电动汽车的四种驱动电机
- 格式:ppt
- 大小:1.01 MB
- 文档页数:9
纯电动汽车驱动技术浅析三部曲—中篇纯电动汽车电驱动系统的分类围绕纯电动汽车驱动技术三部曲,笔者在梳理新能源动力总成开发过程中的关键技术,为动力总成的设计和测试生产提供理论基础和参考。
计划分为3个篇章来分析纯电动汽车动力总成中电驱动关键技术,今天围绕纯电动汽车的电驱系统的分类进行介绍。
电机驱动系统定义根据车辆动力电池状态和整车动力需求,把车载储能或发电装置输出的电能转成机械能,并通过传动装置将能量传递到驱动轮,并在车辆制动时把部分车辆机械能转化成电能回馈到储能装置中。
电机驱动系统分类按照电驱动系统不同分为以下三类:纯电动汽车,油电混合式电车,插电混合式电车。
1. 纯电动汽车按照电机不同可以分为以下四类:单电机驱动系统,双电机驱动系统,轮毂电机驱动系统和轮边电机驱动系统。
● 单电机驱动系统工作原理特点:电机替代发动机,保持原有的变速箱、机械传动不变。
优点:结构简单、技术含量低、整车改动小、可靠性高、成本低。
● 双电机驱动系统工作原理特点:双侧电机独立驱动,取消了变速箱、机械传动轴、机械差速器。
优点:结构简单、动力由电缆实现柔性连接,布置灵活,有效利用空间。
● 轮毂电机驱动系统工作原理优点:轮毂电机具有高效、节能、轻量化、小型化等优点,电动汽车终极解决方案。
轮毂电机将动力、传动、制动整合到轮毂内,变中央驱动为分布式驱动,省掉 了变速器、传动轴、差速器,减少80%的传动部件、减轻30%自身重量。
● 轮边电机驱动系统特点:双侧电机独立驱动、电机在轮毂外侧、电机通过减速器驱动车轮。
优点:结构简单、有效利用了轮边空间、适合重型大扭矩车辆。
2. 油电式混合动力汽车按照布置形式不同可以分为串联式,并联式和混联式动力汽车。
● 串联式混合动力汽车特点:机械功率流和电功率流串联、纯电驱动车轮,增加了制动能量回收利用功能。
优点:功率流简单、能量管理方便、节能。
缺点:系统不紧凑,技术含量低。
已经被淘汰。
● 并联式混合动力● 混联式混合动力目前常用形式,适用于4×4轮式混合动力,优势明显。
电动汽车的驱动形式
(1)第一种驱动形式。
为一种典型的电机中央驱动形式。
此种驱动形式是参考了传统内燃机汽车的驱动形式,发动机以驱动电机代替,离合器、变速器和差速器则不变。
(2)第二种驱动形式。
由于驱动电机能在较大的速度范围内提供相对恒定的功率.因此多速变速器可被一个固定速比减速器(即只有一挡,传动比恒定)代替,此时离合器也可省去,如图2-3所示。
此种驱动形式可以节省机械传动系统的质量和体积。
另外可以减少操作难度。
(3)第三种驱动形式。
与第二种形式类似,只是驱动电机、固定速比减速器和差速器被整合为一体,布置在驱动轴上。
此时,整个传动系统被大大简化和集成化,另外从再生制动的角度出发,这种驱动形式较容易实现汽车动能的回收再利用。
(4)第四种驱动形式。
取消了差速器,取而代之的是两个独立的驱动电机,每个驱动电机单独完成一侧车轮的驱动任务,称为双电机电动轮驱动形式。
当车辆转弯时,两侧的电机就会分别工作在不同的速度下,不过这种驱动形式需要更加复杂的控制系统。
(5)第五种驱动形式。
相较于第四种驱动形式,第五种进一步简化了驱动系统:驱动电机与车轮之间取消了传统的传动轴,变成电机直接驱动车轮前进,同时一个单排的行星齿轮机构充当固定速比变速器,用来减小转速和增强转矩,以满足不同工况的功率和转矩需求。
此种驱动形式称为内转子式轮毂电机驱动形式。
(6)第六种驱动形式。
完全舍弃驱动电机和驱动轮之间的传动装置后,轮毂电机的外转子直接连接在驱动轮上,此时驱动电机转速控制与车轮转速控制融为一体,称为外转子式轮毂电机驱动形式。
新能源汽车驱动电机的工作原理一、引言在过去的几十年中,汽车行业一直在致力于减少对环境的污染并提高能源效率。
新能源汽车作为未来发展的趋势,得到了越来越多的关注和研究。
其中,驱动电机是新能源汽车的核心部件之一,决定了汽车的动力性能和能源利用效率。
本文将详细探讨新能源汽车驱动电机的工作原理。
二、新能源汽车驱动电机的分类根据不同的工作原理和结构特点,新能源汽车的驱动电机可以分为直流电机(DC motor)和交流电机(AC motor)。
而交流电机又可以细分为感应电机(induction motor)和永磁同步电机(permanent magnet synchronous motor)。
2.1 直流电机直流电机是最早被使用在汽车上的驱动电机,它的主要特点是结构简单、可靠性高,但效率相对较低。
直流电机通过与电源进行整流和调节电流方向的控制来实现转速的调节,为汽车提供动力。
2.2 感应电机感应电机是目前应用最广泛的驱动电机之一,它的结构简单、适用范围广,并且具有良好的负载适应性。
感应电机是通过在电机转子上感应出涡流来产生转矩,从而驱动汽车运动。
2.3 永磁同步电机永磁同步电机是当前新能源汽车中应用最广泛的驱动电机之一,它的主要特点是效率高、输出功率密度大。
永磁同步电机通过电磁场与转子磁场的同步来产生转矩,实现汽车的动力输出。
无论是直流电机还是交流电机,新能源汽车的驱动电机都是通过电能转换为机械能来提供车辆的动力。
以下将分别详细介绍它们的工作原理。
3.1 直流电机的工作原理直流电机的工作原理可以分为电磁感应原理和电磁吸力原理两个方面。
3.1.1 电磁感应原理当直流电流通过电机的线圈时,线圈中会产生一个磁场。
根据左手定则,线圈中的电流方向与线圈中的磁场方向垂直。
同时,在电枢上也有一个磁场,由于电流方向相反,两个磁场之间会相互排斥或吸引,产生转矩,使电机转动。
3.1.2 电磁吸力原理当电机转子转动时,它的磁场会与线圈中的磁场相互作用,产生电磁感应电动势。
电动汽车电机的类型及其特点发布时间:2015—8—5 16:38:34由于电动汽车的环保、节能、轻便的特性,使得电动汽车越来越受到各个国家的重视.目前,电动汽车处于高速发展的阶段,作为电动汽车核心部件的电动汽车电机主要有直流电动机、交流三相感应电动机、永磁无刷直流电动机、开关磁阻电动机等。
一有刷直流电动机有刷直流电动机的主要优点是控制简单、技术成熟。
具有交流电机不可比拟的优良控制特性。
在早期开发的电动汽车上都采用直流电动机,即使到现在,还有一些电动汽车上仍使用直流电动机来驱动。
但由于存在电刷和机械换向器,不但限制了电机过载能力与速度的进一步提高,而且如果长时间运行,势必要经常维护和更换电刷和换向器。
另外,由于损耗存在于转子上,使得散热困难,限制了电机转矩质量比的进一步提高。
鉴于直流电动机存在以上缺陷,在新研制的电动汽车上已基本不采用直流电动机。
二交流三相感应电动机交流三相感应电动机是应用得最广泛的电动机.其定子和转子采用硅钢片叠压而定子之间没有相互接触的滑环、换向器等部件.结构简单,运行可靠,经久耐用.交流感应电动机的功率覆盖面很宽广,转速达到12000~15000r/min。
可采用空气冷却或液体冷却方式,冷却自由度高。
对环境的适应性好,并能够实现再生反馈制动。
与同样功率的直流电动机相比较,效率较高,质量减轻一半左右,价格便宜,维修方便。
三永磁无刷直流电动机永磁无刷直流电动机是一种高性能的电动机。
它的最大特点就是具有直流电动机的外特性而没有刷组成的机械接触结构。
加之,它采用永磁体转子,没有励磁损耗:发热的电枢绕组又装在外面的定子上,散热容易,因此,永磁无刷直流电动机没有换向火花,没有无线电干扰,寿命长,运行可靠,维修简便。
此外,它的转速不受机械换向的限制,如果采用空气轴承或磁悬浮轴承,可以在每分钟高达几十万转运行。
永磁无刷直流电动机机系统相比具有更高的能量密度和更高的效率,在电动汽车中有着很好的应用前景.四开关磁阻电动机开关磁阻电动机是一种新型电动机,该系统具有很多明显的特点:它的结构比其它任何一种电动机都要简单,在电动机的转子上没有滑环、绕组和永磁体等,只是在定子上有简单的集中绕组,绕组的端部较短,没有相间跨接线,维护修理容易。
新能源汽车四种常用电机驱动系统详解我国车用电机在全球资源条件下具有明显的比较优势,发展潜力较大。
从新能源汽车的产业链来看,受益端将主要集中在核心零部件领域。
国内车用驱动电机行业现状:电机业中的小行业、但制造门槛高,电机驱动系统还存在较多差距与不足,但国内政策扶持将加快产业步伐。
作为新能源汽车的核心部件(电池、电机、电控)之一,图1,驱动电机及其控制系统未来发展前景可观。
驱动电机系统简介新能源汽车具有环保、节约、简单三大优势。
在纯电动汽车上体现尤为明显:以电动机代替燃油机,由电机驱动而无需自动变速箱。
相对于自动变速箱,电机结构简单、技术成熟、运行可靠。
传统的内燃机能高效产生转矩时的转速限制在一个窄的范围内,这就是为何传统内燃机汽车需要庞大而复杂的变速机构的原因;而电动机可以在相当宽广的速度范围内高效产生转矩,在纯电动车行驶过程中不需要换挡变速装置,操纵方便容易,噪音低。
与混合动力汽车相比,纯电动车使用单一电能源,电控系统大大减少了汽车内部机械传动系统,结构更简化,也降低了机械部件摩擦导致的能量损耗及噪音,节省了汽车内部空间、重量。
电机驱动控制系统是新能源汽车车辆行使中的主要执行结构,驱动电机及其控制系统是新能源汽车的核心部件(电池、电机、电控)之一,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。
电动汽车中的燃料电池汽车FCV、混合动力汽车HEV和纯电动汽车EV三大类都要用电动机来驱动车轮行驶,选择合适的电动机是提高各类电动汽车性价比的重要因素,因此研发或完善能同时满足车辆行驶过程中的各项性能要求,并具有坚固耐用、造价低、效能高等特点的电动机驱动方式显得极其重要。
驱动电机系统是新能源车三大核心部件之一。
电机驱动控制系统是新能源汽车车辆行使中的主要执行结构,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。
电动汽车的整个驱动系统包括电动机驱动系统与其机械传动机构两个部分。
新能源汽车驱动电机分类及其特点一、直流电机:直流电机是新能源汽车最早应用的电机之一,其特点是结构简单、可适应宽范围的工作条件。
直流电机具有起动扭矩大、调速性能好、控制方便等特点,适用于电动汽车的低速高扭矩运行。
直流电机的缺点是惯量大、效率低、寿命短、无法很好地适应高速运行的需求。
随着技术的进步,直流电机的性能逐渐改进,目前主要应用于中小型电动车和混合动力汽车。
二、交流异步电机:交流异步电机是目前新能源汽车中最为常用的驱动电机之一,其特点是结构简单、便于制造、效率高、运行稳定。
交流异步电机的优点是具有较高的功率密度和扭矩密度,适用于中高速运行的场景。
但是,交流异步电机的控制和调速性能相对较差,难以实现无级调速等高级控制功能。
三、交流同步电机:交流同步电机是新能源汽车中技术含量较高的一类电机,其特点是效率高、控制性能好、适应性强。
交流同步电机有较高的能量转换效率,通过电子控制可以实现精确的转速控制。
交流同步电机的缺点是在低转矩运行时效能下降,起动能力相对较弱。
交流同步电机主要用于高速电动汽车和纯电动轻型车辆。
四、永磁同步电机:永磁同步电机是新能源汽车中效率最高的一种驱动电机,其特点是高效率、高功率密度和起动加速性能好。
永磁同步电机的主要优点是具有较高的转矩和功率密度,且在宽速度范围内都能保持高效率。
永磁同步电机的缺点是制造和维护成本较高,且在高速运行时容易发生电磁噪音和磨损。
永磁同步电机广泛应用于电动汽车和混合动力汽车中。
综上所述,不同类型的新能源汽车驱动电机各有特点,适用于不同的工况和需求。
未来随着技术的发展,各类驱动电机将继续优化,以提升其效率和性能,推动新能源汽车行业的发展。
5加速数控机床的全面升级改造对于小型轴类盘类等零件加工,在市场中多采用CA6140型车床,该车床可以控制主轴的正转和反转,进而实现切削速度的调整,并且该车床的刀架也可以进行横向纵向的综合性进给运动,从而能够实现多个方向的加工。
并且在换刀点能够自动改变不同的刀具,使得传统普通加工模式也较为快速。
该车床中有润滑泵和冷却泵,能够较好的控制加工的温度,防止产生热应力,同时润滑泵能够使车床各部件的工作更加顺畅。
通过控制主轴的启停和旋转状况,从而能够使刀架按照一定的速度进行移动。
上述这些特征均可以作为数控系统改造的基础,对于该车床的相关资料以及技术标准进行探究,进而制定出较为完善的改造方案。
5.1主传动系统改造普通机床改造过程中,对于原有的传动系统和变速系统可以给予保留,因为数控机床也需要这一套运动系统进行运转。
可以将该系统进行科学的结合,从而减少改造料,并且节约改造成本。
除此以外,对于主传动系统的改造应注重自动化程度的提升,能够在机床运动过程中实现自动控制切削的速度和切削的模式。
将该型号机床中的主轴电机进行替换,采用交流调速电机,从而实现无极变速功能,从而对自动化档位的控制提供较好的基础。
5.2数控系统设计数字控制系统应做到较高的信号控制时效性,并且对于数据处理的速度和相关指令的传递符合国家的标准。
由于自行开发数控系统难度较高,需要较多的人力物力进行长期系统的研制,可以直接采用市面上较为成熟的数控系统,比如型号为NIM-9702的数控系统。
5.3刀架的相关设计刀架必须有良好的结构,从而能够保障车床切削以及加工的性能,本研究中采用的刀床为卧室刀床,将刀架的方案替换成自动换刀方案,这样能够和自动化系统进行联动,采用的刀架为四工位螺旋转位刀架,因此能够满足车床自动化控制的需要。
6结束语数控机床不仅实现高精度且高效率的工作,在当今发展过程中,对于数控机床也赋予了新的任务,目前需要数控机床更加智能化开放化,并且结合信息时代进行网络化,从而使控制更加便捷,管理更加高效,生产过程变得更加绿色和环保,这些发展方向均为未来数控机床的发展提供了较为清晰的目标。
电动汽车驱动电机的主要分类电动汽车是一种新兴的交通工具,它的动力系统主要是由电池组、电机和控制系统组成的。
其中,电机是电动汽车的心脏,它负责将电能转化成机械能,驱动汽车前进。
根据电动汽车驱动电机的不同类型和特点,我们可以将电动汽车驱动电机主要分为以下四类。
第一类是直流电机。
直流电机是目前应用最广泛的电机类型之一,它具有结构简单、维护方便、转速范围广、输出扭矩大的优点。
直流电机主要分为串联、并联和复合三种类型。
串联直流电机可以在低速下提供较大的转矩,适用于城市道路的行驶;并联直流电机在高速行驶时效率更高,适用于高速公路;复合直流电机则将串、并联的优点结合起来,适用范围广。
第二类是异步电机。
异步电机属于交流电机,具有结构简单、可靠性高的特点,在工业领域得到广泛应用。
在电动汽车中,异步电机主要应用于公交车和重型卡车等大型车辆,具有输出功率大、扭矩大、效率高的优点。
第三类是同步电机。
同步电机也是一种交流电机,主要应用于中高档轿车和运动车型等。
相对于异步电机,同步电机的输出扭矩更加平稳、效率更高、噪音更小。
同时,同步电机具有响应速度快、动态性能好的特点,可以实现电机的快速响应和精准控制。
第四类是永磁同步电机。
永磁同步电机是一种特殊的同步电机,它在转子上装有永磁体,使得电机具有更高的功率密度和更高的效率。
永磁同步电机具有结构紧凑、体积小、重量轻的特点,适用于小型电动车辆和混合动力系统的应用。
综上所述,电动汽车驱动电机的不同类型和特点适用于不同的车型和场景,选择合适的电机是实现电动汽车高性能、高效率的关键。
当然,未来的电动汽车驱动电机可能会有新的类型和技术涌现,我们需要不断地跟进技术发展,为电动汽车的推广和进步贡献力量。
新能源汽车电机方面的知识
新能源汽车电机是指使用新能源作为动力源的汽车所使用的驱动电机。
新能源汽车电机的主要种类有:
1. 直流电机(DC Motor):直流电机是最早应用于电动车辆的电机类型之一。
它由电枢和永磁体组成,工作原理是利用电枢和永磁体之间的磁作用力产生转矩。
2. 永磁同步电机(Permanent Magnet Synchronous Motor,PMSM):永磁同步电机利用永磁体产生磁场,与电枢中的旋转磁场相互作用,从而驱动汽车运动。
3. 感应电机(Induction Motor):感应电机是一种常用的电动汽车驱动电机,它通过感应电枢中的旋转磁场与定子磁场相互作用,来实现转矩输出。
4. 燃料电池电机(Fuel Cell Motor):燃料电池电机是使用燃料电池作为动力源的电动汽车驱动电机。
它将燃料电池产生的电能转化为机械能,用于驱动汽车运动。
新能源汽车电机具有以下特点:
1. 高效:新能源汽车电机相比传统内燃机更加高效,转换率更高,能够更充分地利用能源。
2. 轻量化:新能源汽车电机相对于内燃机更为轻量化,减轻车辆自重,提高整车的能效和续航里程。
3. 高转矩密度:新能源汽车电机具有较大的转矩密度,能够提供更高的动力输出,满足车辆的加速性能和行驶需求。
4. 低噪音:新能源汽车电机工作时噪音更低,从根本上降低了汽车行驶产生的噪音污染。
5. 智能控制:新能源汽车电机可与车辆的智能控制系统相连接,实现精确的电力输出和电能回馈,提高驾驶的舒适性和安全性。
新能源汽车电机的发展及应用已成为现代汽车工业的重要方向,它对于降低能源消耗、改善环境污染等具有重要意义。