第四章极限定理
- 格式:ppt
- 大小:867.06 KB
- 文档页数:43
第四章大数定律与中心极限定理第一节大数定律一、历史简介概率论历史上第一个极限定理属于贝努里,后人称之为“大数定律”.1733年,德莫佛——拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了时二项分布的极限分布是正态分布.拉普拉斯改进了他的证明并把二项分布推广为更一般的分布.1900年,李雅普诺夫进一步推广了他们的结论,并创立了特征函数法.这类分布极限问题是当时概率论研究的中心问题,卜里耶为之命名“中心极限定理”.20世纪初,主要探讨使中心极限定理成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情形下的显著进展.在第一章已经指出,随机事件在大量重复试验中呈现明显的统计规律性,即一个事件在大量重复试验中出现的频率具有稳定性.这种稳定性的提法应该说是什么形式? 贝努里是第一个研究这一问题的数学家.他于是1713年首先提出后人称之为“大数定律”的极限定理.二、大数定律定理1(贝努里大数定律) 设是重贝努里试验中事件出现的次数,是事件在每次试验中出现的概率,则对任意的,有证明:令表示在第次试验中出现的次数.若第次试验中出现,则令;若若第次试验中不出现,则令.由贝努里试验定义,是个相互独立的随机变量,且而于是由契比晓夫不等式有又由独立性知道有从而有这就证明了定理1.若是随机变量序列,如果存在常数列,使得对任意的,有成立,则称随机变量序列服从大数定律.定理2(契比晓夫大数定律) 设是一列两两不相关的随机变量,又设它们的方差有界,即存在常数,使有则对于任意的,有证明:利用契比晓夫不等式,有因为是一列两两不相关的随机变量,它们的方差有界,即可得到从而有从而定理2得证.[例1] 设为独立同分布的随机变量,均服从参数为的普哇松分布.由以往的讨论知道,,因而满足定理2的要求,则由定理2 的结论可知定理3(马尔科夫大数定律) 对于随机变量序列,若有则有证明:利用契比晓夫不等式,有由假设知,右端趋于1,于是于是定理3得证.一般称条件为马尔科夫条件.定理4(辛钦大数定律) 设是独立同分布的随机变量序列,且有有限的数学期望,则对于任意的,有上式也可表示为或,并且称依概率收敛于.三、大数定律的应用[例2] 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?解:由契比晓夫不等式,有令,其中,则.即至少需要抛掷27778次才能至少有0.95的把握使出现六点的概率与之差不超过0.01[例3] (蒙特卡洛方法求积分) 计算.解:任取一列相互独立的都具有上均匀分布的随机变量,则也是一列相互独立且具有相同分布的随机变量,而因此,.为求,自然想到大数定律:这样一来,只要能生成随机变量序列,就能计算积分.现在借助计算机,产生上的随机数,然后通过大数定律,算出,最后由算出.这就是一种新的计算方法:概率计算方法,也称蒙特卡洛方法.[例4] 设随机变量序列的方差一致有界,即,且当时, 与的相关系数,证明服从大数定律.证明:因为由题设知,任给,存在当时,.这表明,在共有个中,绝对值超过的元素不多于个,其余的个元素的绝对值不超过,故有由于可任意小,故马尔科夫条件成立,所以服从大数定律.[例5] 设相互独立且,.证明服从大数定律.证明:因为,故故马尔科夫条件成立,所以服从大数定律.[例6] 设相互独立且分别具有以下分布,试确定是否满足马尔科夫条件.(1)(2)(3)解:(1)易知.由于故不满足马尔科夫条件.(2) 易知.由于故不满足马尔科夫条件.(3) 易知.由于注意到,故满足马尔科夫条件. [例7] 设相互独立且分别具有以下分布:(1)的分布函数为(2)(3) 的密度函数为(4)问是否满足大数定律.解:(1)因为,这是柯西分布,它的数学期望不存在,因此,不满足大数定律.(2)因为,由辛钦大数定律,知满足大数定律.(3)因为是奇函数,故.由辛钦大数定律,知满足大数定律.(4)而,故级数收敛,满足大数定律.作业:P221 EX 19,24,25,26。
第四章 大数定律与中心极限定理教学目得与教学要求:了解特征函数得定义与常用分布得特征函数;理解并能应用大数定律;掌握依概率收敛与按分布收敛得概念;掌握并能应用独立同分布下得中心极限定理。
教学重点:大数定律、依概率收敛与按分布收敛得概念、中心极限定理。
教学难点:大数定律与中心极限定理得应用。
教学措施:理论部分得教学多采用讲授法,注意思想方法得训练,计算类问题采用习题与讨论得方法进行教学。
教学时数:12学时教学过程:§4、1 特征函数特征函数就是处理概率论问题得有力工具,其作用在于:(1) 可将求独立随机变量与得分布得卷积运算化成乘法运算;(2) 可将求各阶矩得积分运算化成微分运算;(3) 可将求随机变量序列得极限分布化成一般得函数极限问题等。
§4、1、1 特征函数得定义定义4、1、1 设就是一个随机变量,称其中为虚数单位,为得特征函数。
注:因为,所以总就是存在得,即任一随机变量得特征函数总就是存在得。
特征函数得求法:(1) 当离散随机变量得分布列为则得特征函数为;(2) 当连续随机变量得密度函数为,则得特征函数为。
特征函数得计算中用到复变函数,为此注意:(1) 欧拉公式:;(2) 复数得共轭:;(3) 复数得模:。
例4、1、1 常用分布得特征函数(1) 单点分布:,其特征函数为;(2) 分布:,其特征函数为;(3) 泊松分布:,其特征函数为;(4) 均匀分布:因为密度函数为,所以其特征函数为;(5) 标准正态分布:因为密度函数为,所以其特征函数为;(6) 指数分布:因为密度函数为,所以其特征函数为000()(cos()sin())itx x x x t e e dx tx e dx i tx e dx λλλϕλλ+∞+∞+∞---==+⎰⎰⎰ 。
§4、1、2 特征函数得性质性质4、1、1。
性质4、1、2 ,其中就是得共轭。
性质4、1、3若,其中、就是常数,则。