第21章《一元二次方程》单元测试题
- 格式:doc
- 大小:152.01 KB
- 文档页数:4
人教版九年级数学上册第21章一元二次方程单元测试题(含答案)一、选择题(每小题4分,共32分)1.下列方程中,是一元二次方程的有( )①x 2=0; ②ax 2+bx +c =0; ③3x 2=x ; ④2x (x +4)-2x 2=0;⑤(x 2-1)2=9; ⑥1x 2+1x-1=0.A .2个B .3个C .4个D .5个 2.将一元二次方程x 2-4x +3=0配方可得( ) A .(x -2)2=7 B .(x -2)2=1 C .(x +2)2=1 D .(x +2)2=23.若关于x 的一元二次方程x 2-2x +m =0有一个解为x =-1,则另一个解为( ) A .1 B .-3 C .3 D .4 4.已知方程kx 2+4x +4=0有实数根,则k 的取值范围是( ) A .k ≤1 B .k ≥-1 C .k ≤1且k ≠0 D .k <-15.若一个三角形的两边长分别为3和6,第三边长是方程x 2-13x +36=0的根,则这个三角形的周长为( )A .13B .15C .18D .13或186.小红按某种规律写出4个方程:①x 2+x +2=0;②x 2+2x +3=0;③x 2+3x +4=0;④x 2+4x +5=0.按此规律,第五个方程的两个根为( )A .-2,3B .2,-3C .-2,-3D .2,37.若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +ba的值是( )A .3B .-3C .5D .-58.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年利润的年平均增长率为x ,则可列方程为( )A .300(1+x )=507B .300(1+x )2=507C .300(1+x )+300(1+x )2=507D .300+300(1+x )+300(1+x )2=507 二、填空题(每小题4分,共24分)9.把方程(2x +1)(x -2)=5-3x 整理成一般形式得____________,其中一次项系数为______.10.若(m +1)x |m -1|+5x -3=0是关于x 的一元二次方程,则m 的值为________. 11.关于x 的方程kx 2-4x -4=0有两个不相等的实数根,则k 的最小整数值为________. 12.关于x 的一元二次方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数,则a 的值为________.13.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x 米,根据题意,可列方程为________________.14.小明发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m =________.三、解答题(共44分)15.(9分)用适当的方法解下列方程: (1)12(x +1)2-6=0;(2)x 2+25x +2=0;(3)2x (2-x )=3(x -2).16.(8分)已知关于x 的一元二次方程(x -3)(x -2)=p (p +1). (1)求证:无论p 取何值,此方程总有两个实数根;(2)若原方程的两个根分别为x 1,x 2,且满足x 12+x 22-x 1x 2=3p 2+1,求p 的值.17.(8分)如图21,在直角墙角AOB (OA ⊥OB ,且OA ,OB 长度不限)中,要砌20 m 长的墙(即AC +BC =20 m),与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96 m2.(1)求该地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖,单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),则用哪一种规格的地板砖费用较少?图2118.(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件的价格销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销量,决定降价销售,根据市场调查发现,该T恤的单价每降低1元/件,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月单价降低x元/件.(1)填表(不需要化简):(2)19.(11分)如图22所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点Q 从点A开始沿AB边以1 cm/s的速度向点B移动,点P从点B开始沿BC边以2 cm/s的速度向点C移动,如果点Q,P分别从点A,B同时出发,当一动点运动到终点时,另一动点也随之停止运动.(1)几秒后,△PBQ的面积等于4 cm2?(2)几秒后,PQ的长度等于210 cm?(3)在(1)中,△PBQ的面积能否等于7 cm2?试说明理由.图22答案1.A 2.B3.C [解析] 设方程的另一个解为x 1.根据题意,得-1+x 1=2,解得x 1=3.4.A [解析] 当k =0时,方程为一元一次方程4x +4=0,有唯一实数根;当k ≠0时,方程是一元二次方程.∵方程有实数根,∴根的判别式b 2-4ac =16-16k ≥0,即k ≤1且k ≠0.综上所述k 的取值范围是k ≤1.5.A6.C [解析] 根据小红写出的4个方程,发现其规律是第n 个方程是x 2+nx +(n +1)=0,所以第五个方程是x 2+5x +6=0,即(x +2)(x +3)=0,则x +2=0或x +3=0,∴x 1=-2,x 2=-3.7.D [解析] ∵a ,b 为方程x 2-3x +p =0(p ≠0)的两个不相等的实数根, ∴a +b =3,ab =p .∵a 2-ab +b 2=(a +b )2-3ab =32-3p =18,∴p =-3.当p =-3时,b 2-4ac =(-3)2-4p =9+12=21>0,∴p =-3符合题意.∴a b +b a =(a +b )2-2ab ab =(a +b )2ab -2=32-3-2=-5. 故选D.8.B 9.2x 2-7=0 0 10.311.1 [解析] ∵关于x 的方程kx 2-4x -4=0有两个不相等的实数根,∴k ≠0且b 2-4ac >0,即k ≠0且16+16k >0,解得k >-1且k ≠0,∴k 的最小整数值为1.12.0 [解析] ∵方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数, ∴a 2-2a =0,解得a =0或a =2.当a =2时,方程为x 2+1=0,该方程无实数根,舍去,∴a =0. 13.x (x +40)=120014.3或-1 [解析] 把实数对(m ,-2m )代入a 2+b -1=2中,得m 2-2m -1=2. 移项,得m 2-2m -3=0.因式分解,得(m -3)(m +1)=0. 解得m 1=3,m 2=-1.15.解:(1)整理,得(x +1)2=12,开平方,得x +1=±2 3,所以x 1=-1+2 3,x 2=-1-2 3. (2)因为a =1,b =2 5,c =2, 所以b 2-4ac =12>0,代入公式,得x =-b ±b 2-4ac 2a =-2 5±2 32=-5±3,所以原方程的解为x 1=-5+ 3,x 2=-5- 3.(3)移项,得3(x -2)+2x (x -2)=0, 即(3+2x )(x -2)=0,所以x -2=0或2x +3=0,所以x 1=2,x 2=-32.16.解:(1)证明:原方程可变形为x 2-5x +6-p 2-p =0.∵b 2-4ac =(-5)2-4(6-p 2-p )=25-24+4p 2+4p =4p 2+4p +1=(2p +1)2≥0, ∴无论p 取何值,此方程总有两个实数根. (2)∵原方程的两个根分别为x 1,x 2, ∴x 1+x 2=5,x 1x 2=6-p 2-p . 又∵x 12+x 22-x 1x 2=3p 2+1, ∴(x 1+x 2)2-3x 1x 2=3p 2+1, ∴52-3(6-p 2-p )=3p 2+1, ∴25-18+3p 2+3p =3p 2+1, ∴3p =-6,∴p =-2.17.解:(1)设AC =x m ,则BC =(20-x )m. 由题意,得x (20-x )=96, 即x 2-20x +96=0, ∴(x -12)(x -8)=0,解得x =12或x =8.当AC =12 m 时,BC =8 m ,AC 为矩形的长,此时矩形的长为12 m. 当AC =8 m 时,BC =12 m ,BC 为矩形的长,此时矩形的长为12 m. 答:该地面矩形的长为12 m.(2)①若选用规格为0.80×0.80(单位:m)的地板砖,则 120.8×80.8=15×10=150(块), 150×50=7500(元);②若选用规格为1.00×1.00(单位:m)的地板砖,则 121×81=96(块), 96×80=7680(元). ∵7500<7680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.18.[解析] (1)第二个月的单价=第一个月的单价-降低的价格,销售量=200+10×降低的单价;清仓时的销售量=800-第一个月的销售量-第二个月的销售量.(2)等量关系为总售价-总进价=9000元.把相关数值代入计算即可. 解:(1)填表如下.即x 2-20x +100=0,解得x 1=x 2=10. 当x =10时,80-x =80-10=70.答:第二个月的单价应为70元/件.[点评] 本题考查一元二次方程的应用.用列表格的方法得到第二个月的单价和销售量以及清仓时的销售量是解决本题的突破点,得到总利润的等量关系是解决本题的关键.19.[解析] (1)设点Q ,P 分别从点A ,B 同时出发,x s 后,AQ =x cm ,QB =(5-x )cm ,BP =2x cm ,则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)根据勾股定理可求;(3)△PBQ 的面积能否等于7 cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的判别式与0的关系,若判别式大于或等于0,则能等于7 cm 2,否则不能等于7 cm 2.解:(1)设x s 后,△PBQ 的面积等于4 cm 2, 此时,AQ =x cm ,QB =(5-x )cm ,BP =2x cm.由12BP ·QB =4,得12×2x (5-x )=4, 即x 2-5x +4=0,解得x 1=1,x 2=4(不合题意,舍去). 所以1 s 后,△PBQ 的面积等于4 cm 2. (2)设y s 后,PQ 的长度等于210 cm. 此时QB =(5-y )cm ,BP =2y cm.在Rt △PBQ 中,因为PQ =210 cm ,根据勾股定理,得(5-y )2+(2y )2=(210)2, 解得y 1=3,y 2=-1(舍去).所以3 s 后,PQ 的长度等于210 cm. (3)由(1),得12×2x (5-x )=7.整理,得x 2-5x +7=0. 因为b 2-4ac =25-28<0, 所以此方程无实数解.所以△PBQ 的面积不可能等于7 cm 2.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(4)一、精心选一选1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( ) A .1 B .0 C .0或1 D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥23 D .k ≥23且k ≠2 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --7.关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1B C .D .8. 国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________11.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .13.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为14、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________15、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为16、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、专心解一解 17、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.18、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来20.已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可 21.广东将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.22.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元,(1)求第三天的销售收入是多少万元?(2)第二天和第三天销售收入平均每天的增长率是多少?23.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.24、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长. 25、阅读材料:各类方程的解法 求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x=0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x=0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.参考答案:一、1~5.ADDBB ;6~8.DDB ;二、9、x 2-2x=0; 10、4;11、2+;12、5;13、3,-7; 14、-3,-1,1或15,17,19;15、x 2+9x+14=0;16、700;三、17、①1232x ±=,;②121x =,10x =,23x =;④121x =,18、m >-1/4 ,m=2;19、方程(1)的解是x 1=2,x 2=0;方程(2)的解是x 1=3,x 2=4 20、解:(1)<1>()()x x +-=110,所以x x 1211=-=, <2>()()x x +-=210,所以x x 1221=-=, <3>()()x x +-=310,所以x x 1231=-=,……<n>()()x n x +-=10,所以x n x 121=-=,(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等 21、(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm 由题意得:2220()()1744xx -+=,解得:116x =,24x = 当116x =时,20-x=4,当24x =时,20-x=16(2)不能。
第21章一元二次方程单元测试一、选择题(每小题3分,共18分)1.下列方程中,你最喜欢的一个二元二次方程是( )A.9412=-x x B. 04023=+-x x C. 314=-x D. 02323=+-y xy x2.用配方法解方程0142=++x x ,配方后的方程是( ) A. ()322=+x B. ()322=-xC. ()522=-x D. ()522=+x*3.下列一元二次方程两实数根和为-4的是( ) A. 0422=-+x x B. 0442=+-x x C. 01042=+-x x D. 0542=-+x x 4.方程()022=-+-x x x 的解是( ) A.2 B .-2,1 C .-1 D.2,-15.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰三角形ABC 的底边长和腰长,则三角形ABC 的周长为( )A.13B.11或13C.11D.126.长春市企业退休人员王大爷的工资是每月2100元,连续两年增长后,大王大爷的工资是每月2541元,若设这两年平均每年的增长率为x ,根据题意可列方程( ) A. ()254112100=+x B. ()2100125412=-xC. ()2541121002=+x D. ()2100125412=-x二、填空题(每小题3分,共18分)7.一元二次方程05232=-+x x 的一次项系数是 .8.方程()0932=--x 的解是 .9.若方程02=-x x 的两根为1x ,2x (1x <2x ),则2x -1x = .10.关于x 的一元二次方程012=+-x kx 有两个不相等的实数根,则k 的取值范围是.11.若关于x 的方程()0222=+++a x a ax 有实数解,那么实数a 的取值范围是 .12.某种传染性牛疾在牛群中传播迅猛,平均一头牛每隔6小时能传染m 头牛,现知一养牛场有a 头牛染有此病,那么12小时后共有 头牛染上此病(用含a 、m 的代数式表示).三、解答题(每小题8分,共64分) 13.用适当方法解方程.(1)1222+=-x x x (2)()()()83211=++-+x x x (3)522=-x x (4)()()3332-=-x x x14.若方程()035112=-+-+x x m m 是关于x 的一元二次方程,求m 的值.15.已知a 是方程0120132=+-x x 的一个根,求代数式12013201222++-a a a 的值.16.已知关于x 的方程()()01222=-++-m x m x .求证:(1)方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.17.教材或资料中会出现这样的题目:把方程2212=-x x 化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项,现把上面的题目改编为下面的两个小题,请解答:(1)下列式子中,有哪几个是方程2212=-x x 所化的一元二次方程的一般形式(答案只写序号) . ①02212=--x x ;②02212=++-x x ;③422=-x x ;④0422=++-x x ;⑤ 0343232=--x x .(2)方程2212=-x x 化为一元二次方程的一般形式后,它的二次项系数、一次项系数、常数项之间具有什么关系?18. 如图①:要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?如图②:用含x 的代数式表示:AB=______cm ;AD=______cm ;矩形ABCD 的面积为______cm 2;列出方程并完成本题解答.19.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件。
一元二次方程 单元测试题一、选择题 (每题3分,共30分)1.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( ) A .2m =±B .m =2C .m= -2D .2m ≠±2.一元二次方程()224260m x mx m --+-=有两个相等的实数根,则m 等于( )A. -6B. 1C. 2D. -6或1 3.对于任意实数x ,多项式x 2-5x+8的值是一个( )A .非负数B .正数C .负数D .无法确定 4.已知代数式3x -与23x x -+的值互为相反数,则x 的值是( )A .-1或3B .1或-3C .1或3D .-1和-3 5.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14且a ≠0 D .a >–14且a ≠0 6.方程x 2+ax +1=0和x 2-x -a=0有一个公共根,则a 的值是( )A .0B .1C .2D .3 7.已知m 方程210x x --=的一个根,则代数式2m m -的值等于( )A.-1B.0C.1D.28.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A.9cm 2B.68cm 2C.8cm 2D.64cm 29.县化肥厂第一季度增产a 吨化肥,以后每季度比上一季度增产x %,则第三季度化肥增产的吨数为( )A 、 2(1)a x +B 、2(1)a x +%C 、2(1%)x +D 、2(%)a a x +10. 一个多边形有9条对角线,则这个多边形有多少条边( )A 、6B 、7C 、8D 、9二、填空题 (每题3分,共30分)11.若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 . 12.一元二次方程(x +1)(3x -2)=10的一般形式是 . 13.方程23x x =的解是____14.已知两个连续奇数的积是15,则这两个数是______ 15.已知4)2)(1(2222=-+-+y x y x ,则22x y +的值等于 .16.已知2320x x --=,那么代数式32(1)11x x x --+-的值为 .17.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 . 18.k = 时,二次三项式x 2-2(k +1)x +k +7是一个x 的完全平方式.19.当k <1时,方程2(k +1)x 2+4kx +2k -1=0的根的情况为: .20.已知方程x 2-b x + 22 = 0的一根为b = ,另一根为= .三、解答题21.解方程(每小题5分,共20分)① 2430x x --= ② 2(3)2(3)0x x x -+-=(3) 2(1)4x -= (4) 3x 2+5(2x+1)=022.(本题10分)有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米.求鸡场的长和宽.23. k为什么数时,关于x的方程32)1(2=+++-kkxxk有两个实数根?24.(10分)已知关于x的一元二次方程(a+c)x2-2bx+(a-c)=0,其中a,b,c分别为△ABC 三边长.(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)若△ABC是等边三角形,试求这个一元二次方程的根.25.(本题10分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?26.(本题10分)一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽.27.(本题10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2003年底的绿地面积为公顷,比2002年底增加了公顷;在2001年,2002年,2003年这三个中,绿地面积最多的是年;(2)为满足城市发展的需要,计划到2005年底使城区绿地面积达到72.6公顷,试求这两年(2003~2005)绿地面积的年平均增长率.28.(12分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?答案:一、选择题1.B 2.D 3.B 4.A 5.B 6.C 7.C 8.D 9.B ;10.A ; 11.m ≠3 12.23120x x +-= 13.3,021==x x 14.3和5或—3和—5 15.416.2 17.10 18.-3或2; 19.有两个不相等的实数根;20.10,21.①1222x x =+=121,3x x ==; (3).解:开平方,得12x -=±, 即1212x x -=-=-或, 所以123,1x x ==-. (4).解:移项,得 23(5)2(5)0x x -+-=,(5)[3(5)2]0,x x --+=即(5)(313)0,x x --= 503130,x x -=-=或12135,3x x ==. 22.解:设鸡场的一边长为x 米,则另一边长为(35—2x ),列方程,得 (352)150,x x -=解得1210,7.5x x ==,当x =10时,35—2x =15<18,符合题意; 当x =7.5时,35—2x =20>18,不符合题意,舍去. 答:鸡场的长为15米,宽为10米.23.解:设每件童装应降价x 元,则(40)20812004x x ⎛⎫-+⨯= ⎪⎝⎭,解得1220,10x x ==.因为要尽快减少库存,所以x =20. 答:每件童装应降价20元. 24.台布的长为8cm ,宽为6cm ;25.60,4,2003,2005~2006年的年平均增长率为10%.。
第二十一章 一元二次方程单元综合测试题 姓名:一、 选择题(每题3分,共30分)1. 下列方程中,是关于x 的一元二次方程的是( A ). A.()()12132+=+x x B.02112=-+x xC.02=++c bx axD. 1222-=+x x x 2. 把方程)2(5)2(-=+x x x 一次项系数是( D ).A.-10B. 10C.3D. -33. 三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( C ).A .8B .8或10C .10D .8和104. 若分式22632x x x x ---+的值为0,则x 的值为( A ).A .3或-2B .3C .-2D .-3或25. 如果关于x 的一元二次方程x 2+px +3=0的一个根为x 1=52-,那么这个一元二次方程是( A ). A. x 2+1079x +3=0 B. x 2-1079x +3=0 C. x 2+1071x +3=0 D. x 2-1071x +3=0 6. 若关于x 的一元二次方程-x 2+2x -k =0有两个不相等的实数根,则k 的取值范围是( A ).A .k <1B .k >1C .k =1D .k ≥07. 将方程-x 2+4x +m 的最大值为1,则m 的值是 ( D ) .A .5B .0C .2 D. -38. 某饲料厂一月份生产饲料500吨,一至三月份生产饲料共1820吨,若二、三月份每月平均增长的百分率为x ,则有( D ).A.500(1+x)2=1820B.500(1+x)+500(1+x)2=1820C .500(1+3x)=1820 D. 500+500(1+x)+500(1+x)2=18209. 甲、乙两同学解方程x 2+px+q=0,甲看错了一次项,得根2和7,乙看错了常数项,得根1和-10,则原方程为( D ). A .x 2-9x+14=0 B .x 2+9x-14=0; C .x 2-9x+10=0 D .x 2+9x+14=0 10. 一个面积为120的矩形苗圃,他的长比宽多2米,苗圃长是( B ). A 10 B 12 C 13 D 14 二、 填空题(每题4分,共24分) 11. 的解是 X 1=0, X 2=3 .12.若x =-1,是方程的一个根,则-a+b-c= 0 _________.13. 关于x 的一元二次方程22(2)30m m x x ---+=,方程的解是___ X 1=3/4,X 2=-1____________. 14. 将方程x 2+x+1=0配方后,原方程变形为43212-=⎪⎭⎫ ⎝⎛+X .15. 如图, 某小区在宽20m ,长32m 的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m 2,则道路的宽是__ 2 m ____16. 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为__ 10 ____. 三、 用适当的方法解方程(每小题6分,共12分) 17.18.X 1=1, X 2=-1/2 X 1=2/3, X 2=-1/2四、 解答题19.某农场去年种植了10亩地的南瓜,亩产量为2000,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60 000kg ,求南瓜亩产量的增长率.(8分)设南瓜亩产量的增长率为 ,则种植面积的增长率为 .根据题意,得解这个方程,得,(不合题意,舍去).所以南瓜亩产量的增长率为20. 某水果商店以2元/千克的价格购进一批苹果,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降低价格出售。
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
第二十一章一元二次方程一、选择题(每题3分,共24分)1.在一元二次方程x2−2x−3=0中,一次项系数是( )A.1B.0C.−2D.−3 2.若x=−1是关于x的方程x2+ax=0的一个根,则a的值为( )A.1B.2C.3D.43.用配方法解方程x2-6x-1=0时,配方结果正确的是( )A.(x-3)2=10B.(x-3)2=8C.(x-6)2=10D.(x-3)2=1 4.一元二次方程x2−2x=0的解是( )A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=−2D.x1=−2,x2=−15.一元二次方程x(x−1)=2(x−1)的解完全正确的是( )A.x=2B.x1=2,x2=1C.x1=−2,x2=1D.x1=3,x2=−1 6.若关于x的一元二次方程(k−1)x2−4x−1=0有实数根,则k的取值范围( )A.k>−3B.k≥−3且k≠1C.k>−3且k≠0D.k≤−37.若一元二次方程2x2+3x﹣6=0的两个根分别为x1,x2,则x1•x2的值等于( )A.﹣6B.6C.﹣3D.38.甲流病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“甲流”初期,若有一人感染了“甲流”,若得不到有效控制,则每轮传染平均一个人传染x人,经过两轮传染后共有256人感染了“甲流”.则关于x的方程为( )A.x+x(x+1)=256B.x2+x=256C.1+x+x(x+1)=256D.(x+1)+(x+1)2=256二、填空题(每题4分,共20分)9.若方程(m−1)x2+6x−1=0是关于x的一元二次方程,则m的取值范围是 .10.用配方法解一元二次方程x2+6x+3=0时,将它化为(x+m)2=n的形式,则m−n的值为 .11.已知关于x的一元二次方程2m x2−4x+1−5n=0有两个相等的实数根,则2m+5n的值为 .12.已知三角形两边的长分别是2和5,第三边的长是方程x2-7x+10=0的根,则这个三角形的周长是 .13.已知m,n是方程x2+4x−3=0的两个实数根,则m2+5m+n+2024的值是 .三、计算题(共10分)14.解方程:(1)x2−4x−12=0;(2)x(x−9)=8(9−x).四、解答题(共46分)15.关于x的一元二次方程2x2−4x+(2m−1)=0有两个不相等的实数根.(1)求m的取值范围;(2)若方程有一个根为x=3+1,求m的值和另一根.16.已知关于x的一元二次方程x2−(m+2)x+m−1=0.(1)求证:无论m取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且x21+x22−x1x2=9,求m的值.17.为了提升居民生活质量,完善社区公共区域配套设施,今年夏天长春市在多个城区实施了旧城改造工程.已知某工程队在开始施工的7月份为某小区翻新道路12000m2,为了在入冬前完成道路翻新工程,之后加快了工程进度,结果9月份为该小区翻新道路14520 m2.(1)求这两个月该工程队工作效率的月平均增长率.(2)若10月份该工程队的工作效率按此增长率增长,估计到10月末该工程队能否完成该小区共55000m2的道路翻新任务?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.C2.A3.A4.B5.B6.B7.C8.C9.m≠110.−311.112.1213.202314.(1)解:x2−4x−12=0 x2−4x=12x2−4x+4=12+4(x−2)2=16x−2=±4即:x−2=4或x−2=−4∴x1=6,x2=−2(2)解:x(x−9)=8(9−x)解:x(x−9)−8(9−x)=0x(x−9)+8(x−9)=0(x−9)(x+8)=0即:x−9=0或x+8=0∴x1=9,x2=−815.(1)解:∵方程2x2−4x+(2m−1)=0有两个不相等的实数根,∴Δ=16−8(2m−1)=24−16m>0解得m<32;∵方程有一个根x=3+1,∴2×(3+1)2−4×(3+1)+(2m−1)=0解得m=−32,则2x2−4x−4=0,x2−2x−2=0∵x1+x2=2,∴x2=2−(1+3)=1−3,则x1=1+3,x2=1−3,即m的值是−32,另一根是1−3.16.(1)证明:Δ=[−(m+2)]2−4×1×(m−1)=m2+8,∵无论m取何值,m2+8>0,恒成立,∴无论m取何值,方程都有两个不相等的实数根;(2)解:∵x1,x2是方程x2−(m+2)x+m−1=0的两个实数根,∴x1+x2=m+2,x1⋅x2=m−1,∵x21+x22−x1x2=(x1+x2)2−3x1x2=9,∴(m+2)2−3(m−1)=9解得:m1=1或m2=−2.17.(1)解:设该工程队工作效率的月平均增长率为x,根据题意,得12000(1+x)2=14520.解这个方程,得x1=0.1,x2=−2.1(不合题意舍去).答:该工程队工作效率的月平均增长率为10%.(2)解:8月的工程量为:13200m2;10月的工程量为:15972m2;12000+13200+14520+15972=55692>55000.所以该工程队能完成该小区的道路翻新任务.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。
21章《一元二次方程》单元测试(时间120分钟 总分150分)姓名;__________________ 班级:_________________一、选择题(共12个小题,每小题4分,共48分,在给出的4个选项中只有一个选项符合题意) 1、下列方程中不一定是一元二次方程的是( )A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0 C.(x+3)(x-2)=x+5 D.2332057x x +-= 2、把方程(x -5)(x +5)+(2x -1)2=0化为一元二次方程的一般形式是( ) A .5x 2-4x -4=0 B .x 2-5=0 C .5x 2-2x +1=0 D .5x 2-4x +6=03、关于x 的一元二次方程(a ﹣1)x 2+x+a 2﹣1=0的一个根0,则a 值为( ) A.1 B.﹣1 C.±1 D.04、用配方法解一元二次方程x 2﹣4x ﹣1=0,配方后得到的方程是( ) A.(x ﹣2)2=1 B.(x ﹣2)2=4 C.(x ﹣2)2=5 D.(x ﹣2)2=35、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是( ) A.5% B.10% C.15% D.20%6、a 、b 、c 是△ABC 的三边长,且关于x 的方程x 2﹣2cx+a 2+b 2=0有两个相等的实数根,这个三角形是( )A.等边三角形B.钝角三角形C.直角三角形D.等腰直角三角形 7、x 1,x 2是方程x 2+x+k=0的两个实根,若恰好21x +x 1x 2+22x =2k 2成立,k 的值为( ) A.-1 B.23或-1 C.23 D.-23-或1 8、班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x 人,则可列方程为( )A.x(x-1)=90B.x(x-1)=2×90C.x(x-1)=90÷2D.x(x +1)=90 9、若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-c47 B.k ≥-47 且k ≠0 C.k ≥-47 D.k>47且k ≠0 10、使分式2561x x x --+ 的值等于零的x 是( )A.6B.-1或6C.-1D.-611、在实数范围内定义一种运算“*”,使a *b =(a +1)2-ab ,则方程(x +2)*5=0的解为( ) A .x =-2 B .x 1=-2,x 2=3 C .x =-1±32 D .x =-1±5212、若x 0是方程ax 2+2x +c =0(a ≠0)的一个根,设M =1-ac ,N =(ax 0+1)2,则M 与N 的大小关系为( )A .M >NB .M =NC .M <ND .不确定 二、填空题(共6小题,每小题4分,共24分) 13、用______法解方程3(x-2)2=2x-4比较简便.14、一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.15、关于x 的二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = .16、已知一元二次方程x 2﹣6x+c=0有一个根为2,则c= ,另一根为 . 17、已知关于x 的一元二次方程x 2+kx+1=0有两个相等的实数根,则k= . 18、14.已知实数x 满足(x 2-x )2-4(x 2-x )-12=0,则代数式x 2-x+1的值为 . 三、解答题(共8小题,共78分) 19、(8分)用适当的方法解(1)(2x +1)2=3(2x +1); (2)3x 2-10x +6=0.20、(8分)已知关于x 的一元二次方程x 2+7x +11-m =0有实数根.(1)求m 的取值范围;(2)当m 为负整数时,求方程的两个根.21、(8分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m).现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.22、(8分)19.阅读以下材料,解答问题:例:设y=x2+6x-1,求y的最小值.解:y=x2+6x-1=x2+2·3·x+32-32-1=(x+3)2-10,∵(x+3)2≥0,∴(x+3)2-10≥-10即y的最小值是-10.问题:(1)设y=x2-4x+5,求y的最小值.(2)已知:a2+2a+b2-4b+5=0,求ab的值.23、(10分)已知关于x的方程x2-2(k+1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围; (2)若x1+x2=3x1x2-6,求k的值.24、(10分)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?25、(12分)已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0.(1)判断方程根的情况;(2)若方程的两根x1,x2满足(x1-1)(x2-1)=5,求k值;(3)若△ABC的两边AB,AC的长是方程的两根,第三边BC的长为5,①则k为何值时,△ABC是以BC为斜边的直角三角形?②k为何值时,△ABC是等腰三角形,并求出△ABC的周长.26、(14分)如图,在矩形ABCD中,BC=20 cm,点P,Q,M,N分别从点A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,四个点的运动均停止.已知在相同时间内,若BQ=x cm(x≠0),则AP=2x cm,CM=3x cm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边能构成一个三角形?(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形?【参考答案】1.B2.A3.B4.C5.B6.C7.A8.A9.B 10.A 11.D 12.B13.因式分解法 14. 3 15. 2 1 16. 8 4 17. ±2 18. 719.(1)x 1=-12,x 2=1; (2)x 1=5+73,x 2=5-73.20.(1)m ≥-54. (2)x 1=-3,x 2=-4.21.当砌墙宽为15 m ,长为20 m 时,花园面积为300 m 2. 22.解:(1)∵y=x 2-4x+5,∴y=x 2-4x+4+1=(x-2)2+1.∵(x-2)2≥0,∴(x-2)2+1≥1,即y 的最小值是1.(2)∵a 2+2a+b 2-4b+5=0,∴a 2+2a+1+b 2-4b+4=0,∴(a+1)2+(b-2)2=0,∵(a+1)2≥0,(b-2)2≥0,∴a+1=0,b-2=0,∴a=-1,b=2,∴ab=-1×2=-2.23.解:(1)∵方程x 2-2(k+1)x+k 2=0有两个实数根x 1,x 2,∴Δ≥0,即4(k+1)2-4×1×k 2≥0,解得k ≥-,∵k ≥-,∴k=2.24.(1)y =⎩⎪⎨⎪⎧600<x <20,-x +8020≤x ≤80.(2)要使销售利润达到800元,销售单价应定为每千克40元或60元.25.解:(1)∵在方程x 2-(2k+3)x+k 2+3k+2=0中,Δ=b 2-4ac=[-(2k+3)]2-4(k 2+3k+2)=1>0,∴方程有两个不相等的实数根.(2)∵x 1+x 2=2k+3,x 1·x 2=k 2+3k+2,∴由(x 1-1)(x 2-1)=5,得x 1·x 2-(x 1+x 2)+1=5,即k 2+3k+2-2k-3+1=5,整理,得k 2+k-5=0,解得k=.(3)∵x 2-(2k+3)x+k 2+3k+2=(x-k-1)(x-k-2)=0,∴x 1=k+1,x 2=k+2.①不妨设AB=k+1,AC=k+2,∴斜边BC=5时,有AB 2+AC 2=BC 2,即(k+1)2+(k+2)2=25,解得k 1=2,k 2=-5(舍去).∴当k=2时,△ABC 是直角三角形.②∵AB=k+1,AC=k+2,BC=5,由(1)知AB ≠AC ,故有两种情况:(Ⅰ)当AC=BC=5时,k+2=5,∴k=3,AB=3+1=4,∵4,5,5满足任意两边之和大于第三边,∴此时△ABC 的周长为4+5+5=14;(Ⅱ)当AB=BC=5时,k+1=5,∴k=4,AC=k+2=6,∵6,5,5满足任意两边之和大于第三边,∴此时△ABC 的周长为6+5+5=16.综上可知,当k=3时,△ABC 是等腰三角形,此时△ABC 的周长为14;当k=4时,△ABC 是等腰三角形,此时△ABC 的周长为16.26.解:(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边能构成一个三角形.①当点P 与点N 重合时,由x 2+2x =20,得x 1=21-1,x 2=-21-1(不符合题意,舍去).因为BQ +CM =x +3x =4(21-1)<20,此时点Q 与点M 不重合,所以符合题意. ②当点Q 与点M 重合时,由x +3x =20,得x =5. 此时DN =x 2=25>20,不符合题意, 故点Q 与点M 不能重合, 所以所求x 的值为21-1.(2)由(1)知,点Q 只能在点M 的左侧, ①当点P 在点N 的左侧时, 由20-(x +3x )=20-(2x +x 2), 得x 1=0(舍去),x 2=2.则当x =2时,四边形PQMN 是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.则当x=4时,四边形NQMP是平行四边形.综上所述,当x=2或4时,以P,Q,M,N为顶点的四边形是平行四边形.。
第二十一章 一元二次方程(单元测试)一、单选题:1.下列各式15(1﹣x )=0,24π3x -=0,222x y -=0,10x x +=,x 2+3x =0,其中一元二次方程的个数为( ) A .2个B .3个C .4个D .5个2.用配方法解方程x 2+2x -1=0时,配方结果正确的是( )A .()212x +=B .()222x +=C .()213x +=D .()223x +=3.关于x 的方程x ²+mx +6=0的一个根为-2,则另一个根是( )A .-3B .-6C .3D .64.解一元二次方程2(1)2(1)x x -=-最适宜的方法是( )A .直接开平方B .公式法C .因式分解法D .配方法5.关于x 的方程(m ﹣3)221mm x --﹣mx +6=0是一元二次方程,则它的一次项系数是( )A .﹣1B .1C .3D .3或﹣16.方程28170x x ++=的根的情况是( ).A .没有实数根B .有一个实数根C .有两个相等的实数根D .有两个不相等的实数根7.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1;B .k >-1且k ≠0;C .k <1;D .k <1且k ≠0.8.设a 、β是方程x 2+x +2012=0的两个实数根,则a 2+2a +β的值为( )A .-2014B .2014C .2013D .-20139.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣610.据兰州市旅游局最新统计,2014年春节黄金周期间,兰州市旅游收入约为11.3亿元,而2012年春节黄金周期间,兰州市旅游收入约为8.2亿元.假设这两年兰州市旅游收入的平均增长率为x ,根据题意,所列方程为( )A .11.3(1﹣x %)2=8.2B .11.3(1﹣x )2=8.2C .8.2(1+x %)2=11.3D .8.2(1+x )2=11.311.在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是5,﹣4,则原来的方程是( ) A .x 2+2x ﹣3=0 B .x 2+2x ﹣20=0 C .x 2﹣2x ﹣20=0D .x 2﹣2x ﹣3=012.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出 20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价 180元增加 x 元,则有( ) A .(x ﹣20)(50﹣ 18010x - )=10890 B .x (50﹣18010x - )﹣50×20=10890 C .(180+x ﹣20)(50﹣10x)=10890 D .(x +180)(50﹣10x)﹣50×20=10890 二、填空题:13.一元二次方程3x 2﹣6x =0的根是 .14.关于x 的一元二次方程x 2+6x +m =0有两个相等的实数根,则m 的值为 .15.已知关于x 的一元二次方程3x +1=0有两个不相等的实数根x 1,x 2,则x 12+x 22的值是 16.将x 2+6x +4进行配方变形后,可得该多项式的最小值为 .17.若关于x 的一元二次方程(k ﹣1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是 .18.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m ²,设道路的宽为x m ,则根据题意,可列方程为 .19.我国南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步).问阔及长各几步?若设阔(宽)为x 步,则所列方程为 .20.菱形的一条对角线长为8,其边长是方程x 2﹣9x +20=0的一个根,则该菱形的面积为 .三、解答题:21.解方程(1)2x 2+4x +1=0 (配方法) (2)x 2+6x =5(公式法)22.请选择适当的方法解下列一元二次方程:(1)22630x x ++= ; (2)2(2)3(2)x x +=+ .23.已知关于x 的一元二次方程x 2﹣6x +m 2﹣3m ﹣5=0的一个根是﹣1,求m 的值及方程的另一个根.24.若等腰△ABC 的一边长a =5,另两边b ,c 的长度恰好是关于x 的一元二次方程x 2﹣(m +3)x +4m﹣4=0的两个实数根,求△ABC 的周长.25.已知关于x 的一元二次方程 ()()22310x m x m -++-= .(1)请判断这个方程的根的情况,并说明理由;(2)若这个方程的一个实根大于1,另一个实根小于0,求m的取值范围.26.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?27.某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?28.根据扬州市某风景区的旅游信息,A公司组织一批员工到该风景区旅游,支付给旅行社2800元. A公司参加这次旅游的员工有多少人?扬州市某风景区旅游信息表29.如图已知直线AC的函数解析式为y= 43x+8,点P从点A开始沿AO方向以1个单位/秒的速度运动,点Q从O点开始沿OC方向以2个单位/秒的速度运动.如果P、Q两点分别从点A、点O同时出发,经过多少秒后能使△POQ的面积为8个平方单位?。
初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)1 / 6第21章 一元二次方程 单元测试卷一、单选题(共10题;共30分)1.下列方程是关于 的一元二次方程的是 A.B.C.D.2.将一元二次方程x 2-6x+5=0配方后,原方程变形为( )A. (x-3)2=5 B. (x-6)2=5 C. (x-6)2=4 D. (x-3)2=4 3.已知点A (m 2-2,5m+4)在第一象限角平分线上,则m 的值是( )A. 6B. -1C. 2或3D. -1或64.若关于x 的一元二次方程x 2﹣2x ﹣k+1=0有两个不相等的实数根,则一次函数y=kx ﹣k 的大致图象是( )A.B.C.D.5.如果关于 的方程 有两个实数根,则 满足的条件是( )A.B.C.且D.且6.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A. 9人 B. 10人 C. 11人 D. 12人7.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣3x =4(x ﹣3)的两个实数根,则该直角三角形斜边上的中线长是( )A. 3B. 4C. 6D. 2.58.若一元二次方程x 2﹣x ﹣2=0的两根为x 1 , x 2 , 则(1+x 1)+x 2(1﹣x 1)的值是( ) A. 4 B. 2 C. 1 D. ﹣29.王叔叔从市场上买了一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm 的正方形后,剩余的部分刚好能围成一个底面积为3000cm 2的无盖长方形工具箱,根据题意列方程为( )A. (80﹣x )(70﹣x )=3000B. 80×70﹣4x 2=3000C. (80﹣2x )(70﹣2x )=3000D. 80×70﹣4x 2﹣(70+80)x=300010.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A. B. C. 2﹣ D. 4﹣2二、填空题(共6题;共18分)11.方程 转化为一元二次方程的一般形式是________.12.一元二次方程的根是________.13.关于x 的一元二次方程(m ﹣3)x 2+x+(m 2﹣9)=0的一个根是0,则m 的值是________. 14.若一元二次方程x 2+2kx+k 2-2k+1=0的两个根分别为x 1 , x 2 , 满足x 12+x 22=4,则k 的值=________。
2020年人教版九年级数学上册单元测试:第21章一元二次方程一、选择题1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数2.若关于x的一元二次方程x2+5x+m2﹣1=0的常数项为0,则m等于()A.1 B.2 C.1或﹣1 D.03.已知x=1是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或34.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2020﹣a﹣b的值是()A.2020 B.2020 C.2020 D.20205.关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1 B.2 C.3 D.46.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=97.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定8.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=109.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.x(x﹣10)=375 B.x(x+10)=375 C.2x(2x﹣10)=375 D.2x(2x+10)=37510.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20201,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144二、填空题11.一元二次方程x2﹣3=0的根为.12.如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是.13.已知x1,x2是一元二次方程x2+6x+3=0两个实数根,则的值为.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于.15.若x1,x2是方程3x2﹣|x|﹣4=0的两根,则=.16.为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为%.三、解答题(共52分)17.解下列方程:(1)2x2﹣4x﹣5=0.(2)x2﹣4x+1=0.(3)(y﹣1)2+2y(1﹣y)=0.18.试说明不论x,y取何值,代数式x2+y2+6x﹣4y+15的值总是正数.19.已知实数,满足a2+a﹣2=0,求的值.2020实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.21.已知关于x的方程2x2﹣mx﹣2m+1=0的两根x1,x2,且x12+x22=,试求m的值.22.如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.23.某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少2020.(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?2020年人教版九年级数学上册单元测试:第21章一元二次方程参考答案与试题解析一、选择题1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:由题意得:a2﹣1≠0,解得a≠±1.故选C.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.若关于x的一元二次方程x2+5x+m2﹣1=0的常数项为0,则m等于()A.1 B.2 C.1或﹣1 D.0【考点】一元二次方程的一般形式.【专题】计算题.【分析】根据常数项为0列出关于m的方程,求出方程的解即可得到m的值.【解答】解:∵x2+5x+m2﹣1=0的常数项为0,∴m2﹣1=0,解得:m=1或﹣1.故选C【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.已知x=1是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或3【考点】一元二次方程的解.【分析】直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.【解答】解:∵x=1是一元二次方程x2+mx+2=0的一个解,∴1+m+2=0,∴m=﹣3.故选A.【点评】此题比较简单,利用方程的解的定义即可确定待定系数.4.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2020﹣a﹣b的值是()A.2020 B.2020 C.2020 D.2020【考点】一元二次方程的解.【分析】将x=1代入到ax2+bx+5=0中求得a+b的值,然后求代数式的值即可.【解答】解:∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a•12+b•1+5=0,∴a+b=﹣5,∴2020﹣a﹣b=2020﹣(a+b)=2020﹣(﹣5)=2020.故选:A.【点评】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值.5.关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1 B.2 C.3 D.4【考点】根的判别式;一元一次不等式组的整数解.【分析】由于关于x的方程(2﹣a)x2+5x﹣3=0有实数根,分情况讨论:①当2﹣a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2﹣a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a的最大值.【解答】解:∵关于x的方程(2﹣a)x2+5x﹣3=0有实数根,∴①当2﹣a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2﹣a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2﹣a)≥0,解之得a≤,∴整数a的最大值是4.故选D.【点评】本题考查了一元二次方程根的判别式的应用.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意次方程应分是一元二次方程与不是一元二次方程两种情况进行讨论.6.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.7.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定【考点】根的判别式;一次函数图象与系数的关系.【分析】先根据函数y=kx+b的图象可得;k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k ﹣1)=5﹣4k>0,即可得出答案.【解答】解:根据函数y=kx+b的图象可得;k<0,b<0,则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,故选:C.【点评】此题考查了一元二次方程根的判别式,用到的知识点是一次函数图象的性质,关键是根据函数图象判断出△的符号.8.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=10【考点】由实际问题抽象出一元二次方程.【专题】其他问题;压轴题.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:=10;故选B.【点评】理清题意,找对等量关系是解答此类题目的关键;需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.9.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.x(x﹣10)=375 B.x(x+10)=375 C.2x(2x﹣10)=375 D.2x(2x+10)=375【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】如果设游泳池的长为xm,那么宽可表示为(x﹣10)m,根据面积为375,即可列出方程.【解答】解:设游泳池的长为xm,那么宽可表示为(x﹣10)m;则根据矩形的面积公式:x(x﹣10)=375;故选A.【点评】本题可根据矩形面积=长×宽,找出关键语来列出方程.10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20201,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144【考点】一元二次方程的应用.【专题】压轴题.【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解答】解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=﹣24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.【点评】此题主要考查了数字变化规律以及一元二次方程的解法,根据已知得出最大数与最小数的差为16是解题关键.二、填空题11.一元二次方程x2﹣3=0的根为x1=,x2=﹣.【考点】解一元二次方程-直接开平方法.【分析】直接解方程得出答案,注意用直接开平方法.【解答】解:x2﹣3=0,x2=3,x=,x1=,x2=﹣.故答案为:x1=,x2=﹣.【点评】此题主要考查了直接开平方法解方程,题目比较典型,是中考中的热点问题.12.如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是3.【考点】换元法解一元二次方程.【专题】换元法.【分析】先设x2+y2=t,则方程即可变形为t(t﹣2)=3,解方程即可求得t即x2+y2的值.【解答】解:设x2+y2=t(t≥0).则原方程可化为:t(t﹣2)=3,即(t﹣3)(t+1)=0,∴t﹣3=0或t+1=0,解得t=3,或t=﹣1(不合题意,舍去);故答案是:3.【点评】本题考查了换元法﹣﹣解一元二次方程.解答该题时需注意条件:x2+y2=t且t≥0.13.已知x1,x2是一元二次方程x2+6x+3=0两个实数根,则的值为10.【考点】根与系数的关系.【分析】根据===,根据一元二次方程根与系数的关系可得:两根之积与两根之和的值,代入上式计算即可.【解答】解:∵x1、x2是方程x2+6x+3=0的两个实数根,∴x1+x2=﹣6,x1•x2=3.又∵===,将x1+x2=﹣6,x1•x2=3代入上式得原式==10.故填空答案为10.【点评】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于﹣2.【考点】根与系数的关系.【专题】计算题.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2,x1•x2=1,然后变形+得,再把x1+x2=2,x1•x2=﹣1整体代入计算即可.【解答】解:∵x1,x2是方程x2﹣2x﹣1=0的两个根,∴x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.15.若x1,x2是方程3x2﹣|x|﹣4=0的两根,则=.【考点】根与系数的关系.【分析】首先假设x>0或x<0分别讨论,再利用所求根代入得出即可.【解答】解:当x>0,则3x2﹣|x|﹣4=0,可变形为:3x2﹣x﹣4=0,解得:x1=,x2=﹣1(不合题意舍去),当x<0,则3x2﹣|x|﹣4=0,可变形为:3x2+x﹣4=0,解得:x1=﹣,x2=1(不合题意舍去),则=,故答案为:.【点评】此题主要考查了绝对值的性质以及一元二次方程的解法,根据已知利用分类讨论得出是解题关键.16.为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为10%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是60(1﹣x),那么第二次后的价格是60(1﹣x)2,即可列出方程求解.【解答】解:设平均每次降价的百分率为x,依题意列方程:60(1﹣x)2=48.6,解方程得x1=0.1=10%,x2=1.9(舍去).故平均每次降价的百分率为10%.【点评】本题比较简单,考查的是一元二次方程在实际生活中的运用,属较简单题目.三、解答题(共52分)17.解下列方程:(1)2x2﹣4x﹣5=0.(2)x2﹣4x+1=0.(3)(y﹣1)2+2y(1﹣y)=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【专题】计算题.【分析】(1)先计算判别式的值,然后利用求根公式法解方程;(2)先利用配方法得到(x﹣2)2=3,然后利用直接开平方法解方程;(3)先变形得到(y﹣1)2﹣2y(y﹣1)=0,然后利用因式分解法解方程.【解答】解:(1)△=(﹣4)2﹣4×2×(﹣5)=56,x==,所以x1=,x2=;(2)x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣;(3)(y﹣1)2﹣2y(y﹣1)=0,(y﹣1)(y﹣1﹣2y)=0,y﹣1=0或y﹣1﹣2y=0,所以y1=1,y2=﹣1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法和公式法解一元二次方程.18.试说明不论x,y取何值,代数式x2+y2+6x﹣4y+15的值总是正数.【考点】配方法的应用;非负数的性质:偶次方.【分析】此题考查了配方法求最值,此题可化为2个完全平方式与一个常数的和的形式.【解答】解:将原式配方得,(x﹣2)2+(y+3)2+2,∵它的值总不小于2;∴代数式x2+y2+6x﹣4y+15的值总是正数.【点评】此题考查了配方法的应用,解题的关键是认真审题,准确配方.19.已知实数,满足a2+a﹣2=0,求的值.【考点】分式的化简求值;解一元二次方程-因式分解法.【专题】计算题.【分析】先解关于a的一元二次方程,求出a的值,并把所给的分式化简,然后把a的值代入化简后的式子计算就可以了.【解答】解:原式===,∵a2+a﹣2=0,∴a1=1,a2=﹣2,∵a1=1时,分母=0,∴a1=1(舍去),当a2=﹣2,原式==2.【点评】这是关于分式化简求值的问题,注意解出a的值必须保证分式有意义,才能代入计算.2020实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.【考点】解一元二次方程-直接开平方法.【专题】新定义.【分析】(1)根据规则为:a△b=a2﹣b2,代入相应数据可得答案;(2)根据公式可得(x+2)△5=(x+2)2﹣52=0,再利用直接开平方法解一元二次方程即可.【解答】解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得(x+2)△5=(x+2)2﹣52=0,(x+2)2=25,两边直接开平方得:x+2=±5,x+2=5,x+2=﹣5,解得:x1=3,x2=﹣7.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.21.已知关于x的方程2x2﹣mx﹣2m+1=0的两根x1,x2,且x12+x22=,试求m的值.【考点】根与系数的关系.【分析】首先根据一元二次方程根与系数得到两根之和和两根之积,然后把x12+x22转换为(x1+x2)2﹣2x1x2,然后利用前面的等式即可得到关于m的方程,解方程即可求出结果.【解答】解:∵x1、x2是一元二次方程2x2﹣mx﹣2m+1=0的两个实数根,∴x1+x2=m,x1x2=(﹣2m+1),∵x12+x22=(x1+x2)2﹣2x1x2=,∴m2﹣2×(﹣2m+1)=,解得:m1=3,m2=﹣11,又∵方程x2﹣mx+2m﹣1=0有两个实数根,∴△=m2﹣4×2×(﹣2m+1)≥0,∴当m=﹣11时,△=﹣73<0,舍去;故符合条件的m的值为m=3.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.通过变形可以得到关于待定系数的方程解决问题.22.如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)边长为x的正方形面积为x2,矩形面积减去4个小正方形的面积即可.(2)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可.【解答】解:(1)ab﹣4x2;(2)依题意有:ab﹣4x2=4x2,将a=6,b=4,代入上式,得x2=3,解得x1=,x2=﹣(舍去).即正方形的边长为【点评】本题是利用方程解答几何问题,充分体现了方程的应用性.依据等量关系“剪去部分的面积等于剩余部分的面积”,建立方程求解.23.某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少2020.(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)关键是根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.(2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值.【解答】解:(1)设每千克应涨价x元,由题意,得(10+x)(500﹣2020=6000,整理,得x2﹣15x+50=0,解得:x=5或x=10,∴为了使顾客得到实惠,所以x=5.(2)设涨价x元时总利润为y,由题意,得y=10+x)(500﹣2020y=﹣2020+300x+5 000y=﹣2020﹣7.5)2+6125∴当x=7.5时,y取得最大值,最大值为6125元.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多为6125元.【点评】考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.。
第21章 一元二次方程 单元测试卷一.选择题(共10小题)1.下列方程中,属于一元二次方程的是( )A .3x y +=B .2(3)x x x +=C .2(1)3(3)x x +=-D .235x x-= 2.一元二次方程22310x x -+=的二次项系数是2,则一次项系数是( ) A .1B .3-C .3D .1-3.将一元二次方程2850x x --=化成2()(x a b a +=,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21B .4-,11C .4,21D .8-,694.方程2(5)6(5)x x x -=-的根是( ) A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =5.若1x =-是关于x 的一元二次方程210ax bx +-=的一个根,则202022a b +-的值为( )A .2018B .2020C .2022D .20246.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ) A .0个B .1个C .2个D .1个或2个7.某班同学毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x 名同学,根据题意,列出方程为( ) A .(1)1260x x +=B .2(1)1260x x +=C .(1)12602x x -=⨯D .(1)1260x x -=8.小刚在解关于x 的方程20(0)ax bx c a ++=≠时,只抄对了1a =,3b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( ) A .不存在实数根 B .有两个不相等的实数根C .有一个根是1x =-D .有两个相等的实数根9.疫情期间,某快递公司推出无接触配送服务,第1周接到5万件订单,第2周到第3周订单量增长率是第1周到第2周订单量增长率的1.5倍,若第3周接到订单为7.8万件,设第1周到第2周的订单增长率为x ,可列得方程为( ) A .5(1 1.5)7.8x x ++= B .5(1 1.5)7.8x x +⨯=C .7.8(1)(1 1.5)5x x --=D .5(1)(1 1.5)7.8x x ++=10.某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( ) A .(40)(60010)10000x x +-= B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=二.填空题(共8小题)11.已知关于x 的一元二次方程23280x x --=的常数项是 . 12.已知:方程||7(9)810a a x x -+++=是一元二次方程,则a 的值为 . 13.用配方法解方程2220x x +-=,配方后得到方程为 . 14.一元二次方程220x x -=的两根分别为 .15.已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= . 16.已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = .17.一个三角形的两边长分别为2和3,第三边长是方程210210x x -+=的根,则三角形的周长为 .18.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为 米.三.解答题(共7小题) 19.解方程:2(1)55x x +=+. 20.解方程: (1)2230x x +-= (2)(5)50x x x +++=21.已知关于x 的一元二次方程2()2()0(x m x m m -+-=为常数). (1)求证:不论m 为何值,该方程总有两个不相等的实数根. (2)若该方程有一个根为4,求m 的值.22.已知一元二次方程2710x x +-=的两个实数根为α,β. 求值(1)αβ+和αβ. (2)22αβ+. (3)(1)(1)αβ--.23.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m ,墙对面有一个2m宽的门,另三边用竹篱笆围成,篱笆总长33m,围成长方形的养鸡场除门之外四周不能有空隙.(1)要围成养鸡场的面积为2150m,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到2200m?请说明理由.24.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?25.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.参考答案一.选择题(共10小题)1.下列方程中,属于一元二次方程的是( )A .3x y +=B .2(3)x x x +=C .2(1)3(3)x x +=-D .235x x-= 解:A 、3x y +=,是二元一次方程;B 、2(3)x x x +=, 223x x x +=,30x =,是一元一次方程;C 、2(1)3(3)x x +=-是一元二次方程;D 、不是整式方程,不是一元二次方程;故选:C .2.一元二次方程22310x x -+=的二次项系数是2,则一次项系数是( ) A .1B .3-C .3D .1-解:一元二次方程22310x x -+=的二次项系数是2, ∴一次项系数是3-,故选:B .3.将一元二次方程2850x x --=化成2()(x a b a +=,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21 B .4-,11 C .4,21 D .8-,69解:2850x x --=,285x x ∴-=,则2816516x x -+=+,即2(4)21x -=, 4a ∴=-,21b =,故选:A .4.方程2(5)6(5)x x x -=-的根是( ) A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =解:2(5)6(5)0x x x ---=, (5)(26)0x x ∴--=,则50x -=或260x -=, 解得5x =或3x =, 故选:D .5.若1x =-是关于x 的一元二次方程210ax bx +-=的一个根,则202022a b +-的值为( )A .2018B .2020C .2022D .2024解:把1x =-代入210ax bx +-=得:10a b --=, 1a b ∴-=,20202220202()202022022a b a b ∴+-=+-=+=.故选:C .6.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ) A .0个B .1个C .2个D .1个或2个解:直线y x a =+不经过第二象限,0a ∴,当0a =时,关于x 的方程2210ax x ++=是一次方程,解为12x =-,当0a <时,关于x 的方程2210ax x ++=是二次方程, △2240a =->,∴方程有两个不相等的实数根.故选:D .7.某班同学毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x 名同学,根据题意,列出方程为( ) A .(1)1260x x += B .2(1)1260x x += C .(1)12602x x -=⨯ D .(1)1260x x -=解:全班有x 名同学, ∴每名同学要送出(1)x -张;又是互送照片,∴总共送的张数应该是(1)1260x x -=.故选:D .8.小刚在解关于x 的方程20(0)ax bx c a ++=≠时,只抄对了1a =,3b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( ) A .不存在实数根 B .有两个不相等的实数根C .有一个根是1x =-D .有两个相等的实数根解:小刚在解关于x 的方程20(0)ax bx c a ++=≠时,只抄对了1a =,3b =,解出其中一个根是1x =-,2(1)30c ∴--+=,解得:2c =, 故原方程中4c =,则24941470b ac -=-⨯⨯=-<, 则原方程的根的情况是不存在实数根. 故选:A .9.疫情期间,某快递公司推出无接触配送服务,第1周接到5万件订单,第2周到第3周订单量增长率是第1周到第2周订单量增长率的1.5倍,若第3周接到订单为7.8万件,设第1周到第2周的订单增长率为x ,可列得方程为( ) A .5(1 1.5)7.8x x ++= B .5(1 1.5)7.8x x +⨯=C .7.8(1)(1 1.5)5x x --=D .5(1)(1 1.5)7.8x x ++=解:设第1周到第2周的订单增长率为x ,根据题意得: 5(1)(1 1.5)7.8x x ++=,故选:D .10.某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( ) A .(40)(60010)10000x x +-= B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=解:售价上涨x 元后,该商场平均每月可售出(60010)x -个台灯, 依题意,得:(40)(60010)10000x x +-=, 故选:A .二.填空题(共8小题)11.已知关于x 的一元二次方程23280x x --=的常数项是 8- . 解:关于x 的一元二次方程23280x x --=的常数项是8-,故答案为:8-.12.已知:方程||7(9)810a a x x -+++=是一元二次方程,则a 的值为 9 . 解:由题意可知:||72a -=, 9a ∴=±, 90a +≠, 9a ∴=,故答案为:9.13.用配方法解方程2220x x +-=,配方后得到方程为 21()416x += .解:2220x x +-=, 222x x +=, 2112x x +=,222111()1()244x x ++=+, 2117()416x +=, 故答案为:2117()416x +=.14.一元二次方程220x x -=的两根分别为 10x =,22x = . 解:220x x -=,(2)0x x ∴-=, 0x ∴=或20x -=,解得10x =,22x =.15.已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= 1 . 解:m 是方程210x x +-=的根, 210m m ∴+-=,即21m m +=, 221m m n mn m n mn ∴++-=+-+, m 、n 是方程210x x +-=的根,21m m ∴+=,1m n +=-,1mn =-,222()1111m m n mn m m m n mn ∴++-=+++-=-+=.故答案为:1.16.已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c =8. 解:根据题意得△2(5)420c =--⨯⨯=,解得258c =.817.一个三角形的两边长分别为2和3,第三边长是方程210210x x-+=的根,则三角形的周长为8.解:210210x x-+=,(3)(7)0x x--=,30x-=或70x-=,所以13x=,27x=,2357+=<,∴三角形第三边长为3,∴三角形的周长为2338++=.故答案为8.18.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为54米.解:设小路的宽度为x米,则小正方形的边长为4x米,依题意得:(304244)80x x x+++=整理得:2427400x x+-=解得18x=-(舍去),25 4x=.4三.解答题(共7小题)19.解方程:2(1)55x x +=+.解:2(1)5(1)x x +=+,2(1)5(1)0x x ∴+-+=,则(1)(4)0x x +-=,10x ∴+=或40x -=,14x ∴=,21x =-.20.解方程:(1)2230x x +-=(2)(5)50x x x +++=解:(1)2230x x +-=,(3)(1)0x x ∴+-=,则30x +=或10x -=,解得13x =-,21x =;(2)(5)50x x x +++=,(1)(5)0x x ∴++=,则10x +=或50x +=,解得11x =-,25x =-.21.已知关于x 的一元二次方程2()2()0(x m x m m -+-=为常数).(1)求证:不论m 为何值,该方程总有两个不相等的实数根.(2)若该方程有一个根为4,求m 的值.【解答】(1)证明:2()2()0x m x m -+-=,原方程可化为22(22)20x m x m m --+-=,1a =,(22)b m =--,22c m m =-,∴△2224[(22)]4(2)40b ac m m m =-=----=>,∴不论m 为何值,该方程总有两个不相等的实数根.(2)解:将4x =代入原方程,得:2(4)2(4)0m m -+-=,即210240m m -+=, 解得:14m =,26m =.故m 的值为4或6.22.已知一元二次方程2710x x +-=的两个实数根为α,β.求值(1)αβ+和αβ.(2)22αβ+.(3)(1)(1)αβ--.解:(1)一元二次方程2710x x +-=的两个实数根为α,β,7αβ∴+=-,1αβ=-;(2)222()249251αβαβαβ+=+-=+=;(3)(1)(1)()11717αβαβαβ--=-++=-++=.23.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m ,墙对面有一个2m 宽的门,另三边用竹篱笆围成,篱笆总长33m ,围成长方形的养鸡场除门之外四周不能有空隙.(1)要围成养鸡场的面积为2150m ,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到2200m ?请说明理由.解:(1)设养鸡场的宽为xm ,根据题意得:(3322)150x x -+=,解得:110x =,27.5x =,当110x =时,33221518x -+=<,当27.5x =时33222018x -+=>,(舍去),则养鸡场的宽是10m ,长为15m .(2)设养鸡场的宽为xm ,根据题意得:(3322)200x x -+=,整理得:22352000x x -+=,△2(35)42200122516003750=--⨯⨯=-=-<,因为方程没有实数根,所以围成养鸡场的面积不能达到2200m .24.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?【解答】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得 2100(1)196x +=解得10.440%x ==,2 2.4x =-(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y 元,则每天可售出(20050)y +千克根据题意,得(2012)(20050)1750y y --+=整理得,2430y y -+=,解得11y =,23y =要减少库存11y ∴=不合题意,舍去,3y ∴=答:售价应降低3元.25.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.解:设每箱饮料降价x元,商场日销售量(10020)x+箱,每箱饮料盈利(12)x-元;(1)依题意得:(123)(100203)1440-+⨯=(元)答:每箱降价3元,每天销售该饮料可获利1440元;(2)要使每天销售饮料获利1400元,依据题意列方程得,(12)(10020)1400x x-+=,整理得27100x x-+=,解得12x=,25x=;为了多销售,增加利润,5x∴=,答:每箱应降价5元,可使每天销售饮料获利1400元.(3)不能,理由如下:要使每天销售饮料获利1500元,依据题意列方程得,(12)(10020)1500x x-+=,整理得27150-+=,x x因为△4960110=-=-<,所以该方程无实数根,即不能使每天销售该饮料获利达到1500元.。
新人教版九上数学《第21章一元二次方程》单元测试卷满分150分,考试时间120分钟一.选择题(共10小题,每小题3分,满分30分)1.将一元二次方程5x2﹣1=4x化成一般形式后,二次项系数和一次项系数分别为()A. 5,﹣1B. 5,4C. 5,﹣4D. 5x2,﹣4x2.已知一元二次方程有一个根为1,则的值为()A. -2B. 2C. -4D. 43.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A. 4B. ﹣4C. 3D. ﹣34.已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是()A. 1B. ﹣2C. 0D. ﹣15.一元二次方程x2+5x+7=0解的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定6.一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或97.用配方法解方程x2+8x+7=0,则配方正确的是()A. B. C. D.8.关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,则m的值为()A.m=2B.m=﹣2C.m=﹣2或2D.m≠09.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,若设个位数字为a,则可列方程为( )A. a2+(a-4)2=10(a-4)+a-4B. a2+(a+4)2=10a+a-4-4C. a2+(a+4)2=10(a+4)+a-4D. a2+(a-4)2=10a+(a-4)-410.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有( )A. 9人B. 10人C. 11人D. 12人二.填空题(共6小题,每小题3分,满分18分)11.方程(3x+1)=x2+2 化为一般形式为________12.方程x2﹣2x﹣3=0的解是________.13.若为方程的两个实数根,则________.14.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为________.15.有三个连续的自然数,已知其中最大的一个数比另外两个数的积还大1,那么这个最大的数是________.16.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对进入其中时,会得到一个新的实数:,例如把放入其中,就会得到.现将实数对放入其中,得到实数2,则m=________.三.解答题(共10小题,满分102分)17.(10分)解方程:x2﹣6x=1.18.(10分)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.请你按照上述解题思想解方程(x2+x)2﹣4(x2+x)﹣12=0.19.(10分)设x1,x2是关于x的方程x2-4x+k+1=0的两个实数根,是否存在实数k,使得x1x2>x1+x2成立?请说明理由.20.(10分)列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按元销售时,每天可销售个;若销售单价每降低元,每天可多售出个.已知每个玩具的固定成本为元,问这种玩具的销售单价为多少元时,厂家每天可获利润元?21.(10分)关于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0(Ⅰ)当m= 时,求方程的实数根;(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围;22.(10分)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,规定=ad -bc,上述记法就叫做二阶行列式.若=6,求x的值.23.(10分)如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.24.(10分)根据要求,解答下列问题:(1)解答下列问题①方程x2﹣2x+1=0的解为________;②方程x2﹣3x+2=0的解为________;③方程x2﹣4x+3=0的解为________;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为________;②关于x的方程________的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.25.(10分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?26.(12分)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.。
人教版九年级数学第二十一章《一元二次方程》单元测试题(含答案)(时间:100分钟 总分:120分)一、选择题(每题3分,共24分)1.若x =﹣1是一元二次方程2240x mx m ---=的一个解,则m 的值是( ) A .﹣3B .3C .﹣1D .53-2.方程2265-=x x 的二次项系数、一次项系数、常数项分别为( ) A .6,2,5B .2,6-,5C .2,6-,5-D .2-,6,53.若13(350m m x m x -+---=())是关于x 的一元二次方程,则m 的值为( )A .3B .﹣3C .±3D .±24.用配方法解方程2430x x --=.下列变形正确的是 ( ) A .()2419x -=B .()227x -=C .()221x -=D .()227x +=5.下列一元二次方程中没有实数根是 ( ) A .2540x x ++=B .2440x x -+=C .2320x x --=D .2230x x ++=6.若方程ax 2+bx +c =0(a ≠0)的两个根分别是﹣32,5,则方程a (x ﹣1)2+bx =b ﹣c 的两根为 ( ) A .﹣2,11B .﹣12,6C .﹣3,10D .﹣5,217.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少?若设平均每月的增长率为x ,根据题意,可列方程为 ( ) A .250(1)175x +=B .()25050150(1)175x x ++++=C .()250150(1)175x x +++=D .25050(1)175x ++=8.定义新运算“※”:对于实数m 、n 、p 、q ,有[,][,]m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,例如:[2,3][4,5]253422=⨯+⨯=※.若关于x的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根,则k 的取值范围是( )A .54k <B .54k >C .54k ≤且0k ≠ D .54k <且0k ≠二、填空题(每题3分,共24分)9.一元二次方程220230x bx +-=的一个根为1x =,则b 的值为______. 10.将一个容积为360cm 3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x (cm )满足的一元二次方程:_____(不必化简).11.若关于x 的一元二次方程x 2-4x +m =0没有实数根,请写出一个满足条件的m 值____.12.一元二次方程20x x -=的解为 ____________ .13.如果关于x 的一元二次方程210+-=ax bx 的一个解是1x =,则2023a b --=______.14.若规定a b ad bc c d=-,则当22022x x x x --=+-时,x =__________.15.若一元二次方程220x x -=的两个根分别为12,x x ,则1212x x x x +-的值是____. 16.若222(1)9m n +-=,则22m n +=__________. 三、解答题(每题8分,共72分) 17.解方程: (1)2450x x --= (2)()()22320x x x +-+=18.已知关于x 的一元二次方程(a ﹣1)x 2﹣2x +1=0有两个实数根,求a 的非负整数解.19.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积.20.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?21.今年荣县一中计划扩大校园绿地面积,现有一块长方形绿地ABCD,它的短边AB长为6m,若将短边AB增大到与长边AD相等(长边不变),使扩大后的绿地的形状是正方形AEFD,则扩大后的绿地面积比原来增加16m2,求扩大后的正方形绿地边长.22.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施.经调查发现,每件衬衫每降价1元,商场平均每天可多售出2件.(1)求每件衬衫应降价多少元,能使商场每天盈利1200元;(2)小明的观点是:“商场每天的盈利可以达到1300元”,你同意小明的说法吗?若同意,请求出每件衬衫应降价多少元?若不同意,请说明理由.23.如图,有一农户要建一个矩形鸡舍,鸡舍的一边利用长为a米的墙,另外三边用25米长的篱笆围成,为方便进出,在垂直于墙的一边CD上留一个1米宽的门,(1)若12a ,问矩形的边长分别为多少时,鸡舍面积为80平方米(2)若住房墙的长度足够长,问鸡舍面积能否达到90平方米?24.有一块长28cm,宽12cm的矩形铁皮.(1)如图1,如果在铁皮的四个角裁去四个边长一样的正方形后,将其折成底面积为2192cm的无盖长方体盒子,求裁去的正方形的边长.(2)由于需要,计划制作一个有盖的长方体盒子,为了合理利用材料,某学生设计了如图2的裁剪方案,阴影部分为裁剪下来的边角料,其中左侧的两个阴影部分为正方形,若剩余部分恰好能折成一个底面积为2130cm 的有盖盒子,请你求出裁去的左侧正方形的边长.25.如图,在四边形ABCD 中,AD BC ∥,90B ∠=︒,16cm AD =,12cm AB =,21cm BC =,动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动的时间t (秒).(1)求DQ 、PC 的代数表达式;(2)当t 为何值时,四边形PQDC 是平行四边形;(3)当0105t <<.时,是否存在点P ,使PQD △是等腰三角形?若存在,请直接写出所有满足要求的t 的值;若不存在,请说明理由参考答案1.A2.C3.A .4.B .5.D .6.B .7.B .8.C 9.2022.10.202153602xx -=. 11.5(答案不唯一). 12.x =1或x =0. 13.2022 14.2 15.2. 16.4. 17.(1)2450x x --=由题意得,a =1,b =﹣4,c =﹣5, ∵∆=24b ac -=()()24415--⨯⨯-=36,∴2443646232b b ac x -±-±±====±,∴15=x ,21x =-. (2)()()22320x x x +-+= 原方程整理得,()()210x x +-=, ∴20x +=或10x -=, ∴12x =-,21x =. 18.解:根据题意得a ﹣1≠0且Δ=(﹣2)2﹣4(a ﹣1)≥0, 解得a ≤2且a ≠1, ∴a 的非负整数解为2和0. 19.(1)证明:()()22210x m x m -++-=,其中:1a =,()2b m =-+,21c m =-,∴()()()22242412124b ac m m m ⎡⎤=-=-+-⨯⨯-=-+⎣⎦, ∴在实数范围内,m 无论取何值,()2240m -+>,即0>,∴关于x 的方程()()22210x m x m -++-=恒有两个不相等的实数根;(2)解:根据题意得:将1x =代入方程可得:()()212210m m -++-=,解得2m =,∴方程为2430x x -+=, 解得:11x =或23x =, ∴方程的另一个根为3x =;①当该直角三角形的两直角边是1、3时, 该直角三角形的面积为:131322⨯⨯=;②当该直角三角形的直角边和斜边分别是1、3时, 223122-= 则该直角三角形的面积为112222⨯⨯= 综上可得,该直角三角形的面积为322 20.(1)解:设口罩日产量的月平均增长率为x ,根据题意,得18000(1+x )2=21780,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)解:21780×(1+10%)=23958(个).答:预计4月份平均日产量为23958个. 21.解∶设扩大后的正方形绿地边长为x m ,根据题意得x (x -6) =16,解得1282x x ==-, (舍去).答∶扩大后的正方形绿地边长为8m . 22.(1)解:设每件衬衫应降价x 元,则每件衬衫盈利()40x -元,每天可以售出()202x +件. 由题意,得()()402021200x x -+=, 即()()10200x x --=, 解得110x =,220x =.∵为了扩大销量,增加盈利,减少库存,所以x 的值应为20, ∴商场若想平均每天盈利1200元,每件衬衫应降价20元. (2)不能.理由如下:假设能获得,由题意得()()402021300x x -+=. 整理,得2302500x x -+=.22430412501000b ac -=-⨯⨯=-<,∴方程无实数根,故不能. 23.(1)解:设矩形鸡舍垂直于房墙的一边长为x 米,则矩形鸡舍的另一边长为()2512x +-米,依题意,得:()251280x x +-=,解得:15=x ,28x =,当5x =时,2621612x -=>(舍去),当8x =时,2621012x -=<.答:矩形鸡舍的长为10米,宽为8米.(2)当鸡舍面积等于90平方米时,依题意,得:()26290x x -=,整理得:213450x x -+=,∴2134145169180110=-⨯⨯=-=-<△,∴所围成鸡舍面积不能为90平方米.答:所围成鸡舍面积不能为90平方米. 24.(1)解:设裁去的正方形边长为cm x , 由题意得:()()282122192x x --=, 解得12x =,218x =(舍去) 答:裁去的正方形边长为2cm .(2)解:设裁去的左侧正方形的边长为cm a ,由题意得:(282)(122)1302a a --=, 解得11a =,219a =(舍去)答:裁去的左侧正方形的边长为1cm . 25.(1)解:根据题意,16DQ t =-, 当点P 未到点C 时,212PC t =-; 当点P 由点C 返回时,221PC t =-; (2)∵四边形PQDC 是平行四边形,DQ CP ∴=,当P 从B 运动到C 时,16DQ AD AQ t =-=-, 212CP t =-,16212t t ∴-=-,解得:5t =,当P 从C 运动到B 时,16DQ AD AQ t =-=-, 221CP t =-,16221t t ∴-=-,解得:373t =, ∴当5t =或373秒时,四边形PQDC 是平行四边形; (3)当PQ PD =时,作PH AD ⊥于H ,则HQ HD =,11(16)22QH HD QD t ===-,AH BP =, 12(16)2t t t ∴=-+,163t ∴=(秒); 当PQ QD =时,2QH AH AQ BP AQ t t t =-=-=-=,16QD t =-,222212QD PQ t ==+, 222(16)12t t ∴-=+,解得72t =(秒);当QD PD =时,162DH AD AH AD BP t =-=-=-,22222212(162)QD PD PH HD t ==+=+-,222(16)12(162)t t ∴-=+-,即23321440t t -+=,()232431447040∆=--⨯⨯=-<,∴方程无实根,综上可知,当163t =秒或72秒时,PQD △是等腰三角形。
人教版九年级上册《第21章一元二次方程》单元测试卷一.选择题(共10小题,共30分)1.(3分)下列方程中,一定是一元二次方程的是()A.x 2 -2=0 B.x 2 +y=1 C.x−1x=1D.x 2 +x=x 2 +1 2.(3分)若关于x的方程是一元二次方程,则m的值为()A.m≠2 B.m=±2 C.m=-2 D.m=23.(3分)将方程2x 2 +7=4x改写成ax 2 +bx+c=0的形式,则a,b,c的值分别为()A.2,4,7 B.2,4,-7 C.2,-4,7 D.2,-4,-7 4.(3分)已知2+√3是方程x 2 -4x+c=0的一个根,则c的值为()A.2−√3B.√3C.2 D.15.(3分)已知x 1 、x 2 是一元二次方程x 2 -6x+3=0的两个实数根,则2x1+2x2的值为()A.4 B.-4 C.14D.2 6.(3分)关于x的一元二次方程x 2 +3x-2=0解的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定7.(3分)如果关于x的方程(x-9) 2 =m+4可以用直接开平方法求解,那么m的取值范围是()A.m>3 B.m≥3 C.m>-4 D.m≥-48.(3分)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由15元降为9元,设平均每次降价的百分率是x,则根据题意,下列方程正确的是()A.15(1-x) 2 =9 B.15(1-2x) 2 =9C.15(1-x)=9 D.15(1-2x)=99.(3分)一个人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染的人数相等,则经过三轮传染后患流感的人数共有()A.7个B.49个C.121个D.512个10.(3分)关于x的一元二次方程ax 2 -2x+1=0有实数根,则a的取值范围是()A.a>1 B.a<1 C.a≤1且a≠0 D.a<1且a≠0 二.填空题(共6小题,共18分)11.(3分)若关于x的方程(m-3)x |m-1| +5x-3=0是一元二次方程,则m的值为 ______ .12.(3分)已知m是方程x 2 -3x-20=0的根,则代数式1+3m-m 2的值为 ______ .13.(3分)关于x的一元二次方程x 2 +3x+m=0没有实数根,则m的取值范围是 ______ .14.(3分)若一元二次方程x 2 -3x-2=0的两个实数根为a,b,则a-ab+b的值为 ______ .15.(3分)已知a,b(a≠b)满足a 2 -2a-1=0,b 2 -2b-1=0,则ab +ba= ______ .16.(3分)第24届北京冬奥会冰壶混合双人循环赛在冰立方举行.参加比赛的每两队之间都进行一场比赛,共要比赛45场,共有______ 个队参加比赛.三.解答题(共8小题,共72分)17.(8分)按照指定方法解下列方程:(1)16x 2 +8x=3(公式法);(2)2x 2 +5x-1=0(配方法).18.(8分)解下列方程:(1)x 2 -7x-18=0;(2)3x(x-2)=2(2-x).19.(8分)已知m和n是方程2x 2 -5x-3=0的两根,求:(1)1m + 1n的值;(2)m 2 -mn+n 2 的值.20.(8分)某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元.为了扩大销售,增加盈利和减少库存,商场决定采取适当的降价措施.经调查发现,如果每件降价1元,则每天可多售2件.商场若想每天盈利1200元,每件衬衫应降价多少元?21.(8分)某商场一月份的销售额为125万元,二月份的销售额下降了20%,商场从三月份起加强管理,改善经营,使销售额稳步上升,四月份的销售额达到了169万元.(1)求二月份的销售额;(2)求三、四月份销售额的平均增长率.22.(10分)已知关于x的一元二次方程x 2 -4x+3m=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取正整数时,求此时方程的根.23.(10分)已知关于x的一元二次方程x 2 -(2m+1)x+m-2=0.(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根为x 1 ,x 2 ,且x 1 +x 2 +3x 1 x 2 =1,求m的值.24.(12分)如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米)围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB为x米.(1)若围成的花圃面积为36平方米,求此时宽AB;(2)能围成面积为52平方米的花圃吗?若能,请说明围法;若不能,请说明理由.。
一元二次方程单元测试题
一.选择题
1. 下列关于x 的方程中,是一元二次方程的有( )个
①2203x -= ②1
21x x x
-=- ③2(3)0x x y -= ④222(1)30x x x -+-=
A 1
B 2
C 3
D 4
2将方程2342x x -=-化为一元二次方程的一般形式后,二次项的系数、一次项的系数、常数分别为( )
A 3;-4;-2
B 3;2 ;-4
C 3 ;-2 ;-4
D 2 ;-2 ;0 3.用配方法解方程2250x x --=时,原方程应变形为( ) A .()2
16
x +=
B .()2
16
x -=
C .()2
29
x +=
D .()2
29x -=
4.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ) A .1k >- B. 1k >-且0k ≠ C.1k < D 1k <且0k ≠
5.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6
B .7
C .8
D .9
6. 方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12
B .12或15
C .15
D .不能确定
7. 设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006
B .2007
C .2008
D .2009
8. 为了让惠州的山更绿、水更清,2012年市委、市政府提出了确保到2014年实现全市森林覆盖率达到63%的目标,已知2012年我市森林覆盖率为60.05%,设从2012年起我市森林覆盖率的年平均增长率为x ,则可列方程( ) A .()60.051263%x += B .()60.051263x += C .()2
60.05163%x += D .()2
60.05163x +=
9. 如图9,在
ABCD 中,AE BC ⊥于E ,AE EB EC a ===,
且a 是一元二次方程2230x x +-=的根,则
ABCD 的周长为( )
A
.4+ B
.12+ C
.2+ D
.212++
A D
C
E
B
图9
10.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图6所示,如果要使整个挂图的面积是5400cm 2
,设金色纸
边的宽为x cm ,那么x 满足的方程是( ) A .213014000x x +-= B .2653500x x +-= C .2
13014000x x --=
D .2
653500x x --=
二.填空题:
11. 一元二次方程x 2=16的解是 .
12.写出一个一元二次方程使方程有-2和5这两个实数根. ; 13. 关于x 的一元二次方程x 2+(m -2)x +m +1=0有一实数根是-a,另一个根是a ,则m 的值是___________________;
14. 在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解为 .
15 . 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和是13 cm 2. 这两段铁丝长分别是 .
16. 关于x 的方程a(x +m)2+b =0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a(x +m +2)2+b =0的解是__________.
三.解答题:
17.解方程
① (x -3)2+2x(x -3)=0 ② 229(1)(2)x x -=-
③ 2(21)3(21)4x x ---= ④13201
x x
x x --+=-
18.一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽。
19.如图某中学准备在校园内利用围墙的一面再砌三面墙围成一个矩形花园ABCD ,(围墙MN最长可以利用25米)现在已经备好可以砌50米墙的材料试设计一种方案,使矩形花园的面积为300平方米。
20. 某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
A
C
D M
N
21.已知关于x 的一元二次方程2260x x k --=(k 为常数). (1)求证:方程有两个不相等的实数根;
(2)设1x ,2x 为方程的两个实数根,且12214x x +=,试求出方程的两个实数根和k 的值. (提示:若20x px q ++=有两实数根12,x x ,则12x x p +=-,12x x q •=)
22.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿化面积不断增加(如图示) (1)根据图中所提供的信息,回答下列问题:2001年的绿化面积为 公顷,比2000
年增加了 公顷。
在1999年,2000年,2001年这三年中,绿化面积增加最多的是 年。
(2)为满足城市发展的需要,计划到2003年使城区绿化地总面积达到72.6公顷,试求这两年(2001~2003)绿地面积的年平均增长率。
城区每年年底绿地面积统计图。