Excel中进行方位角、坐标、高程等计算(推算公式)
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
在Excel中,可以使用以下公式来计算道路坐标:
计算两点间的距离:
使用距离公式:D = sqrt((x2-x1)^2 + (y2-y1)^2)。
其中,x1、y1是第一个点的坐标,x2、y2是第二个点的坐标。
计算直线距离(两点间的最短距离):
使用直线距离公式:D = abs(y2-y1) + abs(x2-x1)。
计算斜率:
使用斜率公式:m = (y2-y1) / (x2-x1)。
计算角度:
使用角度公式:θ = arctan(m)。
其中,arctan是反正切函数,m是斜率。
计算坐标变换(平移和旋转):
使用平移公式:x' = x + tx,y' = y + ty。
其中,tx和ty是平移量。
使用旋转公式:x' = x * cos(θ) - y * sin(θ),y' = x * sin(θ) + y * cos(θ)。
其中,cos和sin是余弦和正弦函数,θ是旋转角度。
这些公式可以根据具体需求进行组合和调整,以计算道路坐标和其他相关参数。
请注意,这些公式假设坐标系为笛卡尔坐标系,并且输入的坐标值是实数。
如果使用其他坐标系或涉及复数计算,可能需要使用不同的公式或函数。
Excel测量数据转换公式导线平差计算中Excel函数的应用来源:邢台水文局文章作者:张猛录入时间:11-03-23 10:41:22我们在地形测图时经常会建立平面控制网和高程控制网,为了提高检核和成果的质量,处理好测量中存在的误差问题,就要进行测量数据平差,而平差的目的就在于消除这些矛盾而求得观测量的最可靠的结果,并评定测量成果的精度。
在平差计算表中,我们要对测定的观测角度和坐标增量等数据进行三角函数的计算,而手算往往会比较复杂麻烦,我们可以借助Excel 强大的数据处理功能进行平差就方便多了。
下面我们用讲解和举例相结合的方法来说明:Excel 中的三角和反三角函数分别对应于平时所需计算的三角函数和反三角函数数值,参数都比较简单,例如sin、cos、asin和atan等。
一、一般来说三角函数的在Excel中应用还是比较复杂的,最简单的应用是直接利用公式插入求值:1 、用SIN函数求给定角度的正弦值,用COS函数求定角度的余弦值,用TAN函数求给定角度的正切值。
这三个函数的语法为:SIN(number)COS(number)TAN(number)注:Number:必需。
需要求正弦的角度,以弧度表示。
如果参数的单位是度,则可以乘以PI()/180或使用RADIANS函数将其转换为弧度。
我们来示例说明:假设单元格A1代表要求的角度,则可在单元格中插入公式为:=SIN(A1*PI()/180) 或=SIN(RADIANS(A1))=COS(A1*PI()/180) 或=COS(RADIANS(A1))=TAN(A1*PI()/180) 或=TAN(RADIANS(A1))如求45度的正弦值就在单元格中输入公式“=SIN(45*PI()/180)”或“=SIN(RADIANS(45))”,计算角度的正弦值。
另外必须注意的是,由于sin等三角函数在Excel的定义是要弧度值,因此必须先要将角度值转换为弧度值,不然的话我们时无法进行计算的。
Excel已知距离方位角求坐标在测绘、地理信息系统以及导航领域,我们经常需要根据已知的距离和方位角来确定某个点的坐标。
这种计算在Excel中可以方便地实现。
本文将介绍如何利用Excel计算已知距离和方位角来确定坐标。
准备工作在开始计算之前,我们需要准备一些数据。
假设有一个已知点A,它的坐标为(Xa, Ya),距离为d,方位角为θ。
我们想要根据这些信息确定另一个点B的坐标。
计算步骤下面是利用Excel进行已知距离和方位角求坐标的具体步骤:1.打开Excel,并创建一个新的工作表。
2.在A1单元格中输入已知点A的X坐标(Xa)。
3.在B1单元格中输入已知点A的Y坐标(Ya)。
4.在C1单元格中输入距离(d)。
5.在D1单元格中输入方位角(θ)。
6.在A2单元格中输入一个公式,用于计算点B的X坐标。
公式如下:=Xa + d * COS(RADIANS(θ))7.在B2单元格中输入一个公式,用于计算点B的Y坐标。
公式如下:=Ya + d * SIN(RADIANS(θ))8.按下回车键,Excel将自动计算并显示点B的X和Y坐标。
现在,你已经成功地利用Excel计算出了已知距离和方位角确定坐标的结果。
示例为了更好地理解上述步骤,我们来举一个具体的例子。
假设已知点A的坐标为 (10, 20),距离为50,方位角为30度。
现在我们想要根据这些信息确定点B的坐标。
按照上述步骤,在Excel中输入相应的数据和公式,可以得到以下结果:•点B的X坐标为:10 + 50 * COS(RADIANS(30)) ≈ 45.991•点B的Y坐标为:20 + 50 * SIN(RADIANS(30)) ≈ 45.000因此,根据给定的距离和方位角,我们可以确定点B的坐标为 (45.991,45.000)。
总结利用Excel可以方便地进行已知距离和方位角求坐标的计算。
通过输入已知点的坐标、距离和方位角,并利用相应的公式,可以迅速得出坐标的结果。
坐标方位角EXCEL计算公式
一:坐标形式:
坐标点的坐标形式有两种,分别为空间坐标(XYZ)和地面坐标(XY)。
空间坐标(XYZ),即X、Y和Z三个方向上的坐标值,其中X为从原点到当前点之间的直线距离,Y和Z分别为X的垂直方向距离,常用来表示空间点的位置。
地面坐标(XY),即基准平面上的X和Y的坐标值,X和Y分别为基准平面的两个方向的距离,常用来表示地面上的位置。
二、坐标方位角的计算:
Azimuth=ArcTan[(X2-X1)/(Y2-Y1)]
其中,ArcTan为反正切函数,ArcTan[(X2-X1)/(Y2-Y1)]是从点
(X1,Y1)指向点(X2,Y2)的正切值。
计算公式在excel中的表达式为:
=ATAN2(Y2-Y1,X2-X1)
计算结果即为两点之间的坐标方位角。
三、两点之间的真空方位角:
真空方位角(Geodetic Azimuth),也就是从一个点指向另一点的“直线”方位角,是指一点与另一点之间的空间方向的夹角,可以用两个点的经纬度坐标来表示,可以用如下公式计算:
Geodetic Azimuth=ArcTan[(cosφ2cosΔλ)/(sinφ2-sinφ1)]其中,ArcTan为反正切函数。
Excel中的坐标反算公式如(图1)所示,已知A点坐标(X A、Y A),B点坐标(X B、Y B),求A点到B点的距离D AB和方位角αAB。
(图1)由图可知:△X AB=X B-X A△Y AB=Y B-Y AD AB=△X2AB+△Y2ABTanαAB=△Y AB/△X AB计算出来的αAB可在四个象限内,具体在哪个象限内,由△X AB和△Y AB的正负号来确定。
实际计算,可按下列步骤进行:(1)先计算α'AB :α'AB=arctanⅠ△Y AB/△X ABⅠ(2)计算αAB:1)当△X AB>0且△Y AB>0时,为第一象限:αAB=α'AB ;2)当△X AB<0且△Y AB>0时,为第二象限:αAB=180°-α'AB ;3)当△X AB<0且△Y AB<0时,为第三象限:αAB=180°+α'AB ;4)当△X AB>0且△Y AB<0时,为第四象限:αAB=360°-α'AB ;5)当△X AB=0 、△Y AB>0时,αAB=90°;6)当△X AB=0 、△Y AB<0时,αAB=270°。
综上所述,(图2)中所应用的公式为:(1)E2——△X AB=C4-A4;(2)F2——△Y AB=D4-B4;(3)G2——α'AB=DEGREES(A TAN(ABS(F4/E4)))(4)H2——1αAB(转换前):1)H4——IF(E4>0,IF(AND(F4>0),G4,"-----"),"-----")2)H5——IF(E4<0,IF(AND(F4>0),180-G4,"-----"),"-----")3)H6——IF(E4<0,IF(AND(F4<0),180+G4,"-----"),"-----")4)H7——IF(E4>0,IF(AND(F4<0),360-G4,"-----"),"-----")5)H8——IF(E4=0,IF(AND(F4>0),90,"-----"),"-----")6)H9——IF(E4=0,IF(AND(F4<0),270,"-----"),"-----")(5)(I、J、K)2——2αAB(转换后):1)I4——TRUNC(H4)、J4——TRUNC((H4-I4)×60)、K4——((H4-I4)×60-J4)×60;2)I5——TRUNC(H5)、J5——TRUNC((H5-I5)×60)、K5——((H5-I5)×60-J5)×60;3)I6——TRUNC(H6)、J6——TRUNC((H6-I6)×60)、K6——((H6-I6)×60-J6)×60;4)I7——TRUNC(H7)、J7——TRUNC((H7-I7)×60)、K7——((H7-I7)×60-J7)×60;5)I8——TRUNC(H8)、J8——TRUNC((H8-I8)×60)、K8——((H8-I8)×60-J8)×60;6)I9——TRUNC(H9)、J9——TRUNC((H9-I9)×60)、K9——((H9-I9)×60-J9)×60;(6)L4——D AB=SQRT(SUMSQ(C4-A4)+SUMSQ(D4-B4))。
道路坐标计算excel道路坐标计算是一种常见的数据处理方法,用于计算道路上的各个位置的经纬度坐标。
这种计算方法可以帮助我们确定道路上的具体位置,方便导航和定位等应用。
在实际的道路坐标计算中,常用的方法是使用Excel进行处理。
Excel是一款功能强大的电子表格软件,可以方便地进行数据处理和计算。
下面将介绍如何使用Excel进行道路坐标计算。
首先,我们需要准备好待处理的数据。
在Excel中,可以将道路划分为多个路段,并为每个路段标注起点和终点的位置。
这些位置可以用经度和纬度来表示。
接下来,我们可以使用Excel中的函数进行坐标计算。
常用的函数包括经纬度转换函数和距离计算函数。
1. 经纬度转换函数在进行坐标计算时,经纬度间的转换是非常重要的一步。
Excel提供了很多函数来进行经纬度转换,例如DEGREES、RADIANS、SIN、COS、TAN等函数。
通过这些函数的组合,我们可以将经纬度导航到计算坐标。
2. 距离计算函数除了经纬度转换,计算两点之间的距离也是道路坐标计算的重要一环。
Excel提供了很多函数来计算两点之间的距离,例如ACOS、COS、SIN、SQRT等函数。
通过这些函数的组合,我们可以计算出两点之间的距离。
在进行坐标计算之前,我们需要对数据进行预处理。
这包括将经纬度数据转换为数字格式,并确定坐标轴的单位。
在Excel 中,我们可以使用“格式单元格”功能,将经纬度数据转换为数字格式,以便进行后续计算。
接下来,我们可以使用Excel的函数来进行道路坐标计算。
以计算两点之间的距离为例,可以使用类似以下的公式:=ACOS(COS(RADIANS(90-纬度1))*COS(RADIANS(90-纬度2))+SIN(RADIANS(90-纬度1))*SIN(RADIANS(90-纬度2))*COS(RADIANS(经度1-经度2)))*6371在这个公式中,纬度和经度分别用纬度1、经度1、纬度2、经度2来表示。
用EXCEL进行中桩坐标、高程计算(铜汤高速第一合同段)测量计算、平差软件种类繁多,但无论什么软件都不能包罗万象,无法满足众多数据处理的需要,即使某种计算软件的功能非常齐全,但此类软件一般都是针对性开发的,而像小件坐标计算,例如承台坐标,则显得非常烦琐。
本文结合本项目介绍了应用EXCEL进行测量计算的方法和思路,并提供了一些常用的计算公式。
1、 EXCEL基本计算方法打开EXCEL后显示的表格,将相关数据依次输入到相应的表格上中。
当原始数据输入完毕后,再在需要显示结果的相应单元格内输入计算公式,EXCEL则会按照公式自动计算出结果,下面以两点坐标计算距离为例,简单说明下:第一步:在相应位置输入表头、序号、坐标后,图示1所示。
第二步在显示距离格内输入计算公式=SQRT((B4-D4)^2+(C4-E4)^2)并按回车,距离的结算结果就显示出来。
2、在测量计算中,最常见的是三角函数的处理。
EXCEL中备用的三角函数很齐全,但计算中是以弧度为单位来处理的,在计算中角度(度、分、秒)需要转换成弧度后,即可进行三角函数的计算了。
3、结合本项目分别介绍了直线、圆曲线、竖曲线的计算事例铜汤高速公路第一合同段,起点里程K78+060.618,终点里程K82+825,全长4764.4米,其中包括朱家畈大桥,水桥湖一桥、二桥三座桥梁。
全线平面首尾为直线段,中间由三段圆曲线连接,(后附全线平面图),计算原始数据取自设计文件第一册《直线、曲线及转角表》(图号为S3-4);全线包括6段竖曲线,其中凹、凸曲线各3段,计算原始数据采用设计文件第一册《路线纵断面图》(图号为S3-3)。
在表格中,桩号栏中的ZJF8、SQA7、SQB6分别代表朱家畈大桥8号墩中心,水桥湖一桥7号墩中心和水桥湖二桥6号墩中心。
坐标和高程的单位均为m,角度单位为弧度。
一、坐标计算方法:a、直线段:坐标增量法例如:第一段直线范围K78+060.618~K78+773.787坐标计算已知:BP点里程为K78+060.618,坐标(3412768.816,484851.623)起始方位角a=140°45′46.1″=2.456774421(弧度)计算直线范围内的K78+200坐标如下:在EXCEL表格中输入相应的表头和需要计算的里程后在C36格内输入公式=3412768.816+(B21-78060.618)* COS(2.456774421)在D36格内输入公式=484851.623+(B21-78060.618)* SIN(2.456774421)X=3412768.816+(78200-78060.618)×COS2.456774421=3412660.860Y=484851.623+(78200-78060.618)×SIN2.456774421=484939.787 图示:b、曲线段:偏角法第一段圆曲线K78+773.787~K79+524.582上坐标计算:起点(即ZY点)里程为K78+773.787,同时位于第一段直线上,可通过坐标增量法算出ZY点坐标为(3412216.442,485302.725);始方位角a=140°45′46.1″=2.456774421(弧度);曲线圆心在线路右侧,曲线半径R=4500m。
用EXCE L 计算直线的坐标方位角季中文摘 要:为了解决运用计算器计算坐标方位角比较繁琐的问题,根据坐标方位角的计算步骤,介绍一种运用EXCEL 中的函数编程,快速求解直线坐标方位角的方法,从而为测量工作提供了方便。
关键词:坐标方位角,象限角,IF 函数中图分类号:TP391文献标识码:A 工程测量中常常需要根据直线上两点坐标求直线的坐标方位角,得到放样数据。
运用计算器计算直线坐标方位角比较繁琐,文中介绍一种用EXCEL 快速求解直线坐标方位角的方法。
1 坐标方位角和象限角的概念从某点的坐标纵线北方向起,依顺时针方向到目标方向线间的水平夹角,称为该直线的坐标方位角。
直线与坐标纵线方向所夹的锐角称为直线的象限角。
坐标方位角与象限角的关系见图1。
2 坐标方位角的计算步骤2.1 计算直线的象限角R ABΔx =X B -X A ,Δy =Y B -Y A ,R AB =tg -1│Δy/Δx │。
2.2 计算直线的坐标方位角先根据Δx ,Δy 的符号判定直线方位角所在的位置,再根据坐标方位角和象限角的数学关系计算坐标方位角,具体见表1。
表1 利用数学关系计算坐标方位角Δx Δy 直线位置坐标方位角>0=0<0>0第Ⅰ象限αAB =R AB =0X 轴正向αAB =0<0第Ⅳ象限αAB =2π-R AB >0Y 轴正向αAB =π/2=0同一点αAB 不存在<0Y 轴负向αAB =3π/2>0第Ⅱ象限αAB =π-R AB=0X 轴负向αAB =π<0第Ⅲ象限αAB =π+R AB3 用EXCE L 编辑工作表计算坐标方位角3.1 用EXCEL 计算坐标方位角的表格利用EXCEL 编辑工作表计算坐标方位角(见表2)。
3.2 对表格的说明最左边1列是行号,A 列,B 列是对C 列的说明,C 列是输入、计算和输出的数据。
表2 利用EXCE L 计算坐标方位角ABC 1已知X A 43543.3662已知Y A 65866.9793已知X B 43563.3664已知Y B65966.9795Δx 20.0006Δy100.0007│Δy /Δx │ 5.0008象限角R AB tg -1│Δy /Δx │ 1.3739坐标方位角α用弧度表示 1.37340076710坐标方位角α用度表示78.69006811(°)整度数7812(′)整分数4113(″)整秒数2414坐标方位角α用度分秒表示78°41′24″ 最上面1行是列号,第1行到第4行是输入的A ,B 两点坐标,第5行到第8行计算象限角,第9行根据象限角求出用弧度表示的坐标方位角,第10行到第14行将用弧度表示的坐标方位角换算成用度、分、秒表示的坐标方位角,以便于使用。
以上表为例,新建一个Excel表格,用10个单元格A、B、C、D、E、F、G、H、I、J。
A4、B4分别输架站点的X、Y坐标,C4、D4分别输前视点(或后视点)的X、Y坐标。
E4=C4-A4,F4=D4-B4,G4=ATAN(F4/E4)*180/PI(),或者G4=DEGREES (ATAN(F4/E4)) (ATAN是反正切值tan-1,PI()是圆周率π,直接输ATAN和PI(),DEG REES是弧度转换角度)H4=IF(E4*F4>0,IF(E4>0,G4,180+G4),IF(E4<0, 180+G4,360+G4)),点I4右击鼠标选择设置单元格进入数字选择自定义,在类型下面框内编辑”[h]°mm′ss″”, 按确定,[]和”符号在电脑键盘上选择输,°′″符号在输入法键盘单位符号上选择输。
I4=H4/24,或者直接I4=TEXT(H4/24, ”[h]°mm′ss″”), J4=SQRT(E4^2+ F4^2)或J4=SQRT(E4* E4+ F4* F4)(SQRT表示根号)。
架站点坐标一般不变,只不过前视点(或后视点)的坐标在变化,我们将架站点坐标A4、B 4锁定成$A$4、$B$4,将E、F、G、H单元格隐藏,只显示6个单元格。
首先Excelvba界面(Alt+F11),之后“工程-VBAproject”内(即显示着Microsoft Excel 对象和sheet1等等的地方)右键--插入--模块,会得到一个“模块1”,工作区会出现一个窗口,将以下红色代码复制到此窗口内即可。
之后返回到Excel中,就可以和Excel 的内部函数一样应用了。
比如在A1、B1、A2、B2单元格内分别输入A点坐标X1、Y1、B点坐标X2、Y2。
在其他单元格内输入=FWJ(A1,B1,A2,B2)便可得到从A点到B点的方位角了,在另一单元格内输入=JL(A1,B1,A2,B2)即可得到AB点间距离。