07 ANSYS13.0 Workbench 结构非线性培训 作业 摩擦接触解析
- 格式:ppt
- 大小:2.25 MB
- 文档页数:14
ANSYSWorkbench接触分析案例详解本⽂由Workbench⼩学⽣授权转载这篇⽂章囊括了接触分析中常见的问题,并通过思考和验证,给出了解决⽅案和经验总结,相信朋友们按照这篇教程完整的⾛⼀遍分析过程,会对接触分析的理解更近⼀步。
1.建模。
条件:⼀个圆盘与⼀个矩形板,⽣成壳体。
注意:两者分析之前未接触。
2.选取材料。
进⼊材料库,选取⾮线性材料中的铝合⾦(Aluminum Alloy NL)注意:NL表⽰Nonlinear ,译为⾮线性。
3.进⼊分析模块,调出Properties选项4.修改分析类型,将Analysis type由3D改为2D5.双击Model进⼊分析界⾯,修改矩形板的材料为Aluminum Alloy NL,圆盘默认为结构钢(Structural Steel)6.参数设置(1)根据左侧outline依次向下添加(由于此分析不⽤添加局部坐标系,因此修改完材料属性后,直接添加接触)(2)⼯况:矩形板与圆盘为摩擦接触(也可使⽤⽆摩擦接触,读者可以亲⾃尝试)(3)接触⾯为圆盘外圆周,⽬标⾯为矩形板顶边,设置摩擦系数为0.15(4)由于模型为刚-柔接触,因此修改behavior为⾮对称(Asymmetric)(5)在advanced中将接触算法设置为增⼴拉格朗⽇(Augmented Lagrange)(6)探测⽅法设置为⾼斯点探测(on Gauss point )注意:①由于两者的材料都是⾦属,因此摩擦系数 ≤0.2②⾮线性分析中默认的接触算法为增⼴拉格朗⽇(Augmented Lagrange),线性默认为纯罚函数(Pure penalty)③纯罚函数的收敛性很好,接触刚度对其影响⼤,但是它的穿透性不可控制,⽽增⼴拉格朗⽇收敛性表现为穿透较⼤,迭代次数较多,但其可以在⼀定程度上控制穿透性④⾼斯点与节点探测的区别:⾼斯点:适合⼤多情况,⽹格密度⼩、更精确节点:仅适⽤于⾓接触⑤局部坐标系的添加:如果全局坐标系不是所需要的,就必须添加局部坐标系作为附属坐标系7.划分⽹格(Mesh),选中图中模型,根据模型⾃动划分⽹格8.分析设置(Analysis Setting)(1)打开⾃动时间步(Anto Time Stepping)与⼤变形(Large Deflection)(2)修改载荷⼦步依次为50,50,100后,其他均默认9.添加边界条件(Load or Supports)(1)选中矩形板的下边线,将其设置为Displacement(2)X⽅向数值设置为-15mm,Y⽅向数值设置为0(3)选中圆盘的外圆周,将其设置为Fixed support思考:为什么打开⼤变形开关?答:因为在静⼒学中,极限转动⾓度为10°,⼤位移或者⼤转动即视为⾮线性分析,当受⼒物体的变形与其⼏何尺⼨相⽐较⼤,且线性叠加原理不再适⽤时,可视作⼤变形。
WorkBench接触解析1.接触的基本概念1.1. 接触的定义两独立表面相互接触并相切,则称之为接触.一般物理意义上, 接触的表面包含如下特性:不会渗透.可传递法向压缩力和切向摩擦力.通常不传递法向拉伸力.可自由分离和互相移动.接触是状态改变非线性. 也就是说, 系统刚度取决于接触状态, 即part之间是接触或分离.1.2. workbench接触类型1)Bonded(绑定): 这是Workbench中关于接触的默认设置。
如果接触区域被设置为绑定,不允许面或线间有相对滑动或分离,可以将此区域看作被连接在一起,类似于共结点。
因为接触长度/面积是保持不变的,所以这种接触可以用作线性求解。
如果接触是从数学模型中设定的,程序将填充所有的间隙,忽略所有的初始渗透。
2)No Separation(不分离): 这种接触方式和绑定类似。
它只适用于面。
不允许接触区域的面分离,但是沿着接触面可以有小的无摩擦滑动。
即法向不分离,切向可以有小位移,也只用于线性接触。
3)Frictionless(无摩擦): 这种接触类型代表单边接触,即如果出现分离则法向压力为零。
只适用于面接触。
因此,根据不同的载荷,模型间可以出现间隙。
它是非线性求解,因为在载荷施加过程中接触面积可能会发生改变。
假设摩擦系数为零,因此允许自由滑动。
使用这种接触方式时,需注意模型约束的定义,防止出现欠约束。
法向可分离,但不渗透,切向自由滑动。
程序会给装配体加上弱弹簧,帮助固定模型,以得到合理的解。
4)Rough(粗糙的): 这种接触方式和无摩擦类似。
但表现为完全的摩擦接触,即没有相对滑动,法向可分离,不渗透,切向不滑动。
只适用于面接触。
默认情况下,不自动消除间隙。
这种情况相当于接触体间的摩擦系数为无穷大。
5)Frictional(有摩擦): 这种情况下,在发生相对滑动前,两接触面可以通过接触区域传递一定数量的剪应力。
有点像胶水。
法向可分离,但不渗透,切向滑动,有摩擦力。
ansys非线性接触分析中的接触行为ansys非线性接触分析中接触行为接触是状态改变非线性,经典ANSYS版本中共提供了7种接触行为,每一种都有其特点及相应的应用范围,在选用的时候应该谨慎。
(1)标准接触行为(standard)该接触行为包括了法向接触闭合和分开行为,在该接触模式中既考虑粘着摩擦同时也考虑了滑动摩擦。
如图上,AB与BC本来是分开的,中间通过B点连接,当在A点施加力F,AB慢慢贴近BC,最终靠在一起。
但F撤销后,AB在恢复力的作用下慢慢回复到初始分开状态。
标准接触行为包括了分开状态→闭合状态→分开状态。
当AB与BC靠在一起时,既存在正压力,同时还有沿BC圆弧切线方向的摩擦力。
(2)粗糙接触行为(rough)该接触行为包括了法向接触闭合和分开行为,但滑动行为在此是不会发生的。
原因是所有参与接触的表面都被假定为非常粗糙,以致于可以认为摩擦力无穷大而不能够产生相对滑动。
在这种接触行为中,接触的两个物体或部件之间,除了存在正压力外,还有切向摩擦力,但是接触部分之间不可以产生相对滑动。
(3)绑定接触行为(bonded)是指一旦接触关系建立,那么目标面及接触面就被假定为粘结在一起(不可以分开)。
(4)绑定接触行为(始终)(bonded(always))任何初始时在许可接触容差范围内探测到的接触点或者是那些即将进入接触的点在后续的分析中将被绑定在一起。
这种接触行为的典型应用,如在组装分析中将两种不同网络的组件“加”在一起。
线性静态分析也可以用该种接触行为来解决,虽然由于有接触单元的存在,分析中将会提示为非线性分析,但往往只要一步迭代就完成了。
(5)绑定接触行为(初始接触)(bonded(initial))绑定仅发生在初始状态下就接触的面上,初始状态下没有接触的部分将继续保持分开。
典型的例子是通过焊接连接在一起的两个物体,焊接部分始终保持连接,没有焊接的部分保持分离状态。
(6)不分开型(no separation)一旦接触关系建立,目标面及接触面便被约束在一起了,但还是允许接触面之间有滑动。
第五章接触分析5.1 概述接触问题是一种高度非线性行为,需要较多的计算机资源。
为了进行切实有效的计算,理解问题的物理特性和建立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在用户求解问题之前,用户通常不知道接触区域。
随载荷、材料、边界条件和其它因素的不同,表面之间可以接触或者分开,这往往在很大程度上是难以预料的,并且还可能是突然变化的。
其二,大多数的接触问题需要考虑摩擦作用,有几种摩擦定律和模型可供挑选,它们都是非线性的。
摩擦效应可能是无序的,所以摩擦使问题的收敛性成为一个难点。
注意 --如果在模型中,不考虑摩擦,且物体之间的总是保持接触,则可以应用约束方程或自由度藕合来代替接触。
约束方程仅在小应变分析( NLGEOM,off)中可用。
见《ANSYS Modeling and Meshing Guide》中的§12,Coupling and Constraint Equations。
除了上面两个难点外,许多接触问题还必须涉及到多物理场影响,如接触区域的热传导、电流等。
5.1.1 显式动态接触分析能力除了本章讨论的隐式接触分析外,ANSYS还在ANSYS/LS-DYNA中提供了显式接触分析功能。
显式接触分析对于短时间接触-碰撞问题比较理想。
关于ANSYS/LS-DYNA的更多的信息参见《ANSYS/LS-DYNA User"s Guide》。
5.2 一般接触分类接触问题分为两种基本类型:刚体─柔体的接触,柔体─柔体的接触。
在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度)。
一般情况下,一种软材料和一种硬材料接触时,可以假定为刚体─柔体的接触,许多金属成形问题归为此类接触。
柔体─柔体的接触是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有相似的刚度)。
柔体─柔体接触的一个例子是栓接法兰。
5.3 ANSYS接触分析功能ANSYS支持三种接触方式:点─点,点─面,面─面接触。
ANSYS 分线性接触问题分析汇总接触非线性是一门复杂的学科,ANSYS 关于计算非线性接触的设置选项多只又多,很多人摸不到头脑,本文就基于ANSYS 模拟过的几个接触实例,研究了相关设置选项对接触结果的影响。
实例1:橡胶密封圈配合接触研究—非线性求解设置对结果的影响密封圈配合模型简图见图1,左右两端为刚体,中间圆部分为橡胶密封圈,将刚体2沿刚体1方面移动,从而实现橡胶圈密封作用,采用plane182单元,设置轴对称行为,建立橡胶密封圈与刚体接触模型,见图2。
图1 密封圈配合模型简图 图2 密封圈配合有限元模型图接触对采用默认设置,摩擦系数取0.10,研究非线性求解器设置对收敛方面的影响,大变形静态(Large Displacement Static )效应打开,自动时间步长(Automatic time stepping )打开,子步数(Number of substeps )设置为50,线性搜索(Line search )打开。
1 收敛准则对结果的影响此实例收敛准则默认采用力收敛结合力矩收敛准则(基于L2范数),收敛容差(Tolerance )默认为0.001,工程上认为0.05的收敛容差足够满足要求。
表 1 收敛容差对计算结果的影响收敛容差 最大应力/ MPa报错与否? 0.001 4.12364报错 0.05 4.12785 报错 0.14.12996报错查看报错信息,见图3,表示单元过于扭曲,建议提高子步数或降低时间步长,需要提高网格质量,也要考虑材料属性,接触对及约束方程的合理性,若在第一步迭代就如此,需要预先执行单元形状检查。
图3 报错信息刚体1刚体2密封圈橡胶密封圈配合Von Mises应力云图见图4。
图4 橡胶密封圈配合Von Mises应力2 子步数对结果的影响此实例子步数设置为50、100、200、500,收敛容差(Tolerance)默认为0.001,研究子步数对收敛的影响。
接触非线性有限元专题培训(张老师培训)深入讲解接触非线性计算的基本原理,设置方法,重点解决接触非线性计算不收敛的难题,加入培训QQ群可以参加课程的免费试听一次,免费试听内容为第一天课程,试听时间定于10月30日,晚上19:30开始。
培训QQ群: 311735634培训费用:500,10月30日前缴费的,优惠50,仅收450.支付方式:支付宝或网上银行转账培训软件:ANSYS15.0,ANSYS Workbench环境培训时间:11月4日,每天晚上19:30到21:30,持续9天课程特点:原理+操作+实例+工程经验+技巧,重点是讲解如何处理接触分析常见不收敛的问题。
第1天课程1.接触分析综述1.1概述1.2接触分析典型应用1.3接触类型1.4接触分析基本过程;1.5接触分析中的实常数与关键字简介1.6范例:球体-平面赫兹接触第2天课程2.接触基本设置选项2.1接触算法2.2接触刚度2.3穿透容差2.4 Pinball区域2.5接触作用方式2.6初始接触状态判断与调整2.7工程实例工程实例1:液压阀结构的接触有限元分析工程实例2:过盈配合结构有限元分析第3天课程3.非线性方程求解方法3.1非线性方程求解方法3.2非线性收敛准则3.3预测器3.4自适应下降3.5线性搜索3.6弧长法3.7 工程实例:非线性屈曲接触有限元计算第4天课程4.摩擦接触4.1摩擦模型;4.2摩擦参数;4.3自定义摩擦系数;4.4切向法刚度;4.5切向滑动容差4.6摩擦生热4.7工程实例工程实例1:齿轮接触的摩擦有限元计算工程实例2:轮胎地面滚动摩擦接触有限元计算第5天课程5.接触分析插入的命令流5.1 接触单元关键字插入的命令5.2 接触单元实常数插入的命令5.3 接触模型插入的命令5.4 工程实例工程实例1:圆柱转动摩擦生热有限元分析工程实例2:界面开裂失效有限元分析第6天课程6.接触分析后处理6.1 接触工具6.2 联合ANSYS经典版进行后处理6.3 接触分析后处理可查看的选项6.4 判断接触分析精度的方法6.5 接触单元的单元表6.7工程实例:双耳结构接触有限元分析第7天课程7.接触分析高级功能7.1刚-柔接触7.2实体-壳体的连接7.3螺栓预紧连接7.4点焊结构分析7.5接触裁剪7.6对称与非对称接触7.7稳态阻尼系数7.8壳体接触厚度效应7.9接触时间步控制7.10工程实例工程实例1:点焊连接结构有限元分析工程实例2:薄壁冲压接触有限元分析工程实例3:轮盘轮毂螺栓预紧连接接触有限元计算第8天课程8.热接触分析8.1热接触行为与接触状态8.2接触热传导8.3工程实例:多材料接触导热有限元计算。