液压传动
- 格式:ppt
- 大小:1.80 MB
- 文档页数:19
液压传动液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整液压传动装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。
其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。
在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。
一、系统的组成液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。
1.动力元件(油泵)它的作用是利用液体把原动机的机械能转换成液压力能;是液压传动中的动力部分。
2.执行元件(油缸、液压马达)它是将液体的液压能转换成机械能。
其中,油缸做直线运动,马达做旋转运动。
3.控制元件包括压力阀、流量阀和方向阀等。
它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。
4.辅助元件除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件各种管接头(扩口式、焊接式、卡套式)、高压球阀、快换接头、软管总成、测压接头、管夹等及油箱等,它们同样十分重要。
第一章1.液压传动的概念原理1.1.1概念液压传动是以密闭管道中受压液体为工作介质,进行能量转换,传递,分配,称之为液压技术,有称之为液压传动。
1.1.2工作原理1)帕斯卡原理即“施加于密封容器内平衡液体中的某一点的压力等值地传递到全部液体”因此有F1/A1=P1=P=P2=F2/A22)连续性原理如果不考虑液体的可压缩性,泄露和构件的变形,则挤压出的液体的体积等于推动上移的体积。
3)能量守恒定律略1.1.3液压系统的组成部分及作用若干液压元件和管路组成以完成一定动作的整体称液压系统。
(1)动力元件又称液压泵(2)执行元件见液压能转换成机械能的装置。
它是与液压泵作用相反的能量转换装置,是液压缸和液压马达的总称。
(3)控制元件液压系统中控制液体压力,流量和流动方向的元件总称为控制元件。
(4)辅助元件包括油箱管道管接头滤油器蓄能器加热器冷却器等。
(5)工作介质为液体通常是液压油。
1.2液压传动的主要特点及其应用1.2.1液压传动的主要优点(1)可实现大范围地无极调速,调速功能不受功率大小的限制(2)液压传动具有质量轻体积小惯性小响应快等特点。
(3)液压传动均匀平稳,负载变化时速度稳定。
(4)可实现过载自动保护。
(5)可根据设备要求与环境灵活安装,适应性强。
(6)以液压油为工作介质,具有良好的润滑条件。
(7)液压元件易于标准化、系列化、通用化,便于设计、制造和推广应用。
1.2.2液压传动的主要缺点(1)效率较低(2)泄露问题(3)对污染敏感(4)检修困难(5)对温度敏感(6)对元件加工的精确度要求高第二章工作介质2.1液压油的主要物理特性2.1.1密度和重度定义:密度(重度)的定义为单位体积液体的质量(重量)。
2.1.1黏性和黏度1)牛顿黏性定律——黏度表达式t=f/a=udu/daa——相对运动层面积f——相对运动层内内摩擦力t——液体内部切应力(单位面积上的内摩擦力)du/dy——速度梯度u——比例系数称动力黏度2)黏度的表示方法和单位(1)动力黏度上式中的u为油液种类和温度决定的比例系数,他表示液体黏性的内摩擦程度,称动力黏度或绝对黏度。
第一讲液压传动基础知识一、什么是液压传动?定义:利用密闭系统中的压力液体实现能量传递和转换的传动叫液压传动。
液压传动以液体为工作介质,在液压泵中将机械能转换为液压能,在液压缸(立柱、千斤顶)或液压马达中将液压能又转换为机械能。
二、液压传动系统由哪几部分组成?液压传动系统由液压动力源、液压执行元件、液压控制元件、液压辅助元件和工作液体组成。
三、液压传动最基本的技术参数:1、压力:也叫压强,沿用物理学静压力的定义。
静压力:静止液体中单位承压面积上所受作用力的大小。
单位:工程单位kgf/cm 2法定单位:1MPa (兆帕)=106Pa (帕)1MPa (兆帕)~10kgf/ce2、流量:单位时间内流过管道某一截面的液体的体积。
单位:工程单位:L/min (升/分钟)法定单位:m 3/s四、职能符号:定义:在液压系统中,采用一定的图形符号来简便、清楚地表达各种元件和管道,这种图形符号称为职能符号。
作用:表达元件的作用、原理,用职能符号绘制的液压系统图简便直观;但不能反映元件的结构。
如图:过滤器 /VNX五、常用密封件:1.O 形圈:常用标记方法:公称外径(mm )截面直径(mm )2•挡圈(0形圈用):3. 常用标记方法:挡圈ADXdXa千斤顶双向锁 截止阀安全阀A 型(切口式);D 外径(mm );d 内径(mm );a 厚度(mm )第二讲控制阀;液控单向阀;单向锁一、控制阀:1. 定义:在液压传动系统中,对传动液体的压力、流量或方向进行调节和控制的液压元件统称为控制阀。
2. 分类:根据阀在液压系统中的作用不同分为三类:压力控制阀:如安全阀、溢流阀流量控制阀:如节流阀方向控制阀:如操纵阀液控单向阀双向锁3. 对阀的基本要求:(1)工作压力和流量应与系统相适应;(2)动作准确,灵敏可靠,工作平稳,无冲击和振动现象;(3)密封性能好,泄漏量小;(4)结构简单,制作方便,通用性大。
二、液控单向阀结构与原理:1. 定义:在支架液压系统中用以闭锁液压缸中的液体,使之承载的控制元件为液控单向阀。
液压传动一、液压传动基本概念:液压传动是在流体力学、工程力学和机械制造技术基础上发展起来的一门较新的应用技术,它是现代基础技术之一,被广泛地应用于各工业部门。
液压传动和液力传动都是利用液体为工作介质传递能量的,总称液体传动。
但二者的根本区别在于:液压传动是以液体的压力能进行工作的;而液力传动是以液体的动能传递能量的,如液力联轴器。
二者的传动原理完全不同。
二、液压传动工作原理:液压传动是利用液体的压力能传递能量的传动方式。
其工作原理是:液压泵将输入的机械能变为液压能,经密封的管道传给液压缸(或液压马达),再转变为机械能输出.带动工作机构做功,通过对液体的方向、压力和流量的控制,可使工作机构获得所需的运动形式。
由于能量的转换是通过密封工作容积的变化实现的,故又称容积式液压传动。
图示的液压千斤顶为例说明液压传动的工作原理液压千斤顶是一个简单而又较完整的液压传动装置。
手柄1带动柱塞2做往复运动。
当柱塞上行时,液压泵3内的工作容积扩大,形成负压,油箱5中的液体在大气压作用下推开吸液阀4进入泵内,排液阀关闭;当柱塞下行时,吸液阀关闭,液体被挤压产生压力,当压力升高到足以克服重物10时,泵内工作容积缩小,排液阀6被推开,压力液体经管路进入液压缸.推动活塞8举起重物做功。
反复上下摇动手柄,则液体不断从油箱经液压泵输入液压缸,使重物逐渐上升。
当手柄不动时,排液阀关闭,重物稳定在上升位置。
工作时截止阀7应关闭,工作完毕打开截止阀,液压缸的液体便流回油箱。
三、液压传动系统的组成:液压传动系统简称液压系统。
它是由若干液压元件组合起来并能完成一定动作的整体。
液压元件是由若干零件构成的专门单元,一般是可以通用的、标准化的.如泵、马达、阀等。
不论是简单的液压千斤顶装置,还是复杂的液压系统,都可归纳为五个组成部分。
(一) 液压泵它将原动机供给的机械能转变为液压能输出,是系统的动力部分。
图示为液压泵原理图(二) 液动机(液压缸或液压马达)液动机又称液压执行机构。
液动力:流动液体作用在使其流速发生变化的固体壁面上的力液压卡紧现象:当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。
当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。
1.粘度:液体在外力作用下流动时,分子间聚力的存在使其流动受到牵制,从而沿其界面产生内摩擦力,该特性称为粘性。
2.条件粘度:(相对粘度)是根据特定测量条件制定的。
运动粘度:动力粘度卩和该液体密度P之比值。
3.恩氏粘度:表示的实际上只是与运动粘度成一定关系的值。
4.理想液体:既无粘性又不可能压缩的假想液体称为理想液体。
5.电液伺服阀:是一种接受模拟电信号后,相应输出调制的流量和压力的液压控制阀。
7.真空度:如果液体中某点处的绝对压力小于大气压力,这时该点的绝对压力比大气压力小的那部分压力值,称为真空度。
8.气穴现象:液压系统中,当流动液体某处的压力低于空气分离压时,原先溶解在液体中得空气就会游离出来,时液体产生大量的气泡,这种现象称为气穴现象。
9.液压阀:是用来控制液压系统中油液的流动方向或调节其压力和流量的,可分为方向阀、压力阀和流量阀三大类。
10.节流调速回路:通过改变回路中流量控制元件通留截面的大小来控制流入执行元件或自执行元件流出的流量,以调节其运动速度。
11.容积调速回路:通过改变回路中变量泵或变量马达的排量来调节执行元件的运动速度的。
12.临界雷诺数:液流由层流转变为湍流时的雷诺数和由湍流转变为层流的雷诺数是不同的,后者数值小。
所以一般用后者作为判断流动状态的依据,称为临界雷诺数,记做Recr,小于该值时为层流,大于该值为湍流。
13.液压传动优缺点:优点1)在同等体积下,液压装置比电气装置产生更大的动力。
2)液压装置比较稳定。
3)液压装置能在大范围内实现无极调速,它还可以在运行的过程中进行调速。
4)液压传动易于对液体压力、流量或流动方向进行调节或控制。
5)液压装置易于实现过载保护。
液压传动——液压传动概述-CAL-FENGHAI.-(YICAI)-Company One1第1章液压传动概述1.1 液压传动发展概况1.1.1 液压传动的定义一部完整的机器由原动机部分、传动机构及控制部分、工作机部分(含辅助装置)组成。
原动机包括电动机、内燃机等。
工作机即完成该机器之工作任务的直接工作部分,如剪床的剪刀、车床的刀架等。
由于原动机的功率和转速变化范围有限,为了适应工作机的工作力和工作速度变化范围变化较宽,以及性能的要求,在原动机和工作机之间设置了传动机构,其作用是把原动机输出功率经过变换后传递给工作机。
一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。
传动机构通常分为机械传动、电气传动和流体传动机构。
流体传动是以流体为工作介质进行能量转换、传递和控制的传动。
它包括液压传动、液力传动和气压传动。
液压传动和液力传动均是以液体作为工作介质进行能量传递的传动方式。
液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。
1.1.2 液压传动的发展概况液压传动是一门新的学科,虽然从17世纪中叶帕斯卡提出静压传动原理,18世纪末英国制成世界上第一台水压机算起,液压传动技术已有二、三百年的历史。
但直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。
在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。
第二次世界大战结束后,战后液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。
本世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。
因此,液压传动真正的发展也只是近三四十年的事。
当前液压技术正向迅速、高压、大功率、高效、低噪声、经久耐用、高度集成化的方向发展。
同时,新型液压元件和液压系统的计算机辅助设计(CAD)、计算机辅助测试(CAT)、计算机直接控制(CDC)、机电一体化技术、可靠性技术等方面也是当前液压传动及控制技术发展和研究的方向。