平面直角坐标系下图形面积的计算-PPT
- 格式:ppt
- 大小:357.50 KB
- 文档页数:20
坐标系内三角形面积的求法平面直角坐标系内三角形面积的计算问题,是一类常见题型,也是坐标系内多边形面积计算的基础,那么如何解决这类问题呢?一、三角形的一边在坐标轴上例1如图1,三角形ABC的三个顶点的坐标分别是A(4,0),B(-2,0),C(2,4),求三角形ABC的面积.ffl 1分析:要求三角形的面积,需要分别求出底边及其高•由图1可知,三角形ABC的边AB在x轴上,容易求得AB的长,而AB边上的高,恰好是C点到x 轴的距离,也就是C 点的纵坐标的绝对值.解:因为A(4,0),B(-2,0),所以AB=4-(-2)=6.因为C(2,4),所以C点到x轴的1距离,即AB边上的高为4,所以三角形ABC的面积为1 6 4 12.2二、三角形有一边与坐标轴平行例1如图2,三角形ABC三个顶点的坐标分别为A(4,1),B(4, 5),C(-1,2),求三角形ABC的面积.H 2分析:由A(4, 1),B(4, 5)两点的横坐标相同,可知边AB与y轴平行,因而AB的长度易求.作AB边上的高CD,则D点的横坐标与A点的横坐标相同,也是4,这样就可求得线段CD的长,进而可求得三角形ABC的面积.解:因为A, B两点的横坐标相同,所以边AB // y轴,所以AB=5-1=4.作AB边上的高CD,则D点的横坐标为4,所以CD=4- (-1) =5,所以三角形ABC1 的面积为-4 5 10.2三、坐标平面内任意三角形的面积例3如图3,在直角坐标系中,三角形ABC的顶点均在网格点上.其中A点坐标为(2,-1),则三角形ABC的面积为_______________ 方单位.H 3分析:本题中三角形ABC的任何一边都不在坐标轴上或与坐标轴平行,因此直接运用三角形的面积公式不易求解•可运用补形法,将三角形补成长方形,从而把求一般三角形面积的问题转化为求长方形面积与直角三角形面积的问题.解:由题意知,B(4, 3),C(1,2).如图4,过点A作x轴的平行线,过点C 作y轴的平行线,两线交于点E.过点B分别作x轴、y轴的平行线,分别交EC 的延长线于点D,交EA的延长线于点FJ则长方形BDEF的面积为3M=12,三1i角形BDC的面积为-1 3 1.5,三角形CEA的面积为-1 3 1.5,三角形2 21ABF的面积为-2 4 4.所以三角形ABC的面积为:长方形BDEF的面积-2(三角形BDC的面积+三角形CEA的面积+三角形ABF的面积)=12-(1.5+1.5+4)=5 (平方单位).图4。
件2023-11-09•导入新课•知识讲解•案例分析•课堂练习•归纳小结目•作业布置录01导入新课回顾平面上点的位置的表示方法。
复习有序数对与位置的对应关系。
复习回顾创设情境通过实例引导学生思考如何用数学方法表示平面内点的位置。
介绍平面直角坐标系的概念和作用。
提出问题引导学生思考如何建立平面直角坐标系。
提出本节课的学习目标。
02知识讲解平面直角坐标系的定义平面直角坐标系是过点(0,0)和(1,0)及(0,1)的直线坐标系,其中(0,0)称为原点,(1,0)称为x轴的正方向,(0,1)称为y轴的正方向。
平面直角坐标系的画法在平面上取定原点(0,0),然后确定x轴和y轴的方向,最后画出平面直角坐标系。
平面直角坐标系的定义x轴和y轴是平面直角坐标系的两个主要组成部分。
x轴是一条水平的直线,y轴是一条垂直的直线。
象限平面直角坐标系被分为四个象限,每个象限都包含一个主要的坐标轴和一个相反的坐标轴。
第一象限包含x轴的正方向和y轴的正方向,第二象限包含x轴的负方向和y 轴的正方向,第三象限包含x轴的负方向和y轴的负方向,第四象限包含x轴的正方向和y轴的负方向。
x轴和y轴坐标轴和象限VS每个点在平面直角坐标系中都有一个唯一的位置,由其到x轴和y轴的距离确定。
点在平面直角坐标系中的位置一个点的坐标表示为一对有序数对,第一个数表示该点到x轴的距离,第二个数表示该点到y轴的距离。
例如,点A的坐标为(2,3),表示点A到x轴的距离为2个单位,到y轴的距离为3个单位。
点的坐标表示方法点的坐标表示方法03案例分析案例一:点的平移与坐标变化详细描述2. 举例说明点的平移和坐标变化的关系。
4. 总结规律,并给出相应的练习题,让学生自己动手操作,加深理解。
总结词:通过实例演示,使学生明确理解点的平移与坐标变化的关系。
1. 定义点的平移和坐标变化的概念。
3. 通过图示和数据展示,引导学生观察点的平移和坐标变化规律。
010203040506案例二:图形面积计算01总结词:通过具体问题,让学生掌握图形面积的计算方法,并能够灵活运用。