(完整word版)SPWM逆变器原理讲解
- 格式:doc
- 大小:166.51 KB
- 文档页数:3
SPWMSPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.定义我们先说说什么叫PWMPWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的输出电压。
广泛地用于电动机调速和阀门控制,比如我们现在的电动车电机调速就是使用这种方式。
所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规率排列,这样输出波形经过适当的滤波可以做到正弦波输出。
它广泛地用于直流交流逆变器等,比如高级一些的UPS就是一个例子。
三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。
该方法的实现有以下几种方案。
1.3.1等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.1.3.2硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。
通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。
对于大多数应用场合需要的是工频电源,例如我们的电冰箱,洗衣机,电风扇等都需要正弦波的220伏、50赫兹电源,各种动力设备,远距离输电也都需要正弦波的交流电。
更多的太阳能光伏发电装置输出的是正弦波交流电,目前生成正弦波仍采用前面介绍的全桥电路,只是对开关晶体管的控制采用PWM脉宽调制或移相控制或调频控制等方式。
这里仅介绍最常用的PWM脉宽调制方式。
面积等效原理转换把直流电转换成正弦波交流电是根据根据面积等效原理,在图1上图中的正弦半波(红线)分成n等份,把正弦半波看成是由n个彼此相连的矩形脉冲组成的波形,为简单清晰,划分为7等份。
7个脉冲的幅值按正弦规律变化,每个脉冲面积与相对应的正弦波部分面积相同,这一连续脉冲就等效正弦波。
图1 用面积等效原理转换为SPWM波形如果把上述脉冲序列改为相同数量的等幅而不等宽的矩形脉冲(图1下图),脉冲中心位置不变,并且使该矩形脉冲面积和上图对应的矩形脉冲相同,得到图1下图所示的脉冲序列,脉冲宽度按正弦波规律变化,这就是PWM波形。
根据面积等效原理,PWM波形和正弦半波是等效的,图中红线就是该序列波形的平均值。
对于正弦波的负半周,也可以用同样的方法得到PWM 波形。
这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM波形。
要改变等效输出的正弦波的幅值时,只需按照同一比例系数改变上述各脉冲的宽度即可。
SPWM波形的生成输出SPWM波形仍需全桥逆变电路,在“光伏用DC-DC变换器”课件中已介绍过这种电路,通过控制开关晶体管的通与断在负载上产生交变电压,见图2。
s图2 全桥逆变电路的工作状态输出SPWM波形的矩形波必须生成序列的控制信号来控制桥式电路中开关晶体管的通与断,普遍使用的是调制法来生成控制信号,可采取单极性调制也可采用双极性调制来生成控制信号,下面介绍常用的单极性调制方式。
图3上部分是SPWM波形控制信号生成的原理图,下部分是生成的SPWM波形。
SPWM全桥逆变器主功率电路和控制电路设计一.设计目的通过电力电子技术的学习,熟悉无源逆变概念;采用全桥拓扑并用全控器件MOSFET形成主电路拓扑,设计逆变器硬件电路,并能开环工作。
熟悉全桥逆变器拓扑,掌握逆变原理,实现正弦波输出要素,设计SPWM逆变器控制信号发生电路。
输入:48VDC 输出:40VAC/400HZ二.设计任务(1) 掌握全桥逆变的概念,分析全桥逆变器中每个元件的作用;(2)分析正弦脉宽调制SPWM原理,及硬件电路实现形式;(3)应用Protel 制作SPWM 逆变器线路图;(4)根据线路图制作硬件,并调试;三.设计原理电路组成及工作原理分析:电路主要由正弦波和三角波发生电路,控制电路和逆变电路组成。
电路中所用到的元器件主要有ICL8038,运算放大器LF353,比较器LM311,IR2110,MOSFET,CD4069,电阻电容及齐纳二极管组成。
控制电路分析:当电路开始工作,首先由ICL8038产生的正弦波和三角波,正弦波和三角波的幅值由可调电阻来控制,得到的波可以通过LF353运算放大器构成的反相电路进行反向,得到方向相反的正弦波,正弦波与三角波信号通过LM311比较芯片产生SPWM脉冲。
主电路分析:本次设计我们采用倍频式SPWM技术,在开关频率不变的情况下,达到输出频率倍增的效果。
IR2110用于驱动全桥逆变器用以控制MOSFET的通断,在IR2110的外围电路使用二极管和齐纳二极管防止MOSFET的同时导通而击穿。
如下图所示,MOSFET采用2SK1825,4个2SK1825两两串联后并联成桥式逆变主电路,U输入为出入电压,VDC 输出电压,电容C1、C3为VCC的滤波电容,电容C2、C4为自举电容,二极管为自举二极管。
MOSFET的驱动采用芯片IR2110驱动,2个IR2110芯片分别驱动桥式逆变主电路的2个桥臂。
工作时,两个IR2110(1)和IR2110(2)的输入SPWM脉冲是相反的,两个IR2110分别驱动不同桥臂的MOSFET管,IR2110(1)的HO驱动Q1、IR2110(1)的LO驱动Q2,IR2110(2)的HO驱动Q3、IR2110(2)的LO 驱动Q4,由于输入的两个SPWM脉冲是相反的,2个桥臂上的MOSFET 管会交叉导通,即Q1、Q3同时导通或者Q2、Q4同时导通,两种情况依次循环导通,从而完成逆变。
单极性倍频spwm原理_单极性倍频SPWM调制的逆变电源系统详解随着电力电子技术的发展,人们对逆变电源的要求也越来越高。
在大功率逆变电源场合,流过主电路上的器件电流非常大,作为开关管的IGBT 上流过的电流可达几百安,所以一般所选的开关管容量比较大,这就导致调制时的开关频率不能过高。
本文首先介绍了主电路与三环控制,其次介绍了单极性倍频SPWM调制,最后阐述了系统实验分析wNN,具体的跟随小编一起来了解一下。
一、主电路与三环控制逆变器主电路结构如图1所示,主电路采用全桥结构,输出端连接了LC 滤波器滤除高次谐波。
开关管的驱动信号由三角波和正弦波比较匹配得到。
三环控制结构图如图2所示,由内到外分别为瞬时值电容电流环、瞬时值电压环和电压有效值环。
其中:瞬时值电流环的主要作用是校正输出电压波形;瞬时值电压环主要作用是校正输出电压的相位,并提高系统的动态性能;电压有效值环的主要作用是使输出电压稳定在所需要的电压幅值。
电流瞬时值内环和电压瞬时值外环均采用P调节器,最外环电压有效值环采用PI 调节器。
图3和图4 分别为采用三环控制的逆变电源系统从满载到空载和空载到满载的波形仿真图,图3中Uo为输出电流。
由图3-4 可知,切载时电压幅值基本保持不变,说明系统具有较好的动态特性。
在常规SPMW波调制中,开关频率和输出脉冲频率是相等的,但是在大功率条件下,开关频率不能过高,原因主要:
①开关频率过高会导致开关损耗增大;
②会使开关管发热严重,长时间运行会损坏开关器件;
③开关频率过高,出现擎住效应的几率增大;
④大容量开关器件高速通断,会产生很高的电压尖峰,有可能造成开关管或其他元件被击。
SPWM 原理:
以正弦波作为逆变器输出的期望波形,以频率比期望波高的多的等腰三角波作为载波,并用频率和期望波相同的正弦波作为调制波,当调制波与载波相交时,由他们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄,中间宽的一系列等福不等宽的矩形波。
SPWM 的原理为在控制电路中调制,在主电路中输出。
在控制电路中,一个频率为r f 幅值为r U 的参考正弦波sin W (调制信号)加载于频率为c f 幅值为c U 的三角波∆W (载波)后,得到一个脉冲宽度变化的SPWM 波spwm W (已调制波),用已调制波的高低逻辑电平经分配与放大后去驱动逆变器的主开关元件,即可得逆变器输出与已调制波spwm W 相似的SPWM 电压波形。
调制度M ;正弦调制波参考信号幅值rm U 与三角载波幅值cm U 之比。
cm
rm U U M = 载波比N ;三角载波频率c f 与正弦调制波参考信号频率r f 之比。
r
c f f N = 同步调制是N 为常数的调制方式。
采样点和开关点重合的调制方式为自然采样。
自然采样的优点为:1.基波幅值与调制度M 成正比,利于调压。
2.高次谐波随着载波比N 与调制度M 的增大而减小,有利于波形的正弦化。
spwm原理
SPWM(Sinusoidal Pulse Width Modulation)是一种调制技术,用于将直流电压转换成交流电压。
它通过改变一个周期内脉冲的宽度,以在不同的时间点上施加不同的电压,并最终形成一个近似正弦波的输出。
SPWM的原理是通过将一个完整的周期分成很多短时间段,
并在每个时间段内施加一定的电压。
这些时间段可以被视为不同的采样点,通过改变每个时间段内脉冲的宽度来改变电压的幅值。
为了生成一个近似正弦波形的输出,这些脉冲的宽度需要按照正弦函数的规律变化。
SPWM的关键在于如何确定每个时间段内脉冲的宽度。
一种
常见的方法是使用三角波载波信号和参考信号进行比较,以得到需要施加的电压值。
三角波载波信号的频率通常比参考信号的频率高,因此每个周期内会产生多个脉冲。
通过比较三角波载波信号与参考信号的大小,确定脉冲的宽度。
如果参考信号的幅值大于三角波的幅值,则脉冲宽度增加,反之则减小。
通过不断调整每个时间段内脉冲的宽度,就可以在输出端生成一个接近正弦波形的电压信号。
这种调制技术被广泛应用于交流电压变换、电机控制等领域,能够提供高效、稳定的电压输出。
总结一下,SPWM利用调整脉冲的宽度来改变电压幅值,通
过比较三角波载波信号和参考信号来确定脉冲宽度的变化,从
而生成一个近似正弦波形的输出电压。
这种调制技术在电压变换和电机控制等领域有着广泛的应用。
三相逆变器SPWM调制原理PWM控制技术在逆变电路中的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM技术。
常用的PWM技术主要包括:正弦脉宽调制(SPWM)、选择谐波调制(SHEPWM)、电流滞环调制(CHPWM)和电压空间矢量调制(SVPWM)。
在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
图1.1中各个形状的窄脉冲在作用到逆变器中电力电子器件时,其效果是相同的,正是基于这个理论,SPWM调制技术才孕育而生。
重要理论基础——面积等效原理a)矩形脉冲 b)三角脉冲c)正弦半波脉冲 d)单位脉冲函数图1.1 形状不同而冲量相同的各种窄脉冲把接收调制的信号作为载波,通过信号波的调制得到所期望的PWM波形,通常采用等腰三角波或锯齿波作为载波,其中等腰三角波应用最多。
因为等腰三角波上任何一点的水平宽度和高度呈线性关系且左右对称,当它与任何一个平缓变化的调制信号波相交时,这正好符合PWM控制的要求。
在调制信号波为正弦波时,所得到的就是SPWM波形。
2.电压型SPWM逆变电路控制方法2.1单极性与双极性控制(1)如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM波也只处于一个极性的范围内,叫做单极性控制方式。
(2)如果在正弦调制波半个周期内,三角载波在正负极性之间连续变化,则SPWM波也是在正负之间变化,叫做双极性控制方式(图2.1所示)。
图2.1双极性PWM控制方式2.2同步调制与异步调制在同步调制与异步调制中主要是对载波比进行调制,载波比就是载波频率f c与调制信号频率f r之比N,既N = f c / f r;另一个相关的概念就是调制度,调制度是调制波幅值Ar与载波幅值Ac之比,即Ma=Ar/Ac。
(1)同步调制——N 等于常数,并在变频时使载波和信号波保持同步。
基本同步调制方式,f r 变化时N不变,信号波一周期内输出脉冲数固定;三相电路中公用一个三角波载波,且取N 为3的整数倍,使三相输出对称;为使一相的PWM波正负半周镜对称,N应取奇数;f r 很低时,f c 也很低,由调制带来的谐波不易滤除;f r 很高时,f c 会过高,使开关器件难以承受。
SPWM变频调速的基本原理与方法1 SPWM 逆变器的工作原理SPWM变频系统的主电路如图1-1,它工作原理是:由单片机产生的三相SPWM控制脉冲,经驱动放大电路放大后,控制主开关VT1~VT6的通断,将整流滤波后的单相直流电压逆变为三相交流电压拖动异步电动机,改变调制信号的周期与幅值,也就改变了主开关的输出脉冲周期与占空比,从而实现电机的VVVF 控制。
1)SPWM 的控制方式SPWM有两种控制方式,可以是单极式,也可以双极式。
两种控制方式调制方法相同,输出基本电压的大小和频率也都是通过改变正弦参考信号的幅值和频率而改变的,只是功率开关器件通断的情况不一样。
采用单极式控制时在正弦波的半个周期内每相只有一个开关器件开通或关断,双极式控制时逆变器同一桥臂上下两个开关器件交替通断,处于互补的工作方式。
2)逆变器输出电压与脉宽的关系在变频调速系统中,负载电机接受逆变器的输出电压而运转。
对电机来说有用的只有基波电压,通过对SPWM 输出波形的傅立叶分析可知,输出基波电压的幅值与各项脉宽有正比的关系,说明调节参考信号的幅值从而改变各个脉冲的宽度时,就实现了对逆变器输出电压基波幅值的平滑调节。
3)脉宽调制的制约条件将脉宽调制技术应用于交流调速系统要受到逆变器功率器件开关频率和调制度的制约。
逆变器各功率开关器件的开关损耗限制了脉宽调制逆变器的每秒脉冲数(即逆变器每个开关器件的每秒动作次数)。
同时,为保证主电路开关器件的安全工作,必须使所调制的脉冲波有个最小脉宽与最小间隙的限制,以保证脉冲宽度大于开关器件的导通时间与关断时间。
2 SPWM 逆变器的调制定义载波的频率fc与调制波频率fr之比为载波比N,即N= fc / fr 。
视载波比的变化与否有同步调制与异步调制之分。
三角调制波与正弦控制波的交点所确定的一组开关角决定了逆变器输出波形的频谱分布。
载波比N对逆变器输出波形的频谱分布有很大的影响。
逆变器输出的谐波分量主要集中在频率调制比N及其倍频2N、3N...的周围,在中心频率附近的谐波振幅极大值随其中心频率增大而减小,其中以N处的谐波振幅为最大,根据分析,谐波的频率可以表示为在此,基频对应于h=1。
SPWM变频调速的基本原理与方法1 SPWM 逆变器的工作原理SPWM变频系统的主电路如图1-1,它工作原理是:由单片机产生的三相SPWM控制脉冲,经驱动放大电路放大后,控制主开关VT1~VT6的通断,将整流滤波后的单相直流电压逆变为三相交流电压拖动异步电动机,改变调制信号的周期与幅值,也就改变了主开关的输出脉冲周期与占空比,从而实现电机的VVVF 控制。
1)SPWM 的控制方式SPWM有两种控制方式,可以是单极式,也可以双极式。
两种控制方式调制方法相同,输出基本电压的大小和频率也都是通过改变正弦参考信号的幅值和频率而改变的,只是功率开关器件通断的情况不一样。
采用单极式控制时在正弦波的半个周期内每相只有一个开关器件开通或关断,双极式控制时逆变器同一桥臂上下两个开关器件交替通断,处于互补的工作方式。
2)逆变器输出电压与脉宽的关系在变频调速系统中,负载电机接受逆变器的输出电压而运转。
对电机来说有用的只有基波电压,通过对SPWM 输出波形的傅立叶分析可知,输出基波电压的幅值与各项脉宽有正比的关系,说明调节参考信号的幅值从而改变各个脉冲的宽度时,就实现了对逆变器输出电压基波幅值的平滑调节。
3)脉宽调制的制约条件将脉宽调制技术应用于交流调速系统要受到逆变器功率器件开关频率和调制度的制约。
逆变器各功率开关器件的开关损耗限制了脉宽调制逆变器的每秒脉冲数(即逆变器每个开关器件的每秒动作次数)。
同时,为保证主电路开关器件的安全工作,必须使所调制的脉冲波有个最小脉宽与最小间隙的限制,以保证脉冲宽度大于开关器件的导通时间与关断时间。
2 SPWM 逆变器的调制定义载波的频率fc与调制波频率fr之比为载波比N,即N= fc / fr 。
视载波比的变化与否有同步调制与异步调制之分。
三角调制波与正弦控制波的交点所确定的一组开关角决定了逆变器输出波形的频谱分布。
载波比N对逆变器输出波形的频谱分布有很大的影响。
逆变器输出的谐波分量主要集中在频率调制比N及其倍频2N、3N...的周围,在中心频率附近的谐波振幅极大值随其中心频率增大而减小,其中以N处的谐波振幅为最大,根据分析,谐波的频率可以表示为在此,基频对应于h=1。
SPWM逆变电路原理SPWM(Sinusoidal Pulse Width Modulation)逆变电路是一种电力电子装置,用于将直流电源转换为交流电源。
它通过对一个固定频率的脉冲宽度进行调制,控制输出电压的幅值和频率。
下面将介绍SPWM逆变电路的工作原理。
在工作过程中,直流电源为整个逆变电路提供稳定的直流电压。
滤波电容用于平滑输入电压,保证逆变器的稳定工作。
桥式逆变器是SPWM逆变电路的核心部分,它主要由四个开关管、四个二极管和一个中性线组成。
四个开关管通过交替开启和关闭的方式,将直流电源的正负极性与输出端口的正负极性反向连接,从而实现电源的逆变。
四个二极管作为反向传导管,防止逆变电压的回流。
控制电路是SPWM逆变电路的重要部分,它主要由比较器、三角波发生器和逻辑控制电路组成。
比较器用于将三角波信号和参考信号进行比较,从而产生PWM信号。
三角波发生器根据设定的频率产生一个固定频率的三角波信号作为参考信号。
逻辑控制电路用于根据PWM信号控制开关管的开启和关闭。
1.三角波发生器产生一个与设定频率相等的三角波信号。
2.将三角波信号与需要逆变的正弦波信号进行比较。
如果三角波信号的幅度小于正弦波信号,就打开开关管;如果三角波信号的幅度大于正弦波信号,就关闭开关管。
3.通过调整三角波发生器的频率和幅度,可以控制开关管的开启和关闭时间,从而调整输出的脉冲宽度。
4.在开关管关闭的过程中,二极管向电感器提供通电路径,从而实现电源能量的释放。
5.将PWM信号经过滤波电路,得到一个近似正弦波的交流输出电压。
通过这种方式,SPWM逆变电路可以实现将直流电源转换为交流电源,并且具有较高的电压和频率控制精度,可以广泛应用于交流电机控制、UPS电源等领域。
总结起来,SPWM逆变电路通过调制脉冲宽度,控制开关管的开启和关闭时间,实现对输出电压的控制。
与其他逆变电路相比,它具有输出电压控制精度高、输出波形质量好等优点,因此被广泛应用于各种交流电源领域。
SPWM 逆变器原理所谓的SPWM 波形就是与正弦波形等效的一系列等幅不等宽的矩形脉冲波形如图1 所示,等效的原则是每一区间的面积相等1 概述逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。
PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。
(2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。
(3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。
2 SPWM 逆变器原理2.1 SPWM 波形所谓的SPWM 波形就是与正弦波形等效的一系列等幅不等宽的矩形脉冲波形如图 1 所示,等效的原则是每一区间的面积相等。
如图把一个正弦波分作几等分(如图1a 中,n=12)然后把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合(如图1b),这样由几个等幅不等宽的矩形脉冲所组成的波形就与正弦波等效,称作SPWM 波形。
spwm标题:SPWM技术及其应用摘要:随着电力电子技术的发展,PWM(Pulse Width Modulation)调制技术在工业控制中得到了广泛的应用。
而SPWM(Sinusoidal Pulse Width Modulation)调制技术作为PWM调制技术的一种特殊形式,对于交流电机、逆变器以及UPS (不间断电源)等领域也有着重要的应用。
本文将介绍SPWM调制技术的原理、特点以及应用场景,并深入探讨其在电力电子领域中的优势。
第一部分:SPWM的基本原理1.1 PWM调制技术简介1.2 SPWM调制技术的定义与特点1.3 SPWM调制技术的基本原理1.4 SPWM调制技术的数学模型第二部分:SPWM技术的应用领域2.1 SPWM在交流电机控制中的应用2.1.1 SPWM调制技术对交流电机的控制效果2.1.2 SPWM调制技术在变频调速系统中的应用2.1.3 SPWM调制技术在磁悬浮轴承控制中的应用2.2 SPWM在逆变器中的应用2.2.1 SPWM调制技术在逆变器输出波形控制中的应用2.2.2 SPWM调制技术在逆变器输出电压控制中的应用2.2.3 SPWM调制技术在太阳能逆变器中的应用2.3 SPWM在UPS中的应用2.3.1 SPWM调制技术在UPS输出电压控制中的应用2.3.2 SPWM调制技术在UPS输出电流控制中的应用2.3.3 SPWM调制技术在UPS输出频率控制中的应用第三部分:SPWM技术的优势与发展趋势3.1 SPWM调制技术的优势3.1.1 输出波形质量优良3.1.2 谐波内容低3.1.3 控制精度高3.1.4 载波频率大于信号频率3.1.5 适用范围广3.2 SPWM技术的发展趋势3.2.1 多级SPWM技术的发展3.2.2 高速SPWM技术的研究3.2.3 基于DSP(数字信号处理器)的SPWM控制系统结论:SPWM调制技术作为PWM调制技术的一种特殊形式,在交流电机、逆变器以及UPS等领域具有重要的应用价值。
SPWM逆变器原理讲解SPWM(Sine Pulse Width Modulation)逆变器是一种常用的电力变换器,用于将直流电能转换为交流电能。
其工作原理主要基于脉宽调制技术和三相电桥逆变电路。
SPWM逆变器的基本原理是通过控制脉冲的宽度来控制逆变器输出的电压和频率,从而实现交流电能的变换。
具体来说,SPWM逆变器将输入的直流电压分别提供给三相桥臂(三相电流逆变器),并通过适当控制三个桥臂的开关器件(例如IGBT、MOSFET等)的导通与关闭状态,使其在每个占空比周期内按照一定的时间关系进行切换。
这样,在输出端可以获得一串脉冲波形,其平均电平与输入直流电压有关,而其脉宽与输入控制信号有关,从而实现了输出交流电的调节。
SPWM逆变器的输入源可以是直流电池、直流电源或太阳能等,通过控制开关器件的导通与关闭,以及控制脉冲的宽度和频率等参数,可以实现逆变器输出电压的调整。
因此,通过合理配置开关器件的状态,可以输出不同电压和频率的交流电。
SPWM逆变器的控制策略一般采用三角波比较器方法或者基于电流反馈的闭环控制方法。
其中,三角波比较器方法主要是通过将一个三角波形与一个参考信号进行比较,不断调整脉冲的宽度和频率,使逆变器的输出电压与参考信号尽量一致。
而闭环控制方法则通过将输出电流或电压与参考信号进行比较,利用反馈调整逆变器的控制信号,使输出电压或电流满足设定条件。
在具体实现SPWM逆变器时,需要注意的是开关器件的选择、电路的保护与过载处理、滤波电路的设计等。
开关器件需要具备快速开关和低损耗的特性,以实现高效率的能量转换。
而保护与过载处理则是为了保证逆变器和负载的安全运行,避免电流或电压的过大损坏电路元件。
滤波电路的设计是为了减小逆变器输出的脉冲波纹,使输出信号更趋近于纯正弦波。
总之,SPWM逆变器通过控制脉冲的宽度和频率,实现了将直流电能转换为交流电能的功能。
其基本原理是通过控制开关器件的导通与关闭状态,以及调整脉冲的宽度和频率,从而控制逆变器输出的电压和频率。
S P W M逆变电路原理Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT对于大多数应用场合需要的是工频电源,例如我们的电冰箱,洗衣机,电风扇等都需要正弦波的220伏、50赫兹电源,各种动力设备,远距离输电也都需要正弦波的交流电。
更多的太阳能光伏发电装置输出的是正弦波交流电,目前生成正弦波仍采用前面介绍的全桥电路,只是对开关晶体管的控制采用PWM脉宽调制或移相控制或调频控制等方式。
这里仅介绍最常用的PWM脉宽调制方式。
面积等效原理转换把直流电转换成正弦波交流电是根据根据面积等效原理,在图1上图中的正弦半波(红线)分成n等份,把正弦半波看成是由n个彼此相连的矩形脉冲组成的波形,为简单清晰,划分为7等份。
7个脉冲的幅值按正弦规律变化,每个脉冲面积与相对应的正弦波部分面积相同,这一连续脉冲就等效正弦波。
图1 用面积等效原理转换为SPWM波形如果把上述脉冲序列改为相同数量的等幅而不等宽的矩形脉冲(图1下图),脉冲中心位置不变,并且使该矩形脉冲面积和上图对应的矩形脉冲相同,得到图1下图所示的脉冲序列,脉冲宽度按正弦波规律变化,这就是PWM波形。
根据面积等效原理,PWM 波形和正弦半波是等效的,图中红线就是该序列波形的平均值。
对于正弦波的负半周,也可以用同样的方法得到PWM 波形。
这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM波形。
要改变等效输出的正弦波的幅值时,只需按照同一比例系数改变上述各脉冲的宽度即可。
SPWM波形的生成输出SPWM波形仍需全桥逆变电路,在“光伏用DC-DC变换器”课件中已介绍过这种电路,通过控制开关晶体管的通与断在负载上产生交变电压,见图2。
s图2 全桥逆变电路的工作状态输出SPWM波形的矩形波必须生成序列的控制信号来控制桥式电路中开关晶体管的通与断,普遍使用的是调制法来生成控制信号,可采取单极性调制也可采用双极性调制来生成控制信号,下面介绍常用的单极性调制方式。
SPWM逆变电路原理————————————————————————————————作者:————————————————————————————————日期:对于大多数应用场合需要的是工频电源,例如我们的电冰箱,洗衣机,电风扇等都需要正弦波的220伏、50赫兹电源,各种动力设备,远距离输电也都需要正弦波的交流电。
更多的太阳能光伏发电装置输出的是正弦波交流电,目前生成正弦波仍采用前面介绍的全桥电路,只是对开关晶体管的控制采用PWM脉宽调制或移相控制或调频控制等方式。
这里仅介绍最常用的PWM脉宽调制方式。
面积等效原理转换把直流电转换成正弦波交流电是根据根据面积等效原理,在图1上图中的正弦半波(红线)分成n等份,把正弦半波看成是由n个彼此相连的矩形脉冲组成的波形,为简单清晰,划分为7等份。
7个脉冲的幅值按正弦规律变化,每个脉冲面积与相对应的正弦波部分面积相同,这一连续脉冲就等效正弦波。
图1 用面积等效原理转换为SPWM波形如果把上述脉冲序列改为相同数量的等幅而不等宽的矩形脉冲(图1下图),脉冲中心位置不变,并且使该矩形脉冲面积和上图对应的矩形脉冲相同,得到图1下图所示的脉冲序列,脉冲宽度按正弦波规律变化,这就是PWM波形。
根据面积等效原理,PWM波形和正弦半波是等效的,图中红线就是该序列波形的平均值。
对于正弦波的负半周,也可以用同样的方法得到PWM 波形。
这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM波形。
要改变等效输出的正弦波的幅值时,只需按照同一比例系数改变上述各脉冲的宽度即可。
SPWM波形的生成输出SPWM波形仍需全桥逆变电路,在“光伏用DC-DC变换器”课件中已介绍过这种电路,通过控制开关晶体管的通与断在负载上产生交变电压,见图2。
s图2 全桥逆变电路的工作状态输出SPWM波形的矩形波必须生成序列的控制信号来控制桥式电路中开关晶体管的通与断,普遍使用的是调制法来生成控制信号,可采取单极性调制也可采用双极性调制来生成控制信号,下面介绍常用的单极性调制方式。
SPWM 逆变器原理
所谓的SPWM 波形就是与正弦波形等效的一系列等幅不等宽的矩形脉冲波形如图1 所示,等效的原则是每一区间的面积相等
1 概述
逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。
PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:
(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。
(2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。
(3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。
2 SPWM 逆变器原理
2.1 SPWM 波形
所谓的SPWM 波形就是与正弦波形等效的一系列等幅不等宽的矩形脉冲波形如图 1 所示,等效的原则是每一区间的面积相等。
如图把一个正弦波分作几等分(如图1a 中,n=12)然后把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合(如图1b),这样由几个等幅不等宽的矩形脉冲所组成的波形就与正弦波等效,称作SPWM 波形。
同样,正弦波的负半周也用同样的方法与一系列负脉冲波等效。
图2 为SPWM滤波线为等效正弦波UmSinω1t,SPWM 脉冲序列波的幅值为Us/2,各脉冲不等宽,但中心间距相同为π/n ,n 为正弦波半个周期内的脉冲数,令第i 个矩形脉冲宽度为δi , 其中心点相位角为θi ,则根据面积相等的等效原则,可分成
这就是说,第i 个脉冲的宽度与该处正弦波值近似成正比,因此半个周期正弦波的SPWM 波是两侧窄,中间宽,脉宽按正弦规律逐渐变化的序列脉冲波形。
2.2 SPWM 调制及逆变桥工作原理
今以SPWM 三相逆变桥为例进行说明,SPWM三相逆变器主电路由六个全控式功率开关器件构成三相逆变桥,它们各有一个继流二极管反并联结,整个逆变器由三相不可控整流器提供电压为Us的直流电压。
图3 为单极式脉宽调制波的形式图。
a 图中Ut 为等腰三角形的载波,Ura 及Ura’为正弦调制波,调制波和载波的交点决定了SPWM 脉冲序列的宽度和脉冲间的间隔宽度,如图b 所示,当A 相的Ura>Ut 时,VT1 导通,输出正弦脉冲电压Us/2,当Ura<Ut 时,VT1 关断Uda=0,在Ura 负半周,用同样方法控制VT4,输出负的脉冲电压序列,改变调制波频率时,输出电压基波频率随之改变,降低调制波幅值时如Ura,各段脉冲的宽度变窄,输出电压基波幅值减少。
这种SPWM 每相只有一个开关器件反复通断,称单极性SPWM 波形。
若有同一桥臂上下两个开关交替地导通与关断,则输出脉冲在“+”和“-”之间变化,这样得到双极式的SPWM 波形,如图4 所示,其调制方法与单极式相似,只是输出脉冲电压的极性不同,当Ura>Ut 时,VT1 导通VT4 关断,Uao=+Us/2;当Urs<Ut 时VT1 关断,VT4 导通,输出相电压Uao=-Us/2,同理VT3 和VT6,VT3 和VT5 交替导通得到UAO,UCO 如图c 和d 所示,UAB=UAO-UBO,可得逆变器输出的线电压波形UAB=f(t)如e 所示。
3 SPWM 波形的分析
对负载(交流异步电机)来说,有用的是电压的基波,希望SPWM 波形中基波成分越大越好,通过对SPWM 脉冲序列波U (t)展开成付利叶极数分析可知,输出基波电压幅值Um 与δi 有着直接的关系,它说明调节调制波幅值从而改变各个脉冲宽度时,可使逆变器输出电压基波幅值平滑调节。
SPWM 逆变器输出脉冲序列波的基波电压正是调制时所要求的等效正弦波,当然这必须是在满足n 不太小近似条件下得到的。
但SPWM 逆变器输出相电压的基波幅值有常规六拍阶梯波的86%~90%,为弥补这一不足,常在SPWM 逆变器的直流回路中并联相当大的滤波电容,以提高逆变器的直流电压Us.
由以上分析可知n 越大即功率开关器件半周内要开关n 次,脉冲数n=N/2,其中N 为载波比,即:
N=ft/fr=载波频率/参考调制波频率
即希望N 越大越好。
但从功率开关器件本身的允许开关频率来看,N 不能太大:
N ≤功率开关器件的允许开关频率/最高的正弦调制信号频率
上式中分母实际上就是SPWM 变频器的最高输出频率。
现常用功率开关频率如下:BJT(1~5 kHz)GTO(1~2 kHz) MOSFET(50 kHz)IGBT(20 kHz)随着全控型快速半导体器件性能价格比的提高和PWM 技术的日渐完善和新技术新工艺新材料的使用,SPWM 技术将在电气传动及电力系统中得到更广泛的运用。