匀速圆周运动的实例分析例题
- 格式:doc
- 大小:155.50 KB
- 文档页数:7
圆周运动的实例及临界问题一、汽车过拱形桥1.汽车在拱形桥最高点时,向心力:F 合=mg -N =m v 2R.支持力:N =mg -mv 2R<mg ,汽车处于失重状态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小.例1 一辆质量m =2 t 的轿车,驶过半径R=90 m 的一段凸形桥面,g =10 m/s 2,求:(1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大?(2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少?解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示:合力F =mg -N ,由向心力公式得mg -N =m v 2R,故桥面的支持力大小N =mg -m v2R=(2 000×10-2000×10290) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图12.运动分析:将“旋转秋千”简化为圆锥摆模型(如图1所示) (1)向心力:F 合=mg tan_α(2)运动分析:F 合=mω2r =mω2l sin α(3)缆绳与中心轴的夹角α满足cos α=g ω2l. 图6例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( )A .速度v A >vB B .角速度ωA >ωBC .向心力F A >F BD .向心加速度a A >a B解析 设漏斗的顶角为2θ,则小球的合力为F 合=mgtan θ,由F =F 合=mgtan θ=mω2r =m v 2r=ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D错误;因r A >r B ,又由v = grtan θ和ω=gr tan θ知v A >v B 、ωA <ωB ,故A 对,B 错.答案 A三、火车转弯1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力.例3 铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ解析 由牛顿第二定律F 合=m v 2R,解得F 合=mg tanθ,此时火车受重力和铁路轨道的支持力作用,如图所示,N cos θ=mg ,则N =mg cos θ,内、外轨道对火车均无侧向压力,故C 正确,A 、B 、D 错误. 答案 C课后巩固训练2.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A 运动的半径比B 的大,则( )A .A 所需的向心力比B 的大 B .B 所需的向心力比A 的大C .A 的角速度比B 的大D .B 的角速度比A 的大解析 小球的重力和绳子的拉力的合力充当向心力,设悬线与竖直方向夹角为θ,则F =mg tanθ=mω2l sin θ,θ越大,向心力F 越大,所以A 对,B 错;而ω2=gl cos θ=gh.故两者的角速度相同,C 、D 错.答案 A3.半径为R 的光滑半圆球固定在水平面上(如图2所示),顶部有一小物体A ,今给它一个水平初速度v 0=Rg ,则物体将( )A .沿球面下滑至M 点B .沿球面下滑至某一点N ,便离开球面做斜下抛运动C .沿半径大于R 的新圆弧轨道做圆周运动D .立即离开半圆球做平抛运动答案 D解析 当v 0=gR 时,所需向心力F =m v 20R=mg ,此时,物体与半球面顶部接触但无弹力作用,物体只受重力作用,故做平抛运动.4.质量为m 的飞机,以速率v 在水平面内做半径为R 的匀速圆周运动,空气对飞机作用力的大小等于( )A .m g 2+v 4R 2 B .m v 2RC .mv 4R 2-g 2D .mg解析 空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg 、空气对飞机的作用力F 升,两力的合力为F ,方向沿水平方向指向圆心.由题意可知,重力mg 与F垂直,故F 升=m 2g 2+F 2,又F =m v 2R ,联立解得F升=m g 2+v 4R2. 图3答案 A5.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为( )A .m ω2RD .不能确定 答案 C解析 小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆对球的作用力:N =(mg )2+F 2=m 2g 2+m 2ω4R 2,根据牛顿第三定律,小球对杆的上端的作用力N ′=N ,C 正确.图56.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析 当以v 的速度通过此弯路时,向心力由火车的重力和轨道的支持力的合力提供,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.答案 AC解析 设赛车的质量为m ,赛车受力分析如图所示,可见:F 合=mg tan θ,而F 合=m v 2r,故v =gr tan θ.7.如图11,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小x =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s 2.求:图11(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)解析 (1)物块做平抛运动,竖直方向有 H =12gt 2① 水平方向有x =v 0t ②联立①②两式得v 0=x g 2H =1 m/s ③ (2)物块离开转台时,最大静摩擦力提供向心力,有 μmg =m v 20R ④ 联立③④得μ=v 20gR = 8.(多选)如图5所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )图5 A .受到的向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ(mg +m v 2R)D .受到的合力方向斜向左上方解析 物体在最低点做圆周运动,则有F N -mg =m v 2R ,解得F N =mg +m v 2R,故物体受到的滑动摩擦力F f =μF N =μ(mg +m v 2R),A 、B 错误,C 正确.物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D 正确. 答案 CD临界问题分析一:水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态.(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来. (3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.例1 如图8所示,高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=.最大静摩擦力与滑动摩擦力相等,若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所允许的最大速率v m 为多大?当超过v m 时,将会出现什么现象?(g =9.8 m/s 2)解析 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,则f m =μmg ,则有m v 2m R=μmg ,v m =μgR ,代入数据可得v m ≈15 m/s =54 km/h.当汽车的速度超过54 km/h 时,需要的向心力m v 2R大于最大静摩擦力,也就是说提供的合外力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.答案 54 km/h 汽车做离心运动或出现翻车事故2.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图6A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:f a=mω2a l,当f a=kmg时,kmg=mω2a l,ωa=kgl;对木块b:f b=mω2b·2l,当f b=kmg时,kmg=mω2b·2l,ωb=kg2l,所以b先达到最大静摩擦力,选项A正确;两木块滑动前转动的角速度相同,则f a=mω2l,f b=mω2·2l,f a<f b,选项B错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则f a=mω2l=23kmg,选项D错误.答案AC3.[接触与脱离的临界问题]如图8所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)求:图8(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ解得:ω20=gl cos θ即ω0=gl cos θ=522 rad/s.(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α解得:ω′2=gl cos α,即ω′=gl cos α=2 5 rad/s.二:竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.210.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是( )图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR 解析 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg+F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误. 答案 BC11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C正确,选项A 、B 、D 错误. 答案 C。
匀速圆周运动的实例分析典型例题1——关于汽车通过不同曲面的问题分析1.一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:(重力加速度)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:典型例题2——细绳牵引物体做圆周运动的系列问题1.一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.典型例题3——转动系统中的惯性力1.一辆质量为的汽车以速度在半径为的水平弯道上做匀速圆周运动.汽车左、右轮相距为,重心离地高度为,车轮与路面之间的静摩擦因数为.求:(1)汽车内外轮各承受多少支持力;(2)汽车能安全行驶的最大速度是多少?2、关于地球的圆周运动例1:把地球看成一个球体,在地球表面上赤道某一点A,北纬60°一点B,在地球自转时,A与B两点角速度之比为多大?线速度之比为多大?3、关于皮带传送装置的圆周运动特点例2:如图所示,皮带传送装置A、B为边缘上两点,O1A=2O2B,C为O1A中点,皮带不打滑.求:(1)νA:νB:νC=(2)ωA:ωB:ωC=4、如图5-26所示,O1皮带传动装置的主动轮的轴心,轮的半径为r1;O2为从动轮的轴心,轮的半径为r2;r3为与从动轮固定在一起的大轮的半径.已知r2=1.5r1,r3=2r1.A、B、C分别是三个轮边缘上的点,那么质点A、B、C的线速度之比是_________ ,角速度之比是_________ ,向心加速度之比是__________ ,周期之比是_________.关于汽车通过不同曲面的问题分析例1:一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,求:(重力加速度g=10m/s2)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?2、当小汽车以10m/s的速度通过一座拱桥的最高点,拱桥半径50m,求此车里的一名质量为60kg的乘客对座椅的压力4、关于光滑水平面上物体的圆周运动如图所示,长0.40m的细绳,一端拴一质量为0.2kg的小球,在光滑水平面上绕绳的另一端做匀速圆周运动,若运动的角速度为5.0rad/s,求绳对小球需施多大拉力?5、关于静摩擦力提供向心力的问题如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则A的受力情况是()A、受重力、支持力B、受重力、支持力和指向圆心的摩擦力C、重力、支持力、向心力、摩擦力D、以上均不正确6、明确向心力的来源如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为,当碗绕竖直轴匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.一圆筒绕其中心轴OO1匀速转动,筒内壁上紧挨着一个物体与筒一起运动相对筒无滑动,如图2所示,物体所受向心力是()A.物体的重力B.筒壁对物体的静摩擦力C.筒壁对物体的弹力D.物体所受重力与弹力的合力7、关于绕同轴转动物体的圆周运动如图所示,两个质量分别为m1=50g和m2=100g的光滑小球套在水平光滑杆上.两球相距21cm,并用细线连接,欲使两球绕轴以600r/min的转速在水平面内转动而光滑动,两球离转动中心各为多少厘米?绳上拉力是多少?8、细绳牵引物体做圆周运动的系列问题一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.。
圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
高一物理圆周运动实例分析试题答案及解析1.当气车行驶在凸形桥时,为使通过桥顶时减小汽车对桥的压力,司机应()A.以尽可能小的速度通过桥顶B.增大速度通过桥顶C.使通过桥顶的向心加速度尽可能小D.和通过桥顶的速度无关【答案】B【解析】当汽车驶在凸形桥时,重力和前面对汽车的支持力提供向心力,则,解得:,根据牛顿第三定律可知:汽车对桥的压力等于桥顶对汽车的支持力,为使通过桥顶时减小汽车对桥的压力,可以增大速度通过桥顶,故B正确,A、C错误;向心加速度小,桥顶对汽车的支持力就大,故C错误。
【考点】考查了圆周运动实例分析2.如图所示,拱桥的外半径为40m。
问:(1)当重1t的汽车通过拱桥顶点的速度为10m/s时,车对桥顶的压力多少牛?(2)当汽车通过拱桥顶点的速度为多少时,车对桥顶刚好没有压力(g=10m/s2)【答案】(1)7500N(2)20m/s【解析】(1)小车受到的mg 和N的合力提供向心力-----------------------------------------------4分带入数据得: N=7500N-----------------------------------1分由牛顿第三定律得: 小车对桥的压力N’=N=7500N------1分(2)当重力完全充当向心力时,车对桥顶没哟偶作用力,即,解得20m/s-4分【考点】考查了圆周运动实例分析3.图示小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则A受力情况()A.重力、支持力、摩擦力B.重力、支持力、向心力C.重力、支持力D.重力、支持力、向心力、摩擦力【答案】A【解析】因为小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则在竖直方向,A受到重力和圆盘的支持力;水平方向受静摩擦力作用,用来提供做圆周运动的向心力,故答案A 正确.【考点】受力分析;向心力。
4.铁路转弯处的圆弧半径为R,内侧和外侧的高度差为h.L为两轨间的距离,且L>h.如果列车转弯速率大于,则( )A.外侧铁轨与轮缘间产生挤压B.铁轨与轮缘间无挤压C.内侧铁轨与轮缘间产生挤压D.内、外铁轨与轮缘间均有挤压【答案】A【解析】设轨道平面与水平面的夹角为θ,如果列车所受的重力和支持力恰好提供转弯的向心力,=mgtanθ,θ很小的情况下,sinθ≈tanθ,即则F向,如果列车转弯速率大于v,列车所受重力和支持力的合力将不足以提供所需的向心力,会挤压外轨,A正确,BCD错误。
圆周运动实例分析与临界问题圆周运动是高考命题的热点,命题点围绕弹力和摩擦力的临界态展开,具体表现为水平、竖直面和斜面内的圆周运动,命题中凸显学生对临界思想的理解和分析能力,有些问题还涉及图象,复习中要抓住热点,掌握解决的方法。
一、水平面内的圆周运动【例1】如图1所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为 3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、l.5r 。
设本题中的最大静摩擦力等于滑动摩擦力,下列说法正确的是 ( ) A.B 对A 的摩擦力一定为3μmgB.B 对A 的摩擦力一定为3m ω2rC.转台的角速度一定满足ω≤D.转台的角速度一定满足ω【解析】B 对A 的摩擦力是A 做圆周运动的向心力,所以23fBA F m r ω=,A 项错误,B 项正确;当滑块与转台间不发生相对运动,并随转台一起转动时,转台对滑块的静摩擦力提供向心力,所以当转速较大,滑块转动需要的向心力大于最大静摩擦力时,滑块将相对于转台滑动,对应的临界条件是静擦力提供向心力,即2mg m r μω=,ω=所以,质量为m 、离转台中心距离为r 的滑块,能够随转台一起转动的条件是ω≤对于本题,物体C 需要满足的条件ω≤A 和B 需要满足的条件均是ω≤ 要使三个物体都能够随转台转动,转台的角速度一定满足ω≤项错误,D 项正确。
【答案】BD【总结】水平面内的圆周运动主要涉及的问题是摩擦力临界。
常见问题如下(图中物体质量为m ,距离圆心为r ,转盘转动的角速度为ω,最大静摩擦力为F m ,绳的拉力为F T ):【例2】(2016 •山东临沂教学质检)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图2所示,绳a 与水平方向夹角为θ, 绳b 沿水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做勻速圆周运动,则下列说法正确的是 ( )A.a 绳张力不可能为零B.a 绳的张力随角速度的增大而增大C.当角速度ω>,b 绳将出现弹力D.若b 绳突然被剪断,a 绳的弹力可能不变【解析】小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 项正确;根据竖直方向上平衡得,sin a F mg θ=,解得/sin a F mg θ=,可知a 绳的拉力不变,故B 项错误;当b 绳拉力为零时,有2cot mg ml θω=,解得ωω>时,b 绳出现弹力,故C 项错误;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故D 项正确。
匀速圆周运动的实例分析
典型例题1——关于汽车通过不同曲面的问题分析
一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:
(重力加速度)
(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?
(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?
(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?
解:
(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向
上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支
持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,
即.由向心力公式有:
,
解得桥面的支持力大小为
根据牛顿第三定律,汽车对桥面最低点的压力大小是N.
(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向
下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下
方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心
力,即,由向心力公式有
,
解得桥面的支持力大小为
根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N.
(3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥
面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥
顶点时的向心力,即,由向心力公式有
,
解得:
汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力.
典型例题2——细绳牵引物体做圆周运动的系列问题
一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:
(1)小球通过最高点时的最小速度?
(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.
【分析与解答】
(1)小球通过圆周最高点时,受到的重力必须全部作为向心力,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高点的条件应为
,当时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对
小球恰好不施拉力,如图所示,此时小球的速度就是通过圆周最高点的最小速度,由向心力公式有:
解得:
(2)小球通过圆周最高点时,若速度v大于最小速度,所需的向心力将大于重力G,这时绳对小球要施拉力F,如图所示,此时有
解得:N
若在最高点时绳子突然断了,则提供的向心力mg小于需要的向心力,小球将沿切线方向飞出做离心运动(实际上是平抛运动)
典型例题3——转动系统中的惯性力
一辆质量为的汽车以速度在半径为的水平弯道上做匀速圆周运动.汽车左、右轮相距
为,重心离地高度为,车轮与路面之间的静摩擦因数为.求:
(1)汽车内外轮各承受多少支持力;
(2)汽车能安全行驶的最大速度是多少?
汽车左转弯行驶时受力情况如图1所示,图中分别为汽车内、外轮受到的摩擦力.如果选一个和汽车一起做圆周运动的参照系,则汽车是静止不动的,但必须在汽车的质心处加上一个
惯性离心力f,其大小为,方向沿半径方向向外,
以内轮着地点为转轴,由合力矩为零可列出
将代入得
由竖直方向受力平衡可得
汽车安全行驶时,要求既不打滑,又不会倾倒.汽车不打滑时,应有,汽车允许的最大速度
汽车不倾倒的条件是,即
汽车不倾翻的最大速度:
从和的结果可以看出,汽车轮胎与地面之间的静摩擦因数越大,左、右轮间距离越宽,车身重心越低,汽车的行驶越稳定.
1、关于地球的圆周运动
例1:把地球看成一个球体,在地球表面上赤道某一点A,北纬60°一点B,在地球自转时,A与B两点角速度之比为多大?线速度之比为多大?
2、关于皮带传送装置的圆周运动特点
例2:如图所示,皮带传送装置A、B为边缘上两点,O1A=2O2B,C为O1A中点,皮带不打滑.求:
(1)νA:νB:νC=
(2)ωA:ωB:ωC=
1、如图5-26所示,O1皮带传动装置的主动轮的轴心,轮的半径为r1;O2为从动轮的轴心,轮的半径为r2;r3为与从动轮固定在一起的大轮的半径.已知r2=1.5r1,r3=2r1.A、B、C 分别是三个轮边缘上的点,那么质点A、B、C的线速度之比是_________ ,角速度之比是
_________ ,向心加速度之比是__________ ,周期之比是_________.
3、关于汽车通过不同曲面的问题分析
例3:一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,求:(重力加速度g=10m/s2)
(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?
(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?
(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?
2、当小汽车以10m/s的速度通过一座拱桥的最高点,拱桥半径50m,求此车里的一名质量为60kg的乘客对座椅的压力
4、关于光滑水平面上物体的圆周运动
如图所示,长0.40m的细绳,一端拴一质量为0.2kg的小球,在光滑水平面上绕绳的另一端做匀速圆周运动,若运动的角速度为5.0rad/s,求绳对小球需施多大拉力?
5、关于静摩擦力提供向心力的问题
如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则A的受力情况是()
A、受重力、支持力
B、受重力、支持力和指向圆心的摩擦力
C、重力、支持力、向心力、摩擦力
D、以上均不正确
6、明确向心力的来源
如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间
的动摩擦因数为,当碗绕竖直轴匀速转动时,物体A刚好能紧贴在碗口附
近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.
一圆筒绕其中心轴OO1匀速转动,筒内壁上紧挨着一个物体与筒一起运动相对筒无滑动,如图2所示,物体所受向心力是()
A.物体的重力B.筒壁对物体的静摩擦力
C.筒壁对物体的弹力D.物体所受重力与弹力的合力
7、关于绕同轴转动物体的圆周运动
如图所示,两个质量分别为m1=50g和m2=100g的光滑小球套在水平光滑杆上.两球相距21cm,并用细线连接,欲使两球绕轴以600r/min的转速在水平面内转动而光滑动,两球离转动中心各为多少厘米?绳上拉力是多少?
8、细绳牵引物体做圆周运动的系列问题
一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另
一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度
通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.。