坑内地下水向上渗流,就有可能出现流沙现象,坑底泥沙翻涌,给施工带来很大困难,甚至威胁到临近建筑的安全。
现在一般通过减少基坑内外水头差或增加渗流路径的方法防治流沙。
(五)地下水的腐蚀性
沿海地区地下中Mg-、Cl-、SO42-浓度较高,这些离子会对钢筋混凝土产生很强的腐蚀破坏作用。
地下水中的硫酸根离子SO42-与混凝土作用生成铝和钙的复硫酸盐3CaOAl2O33CaSO43H2O。
这一化合物的体积比化合前膨胀2.5倍,会极大的破坏混凝土的结构;酸性地下水对混凝土中Ca(OH)2的及CaCO3起溶解破坏作用;氯离子对混凝土有中度腐蚀,对钢筋具有强烈腐蚀作用。
二、防治地下水的工程措施
防治地下水必须从思想上认识到地下水的危害,同时要加强监管,做好勘测、设计、施工。
验收各阶段地下水防治工作,确保施工质量和安全。
(一)水文地质勘测
要详尽了解最高地下水位的标高、类型、补给来源、水质、流量、流向、渗透系数、压力以及历年气候变化情况、降水量、蒸发量及地层冻结深度等技术指标,这是合理确定工程防水标高、防护要求与地下水防止措施的前提与保证。
(二)结构自防水设计
1.选用合理结构形式:应根据防护要求、使用功能结合工程地质和水文地质条件等因素综合确定,能短的不长、能整的不散,避免结构突变(或断面突变),尽量使结构选型规则、整齐,借以提升结构的整体刚度。
2.优化构造节点设计:构造节点长期以来就有“十缝九漏”的说法,虽然有些夸张,却也充分暴露出变形缝防水存在的问题。
结构设计中要尽量减少裂缝开展及变形缝的设置。
后浇带与构造节点的防水宜优先采用复合式防水设计,如中埋式止水带与外贴防水层复合使用;中埋式止水带与遇水膨胀橡胶条、嵌逢材料复合使用等。
3.避免设计上“强度越高越好”的错误观念:高强度的混凝土中水泥含量较多,产生大量水化热易使结构开裂。
如采用较高强度的混凝土时,宜优先采用水化热小的矿渣水泥。
(三)降排水系统设计
1.排水是指坑内明排,一般是在基坑周围设置排水沟及集水井,用抽水设备不断将基坑中的渗水排除,疏干开挖土方及基础施工的作业面,随排随挖,措施比较简单。
2.降水是人工强制降低施工面地下水位,常用的降水方法有轻型井点降水、喷射井点降水、电渗井点降水等,采用何种方法一般应根据含水层特性、渗透系数、降水要求(深度)等确定。
(四)支护与隔水设计
支护结构不仅能承受基坑开挖卸载所产生的土压力,而且能够有效的承担动水压力,起到阻隔地下水的作用。
其中地下连续墙在软土层大基坑开挖中应用最为广泛。
地下连续墙是在泥浆护壁的条件下分槽段构筑的钢筋混凝土墙体,其刚度大,止水效果好,并且可以作为拟建主体结构的外墙,可取得较好的经济效益。
此外,内撑式支护、水泥土重力挡墙支护、土钉支护、钢板桩支护、锚杆支护、喷射混凝土支护等也都能起到相应的支护隔水功能。
尤其是锚杆支护现已广泛应用于煤矿井田开拓及地铁隧道掘进等地下工程中。
(五)抗浮设计
主体工程采用天然地基时,单层地下室或裙房地下室可采用加大恒载(如覆土)抗浮。
例如,国家体育馆地基位置较深,恰恰这块地的地下水位较高,地下水对场馆产生较大浮力。
经过多次研究,最终选用8万吨废旧钢渣回填。
大空间、大面积的单层地下室亦可采用抗浮锚桩协助抗浮。
(六)特殊施工工艺——冻结法
冻结法是利用人工制冷技术对地层土体进行加固支护的一种施工方法。
1862年英国首先利用人工地层冻结技术成功地进行了深基坑开挖围护,随后,我国的基坑及地下工程建设中也较多采用冻结法,如润扬大桥悬索锚碇施工、上海地铁线施工以及80%以上的煤矿井筒掘进等都采用了冻结法。
图1 冻结法施工示意图
冻结法以氨水为制冷剂以盐水作为冷媒剂,通过人工制冷的方法实现施工面内地下水冻结,一方面有效地阻隔地下水对施工面的干扰,另一方面,被冻结的土层具有较强的承载力,能够很好的支撑土壁。
冻结法不仅具有适应性强、隔水效果好、干作业、无污染无噪音等优点,而且其经济效益也是不容忽视的。
基坑越深,冻结法施工越具有优越性。
一般认为,当基坑深度小于7m时,冻结法在经济上不合算,当基坑深度大于l0m时,冻结法在经济上显示出优越性。
三、结语
只有充分认识到地下水对工程建设的作用,深入了解防治措施,加强施工监管并及时出台相关法律、法规,我们才能真正做到防患于未然。
参考文献
[1]地下工程防水技术规范(GB50108-2001)[S].
[2]王成华,等.基础工程学[M].天津:天津大学出版社,2002.
[3]建筑地基基础设计规范(GB50007-2002)[S].
[4]曾庆军,梁景章.土力学与地基基础[M].北京:清华大学出版社,2006.
[5]扬淑娟,张明义,等.基坑支护工程的若干问题探讨[J].青岛理工大学学报,2006,27(4).
[6]方江华,张景钰.上海地铁隧道旁通道水平冻结法施工[J].建井技术,2006,(12).
[7]李广信,吴剑敏.浮力计算与粘性土的有效应力原理[J].岩土工程技术,2003,(2).
[8]赵士弘,马芝文.特殊凿井[M].中国矿业大学出版社,1993.
作者简介:颜於滕(1988-),男,山东滕州人,中国矿业大学建筑工程学院学生;吉建娇,江苏盐城人,中国矿业大学信息与电气工程学院学。