当前位置:文档之家› 光学基础-远心物镜

光学基础-远心物镜

光学基础-远心物镜
光学基础-远心物镜

1.1.5远心物镜

在测量系统中,物距常发生变化,从而使像高发生变化,所以测得的物体尺寸也发生变化,即产生了测量误差;另一方面,即使物距是固定的,也会因为CCD敏感表面不易精确调整在像平面上,同样亲会产生测量误差。为了解决上述问题,可以采用远心物镜。其中像方远心物镜可以消除物距变化带来的测量误差,而物方远心物镜则可以消除CCD位置不准带来的测量误差。

1)物方远心物镜

物方远心物镜是将孔径光阑放置在光学系统的像方焦平面上,图1.1-23示出,当孔径光阑放在像方焦平面上时,即使物距发生改变,像距也发生改变,但像高并没有发生改变,即测得的物体尺寸不会变化;图1.1-24清楚地显示出物方远心光路的原理,其中孔径光阑位于像方焦面上,物方主光线平行于光轴。如果物体B1B2正确地位于与CCD表面M共轭的位置A1上,那么它在CCD表面上的像为M1M2。如果由于物距改变,物体B1B2不在位置A1而在位置A2,那么它的像B′1B′2偏离CCD表面,B′1和B′2点在CCD表面上投影为一个弥散斑,其中心仍为M1和M2点,按此投影像读出的长度仍为M2M1。这就是说,上述物距改变并不影响测量精度。

图1-23

2)像方远心光路

像方远心光路是将孔径光阑放置在光学系统的物方焦平面上,而像方的主光线平行于光轴。如图1.1-25所示。如果物体B1B2的像B′1B′2不与CCD表面M重合,则在CCD表

面M上得到的是B′1B′2的投影像,其散斑中心距离M1M2=B′1B′2。因此,不管CCD表面M是否和B′1B′2相重合,它和标尺所对应的长度总是B1B2,所以没有测量误差。

图1-24

图1.1-25 像方远心光路

1.1.6远距物镜

远距物镜是一种焦距很长而镜筒较短的物镜,从物镜前表面到像平面的距离小于焦距,这对于长焦距物镜来说,有利于缩短物镜的轴向尺寸。

远距型结构采取正负光焦度分离的型式,正光焦度的透镜组在前,负光焦度的透镜组在后,如图1.1-26所示。整个系统的主面移出物镜之外,使得物镜的筒长—物镜前表面到焦面的距离小于焦距,从而缩小了物镜的结构尺寸。在这里,筒长与焦距之比L/f′称为远距比。远距比是远距物镜的重要指标,通常远距比小于1,并且越小越好。

按照上述原理构成的远距物镜,结构型式是各种各样的,尤其是前组,由于负担较大的光焦度,结构一般要比后组复杂。

图1.1-26 远距物镜的高斯光学

前组为三透镜结构,如图1.1-27所示,它的相对孔径为1:4。

图1.1-27 远摄物镜

1.1.7反远距物镜

反远镜是一种焦距较短而后截距很长的物镜,这样,在物镜和CCD之间可以加入分光镜,以实现取景等作用。这种物镜的结构大多是具有负的前组镜和正的后组镜,见图1.1-28。

反远距物镜的孔径光阑和出射光瞳几乎重合并位于第二镜组的主平面上(图 1.1-28a),也可以将孔径光阑位于第二镜组前焦点附近(图1.1-28b)。在这种情况下,像空间中主光线为远心光路这一设计原理是最理想的,但是在相对孔径大的物镜中难以实现。

图1.1-28 反远距摄影物镜的光路图

按照上述结构设计的反远距物镜,前组和后组有各种各样的结构型式。负光焦度的前组从一个单片透镜直到非常复杂的结构,而正光焦度的后组往往采用Petzval型、三片型、双高斯型以及它们的复杂化结构。前组为单片透镜而后组为三片型、双高斯型的反远距物镜,如图1.1-29所示,是反远距物镜最简单的结构。它们的工作距离与焦距相当,视场角为60°左右,而相对孔径为1:3.5~1:2.5。

图1.1-29 前组为单负透镜、后组为三片型的反远距物镜

1.1.8畸变物镜

畸变物镜能够在它的像中预先引入规定的畸变。当物镜存在很大的负畸变时,实际上能够拍摄角视场超过180°的物空间。这种物镜用于宇航研究、气像测量中。像的大小不是按式y′=-f ′tanω确定,而是,例如按下式确定:y′=-f ′sinω。在后一情况中,当-ω=90o 时,将得到y′= f ′,即像幅的对角线为焦距的两倍。

畸变物镜的原理图如图1.1-30a所示。吉柳在1930年首先成功地实现了角视场180o和相对孔径1:22的畸变物镜(图1.1-30b)。畸变物镜可以按照反远距物镜的光路图作

出。第一组由一或二个透镜组成,并造成很大的畸变(图c、d)。第二透镜组用于校正像差,以便获得清晰的像。

为了研制超广角物镜,像场角余弦四次方的影响是最大的障碍。但是由于负的畸变,在像场边缘上光束深缩,因而在像场边缘上实际光学密度并不比视场中心低。

图1.1-30 畸变物镜的光学系统图

(完整word版)郁道银主编_工程光学(知识点)

1 、波面:点光源发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。 2 、几何光学的四大基本定律 1 )光的直线传播定律:在各向同性的均匀介质中,光是沿着直线传播的。 2 )光的独立传播定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。 3 )反射定律和折射定律(全反射): 全反射:当光线从光密介质向光疏介质入射,入射角大于临界角时,入射到介质上的光会被全部反射回原来的介质中,而没有折射光产生。sinI m =n ’/n ,其中I m 为临界角。 3 、费马原理 光从一点传播到另一点,其间无论经历多少次折射和反射,其光程为极值。 4 、马吕斯定律 光线束在各向同性的均匀介质中传播时,始终保持着与波面正交,并且入射波面与出射波面对应点之间的光程均为定值。 5 、完善成像条件(3种表述) 1)、入射波面为球面波时,出射波面也为球面波; 2)、入射光束为同心光束时,出射光束也为同心光束; 3)、物点A 1及其像点A k ’之间任意二条光路的光程相等。 6 、单个折射面的成像公式(定义、公式、意义) r n n l n l n -= -''' r l l 21'1=+ ( 反射球面,n n -=' ) 7 、垂轴放大率成像特性: β>0,成正像,虚实相反;β<0,成倒像,虚实相同。|β|>1,放大;|β|<1,缩小。 注:前一个系统形成的实像,若实际光线不可到达,则为下一系统的虚物。 若实际光线可到达,则为下一系统的实物。 8 、理想光学系统两焦距之间的关系 n n f f ''-= 9 、解析法求像方法为何?(牛顿公式、高斯公式) 1)牛顿公式: 2)高斯公式: ' 11'1f l l =-

双通道成像光谱仪共用离轴三反射光学系统的设计-红外技术

双通道成像光谱仪共用离轴三反射光学系统的设计 姚 波,袁立银,亓洪兴,舒 嵘 (中国科学院上海技术物理研究所空间主动光电技术重点实验室上海 20083) 摘要:提出了一种双通道共用一个主光学的推帚式高光谱成像仪光学系统,该系统由离轴三反射主光学系统、狭缝、准直镜及分色镜、可见近红外光谱仪后光学和短波红外光谱仪后光学组成,设计中采用双通道共用离轴三反射主光学系统,不仅满足了成像仪大视场、宽谱段的要求,而且提高了系统的光学效率,使系统结构更加紧凑,双通道光谱仪均采用棱镜-全息透射光栅-棱镜分光组件分光,实现了宽光谱分光,提高了衍射效率,系统实现光谱范围覆盖450~2500 nm,全视场达23.9°。 关键词:光学系统设计;双通道成像光谱仪;离轴三反射;棱镜-全息透射光栅-棱镜 中图分类号:TH744.1 文献标识码:A 文章编号:1001-8891(2013)07-0419-06 Optical Design of a Dual-channel Imaging Spectrometer Sharing the Off-axis TMA System YAO Bo,YUAN Li-yin,QI Hong-xing,SHU Rong (Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, CAS, Shanghai 200083, China) Abstract:This paper presents an optical system for a dual-channel pushbroom hyperspectral imaging spectrometer which shared a main optics. This optical system consists of the main optics, slit, collimator, dichroic mirror and the optical components of VISNIR and SWIR. The two channels sharing off-axis Three-Mirror Anastigmatic (TMA) telescope system is designed, which is not only to meet the requirements of the imager about field of view, wide spectra, but also to improve the optical efficiency and make the system more compact. Prism Grating-Prism (PGP) components are used to achieve a wide spectrum spectrophotometry and high diffraction efficiency, whose response covers the range from 450 to 2500nm with a 23.9° field of view. Key words:optical design,imaging spectrometer,off-axis three-mirror system,Prism Grating-Prism(PGP) 0引言 近年来随着对地观测的需求和光电技术的进步,成像光谱仪已发展成为新一代遥感仪器,它将传统二维成像技术与光谱仪技术有机结合,能在获取地物二维空间几何信息的同时,以高光谱分辨率获取目标的光谱信息,具有超多波段、高光谱分辨力、高空间分辨力的特点,比多光谱图像包含了更丰富的地物目标信息。因此,高光谱成像在地质地理、植被调查、大气探测、海洋遥感、农业科技,环境监测、减灾防灾及军事应用等方面具有广泛应用前景[1]。 国内外比较典型的高光谱成像仪仪器有美国JPL实验室的A VIRIS[2],中国的OMIS[3],PHI[4],德国的DAIS[5]等。星载高光谱成像仪主要以美国为主,典型的如EO-1卫星的Hyperion[6],海军NEMO 卫星的岸带高光谱成像仪COIS[7],以及火星勘探成像光谱仪CRISM[8]和月球矿物制图仪Moon Mineralogy Mapper[9]等,谱段主要集中在可见近红外-短波红外,这些高光谱成像仪提供的丰富高光谱数据已在多个应用领域发挥了重要作用。 在高光谱成像仪的研制过程中,研制成败的一个关键环节就是光学系统的选择和设计,直接影响着仪器的性能、体积和质量。对于传统的望远系统设计,有折射系统和反射系统2种选择,其中折射系统需要采用特殊的材料和结构来消除二级光谱色差,反射系统不产生色差,孔径、焦距都可以做得很大,且宜于轻量化。现有的两反系统虽然结构形 419

基础光学实验实验报告

基 础 光 学 实 验 姓名:许达学号:2120903018 应物21班

一.实验仪器 基础光学轨道系统,基础光学组合狭缝及偏振片,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,DataStudio软件系统 二.实验目的 1.通过该实验让学生了解并会运用实验器材,同时学会用计算机分析和处理实验数据。 2.通过该实验让学生了解基本的光学现象,并掌握其物理机制。三.实验原理 单缝衍射:当光通过单缝发生衍射,光强极小(暗点)的衍射图案由下式给出asinθ=mλ(m=1,2,3……),其中a是狭缝宽度,θ为衍射角度,λ是光波波长。 双缝干涉:当光通过两个狭缝发生干涉,从中央最大值(亮点)到单侧某极大值的角度由下式给出dsinθ=mλ(m=1,2,3……),其中d是狭缝间距,θ为从中心到第m级最大的夹角,λ是光波波长,m为级数。 光的偏振:通过第一偏振器后偏振电场为E0,以一定的角度β穿过第二偏振器,则场强变化为E0cosβ,由于光强正比于场强的平方,则,第二偏振器透过的光强为I=I0cos2β. 四.实验内容及过程

单缝衍射 单缝衍射光强分布图 如果设单缝与接收屏的距离为s,中央极强到光强极小点的距离为c,且sinθ≈tanθ=c/s,那么可以推得a=smλ/c.又在此次实验中,s=750mm,λ=6.5E(-4)mm,那么推得a=0.4875m/c,又由图可知:当m=1时,c=(88-82)/2=3mm,推得a=0.1625mm; 当m=2时,c=(91-79)/2=6mm,推得a=0.1625mm; 当m=3时,c=(94-76)/2=9mm,推得a=0.1625mm; 当m=4时,c=(96-74)/2=11mm,推得a=0.1773mm; 得到a的平均值0.1662mm,误差E=3.9%。 双缝干涉

远心镜头的原理、应用范围及其选型

工业镜头是机器视觉采集系统的重要组成部分,远心镜头是镜头大家族中相对年轻的成员,并且正以其独特的性能,成为最善良的明星。但是,也因为远心镜头被引入时间比较短,其很多特性还未广泛的为人们所熟知,本文即是本着向大家介绍远心镜头基础知识的原则,从远心镜头的原理,应用范围,选型方法三个方面,对其进行综合阐述,揭秘光在远心系统里经历的神秘的艺术之旅。 第一部分:远心镜头的原理说明 首先,我们从非远心镜头的几个问题说起。第一个问题,一般镜头在成像过程中,当工作距离发生变化时,其所成图像大小会相应的发生变化,造成的结果就是同一个焦距的镜头,对应不同的物距,将会有不同的放大倍率,这一现象跟人类视觉系统的近大远小视觉差类似。这一问题在某些应用场合是可以被忽略甚至加以利用的,但是当我们的视觉系统被用来执行精密测量任务时,这一特性则会成为极大的阻碍。第二个问题,普通的镜头都存在一定范围的景深,当被测物体不在镜头的景深范围内时,图像就会变得模糊,无法清晰聚焦,为此,设计师们在普通镜头上设计了调焦环,当工作距离发生变化时,可以通过调节对焦面来看清楚感兴趣的区域。问题是,如果被测物体本身的深度超出了一定范围,镜头始终没办法同时看清首尾两端,这个问题,必须通过其他的途径来解决。第三个问题,随着现在成像芯片分辨率的不断提高,用户对测量精度的要求也越来越苛刻,普通的镜头受制于其光学成像的原理,最好的也只能做到10um左右,视觉检测领域需要精度更高的成像产品。 双远心镜头即是为了解决这些问题应运而生的。双远心镜头通过在光学系统的中间位置放置孔径光阑,使主光线一定通过孔径中心点,则物体侧和成像侧的主光线一定平行于光轴进入镜头。入射平行光保证了足够大的景深范围,从镜头出来的平行光则保证了即是工作距离在景深范围内发生大幅度变化,成像的高度也就是放大倍率不会发生变化。 第二部分:远心镜头使用范围 什么情况下应该选用远心镜头呢?根据笔者多年从事机器视觉产品选型的经验,再次给读者一些参考,如下情况,建议选用双远心镜头。 1)当被检测物体厚度较大,需要检测不止一个平面时,典型应用如食品盒,饮料瓶等。 2)当被测物体的摆放位置不确定,可能跟镜头成一定角度时。 3)当被测物体在被检测过程中上下跳动,如生产线上下震动导致工作距离发生变化时。 4)当被测物体带孔径、或是三维立体物体时。

远心镜头简介

双远心工业镜头的原理简述 近年来,经常做机器视觉精密测量的公司就会听到一些比较新的名词,如双侧远心、单侧远心、物方远心、像方远心等等这些以前并不是经常被提起的光学概念,让人一头雾水,不知如何理解,收集到的资料往往也都是专业化程度高不容易理解,今天从实际应用角度出发来简述双远心工业镜头的相关原理。 凸透镜成像原理 特性一:所有经过光心的光不改变其传播方向 特性二:凸透镜对平行光有汇聚作用,镜头的成像即利用这一点 双远心镜头成像原理 原理:通过在镜头中间放置光阑,使得进出镜头的光线均为平行光,其他光线被光阑遮挡,无法到达成像芯片,各看一侧分别是物方远心、像方远心镜头。物方解决景深问题,像方解决放大倍率变化问题。 双远心镜头解决的问题 分辨率问题:普通工业镜头分辨率跟不上芯片分辨率提高的脚步,其受制于其光学成像的原理,最好的也只能做到10um左右,最多可配合1000W像素的相机使用,满足不了现在高分辨率相机和高精度测量检测的要求。 景深问题:普通镜头的景深比较小,当需要测量的物体在镜头纵深方向超出其范围,检测或测量无法进行。 放大倍率问题:放大倍率随作距离变化而发生变化。当我们的视觉系统被用来执行精密测量任务时,这一特性会导致不可容忍的误差。 FAQ&答疑

Q:为什么双远心镜头的体积通常比较大 · A:因为双远心镜头是平行光进出,所以需要多大拍摄面积,就需要多大面积的平行光进入,因此就需要多大面积的镜筒,所以双远心镜头体积通常都比较大,而且视场越大,体积越大。 ·Q:双远心镜头怎样选型? · A:主要注意以下几点:视场范围,兼容的CCD靶面,接口类型等满足要求,其他的如工作距离,景深范围,外形尺寸等只要不影响使用就可以。 ·Q:双远心镜头配合什么样的光源效果比较好? · A:由于远心镜头只接受平行光,滤除了几乎所有的漫反射光源,所以在自然环境下成像比较暗,所以选用平行光源能够最大限度的发挥双远心镜头的优势,使被测物体边缘清晰、稳定,并有效去除检测过程中的噪声。 远心镜头较普通镜头优势 远心镜头(Telecentric),主要是为纠正传统镜头的视差而特殊设计的镜头,它可以在一定的物距范围内,使得到的图像放大倍率不会随物距的变化而变化,这对被测物不在同一物面上的情况是非常重要的应用。 远心镜头的分类主要有以下三种: 1. 物方远心镜头 物方远心镜头是将孔径光阑放置在光学系统的像方焦平面上,当孔径光阑放在像方焦平面上时,即使物距发生改变,像距也发生改变,但像高并没有发生改变,即测得的物体尺寸不会变化。物方远心镜头用于工业精密测量,畸变极小,高性能的可以达到无畸变。 2.像方远心镜头 像方远心镜头,通过在物方焦平面上放置孔径光阑,使像方主光线平行于光轴,从而虽然CCD芯片的安装位置有改变,在CCD芯片上投影成像大小不变。 像方远心镜头的优点是,使相机的芯片获得均匀的光线,因为只有平行于光轴的光线才能入射在CCD/CMOS芯片前面的微型镜片上,从而使图像不会出现阴影。 3.两侧远心镜头 此镜头兼于上面两种镜头的优点。在工业图像处理/机器视觉中,一般只使用物方远心镜头。偶尔也有使用两侧远心镜头的,(当然价格更高)。而在工业图像处理/机器视觉这个领域里,像方远心镜头一般来说不会起作用的,因此这个行业基本是不用它的。 普通工业镜头目标物体越靠近镜头(工作距离越短),所成的像就越大。在使

光学基础-远心物镜

1.1.5远心物镜 在测量系统中,物距常发生变化,从而使像高发生变化,所以测得的物体尺寸也发生变化,即产生了测量误差;另一方面,即使物距是固定的,也会因为CCD敏感表面不易精确调整在像平面上,同样亲会产生测量误差。为了解决上述问题,可以采用远心物镜。其中像方远心物镜可以消除物距变化带来的测量误差,而物方远心物镜则可以消除CCD位置不准带来的测量误差。 1)物方远心物镜 物方远心物镜是将孔径光阑放置在光学系统的像方焦平面上,图1.1-23示出,当孔径光阑放在像方焦平面上时,即使物距发生改变,像距也发生改变,但像高并没有发生改变,即测得的物体尺寸不会变化;图1.1-24清楚地显示出物方远心光路的原理,其中孔径光阑位于像方焦面上,物方主光线平行于光轴。如果物体B1B2正确地位于与CCD表面M共轭的位置A1上,那么它在CCD表面上的像为M1M2。如果由于物距改变,物体B1B2不在位置A1而在位置A2,那么它的像B′1B′2偏离CCD表面,B′1和B′2点在CCD表面上投影为一个弥散斑,其中心仍为M1和M2点,按此投影像读出的长度仍为M2M1。这就是说,上述物距改变并不影响测量精度。 图1-23 2)像方远心光路 像方远心光路是将孔径光阑放置在光学系统的物方焦平面上,而像方的主光线平行于光轴。如图1.1-25所示。如果物体B1B2的像B′1B′2不与CCD表面M重合,则在CCD表

面M上得到的是B′1B′2的投影像,其散斑中心距离M1M2=B′1B′2。因此,不管CCD表面M是否和B′1B′2相重合,它和标尺所对应的长度总是B1B2,所以没有测量误差。 图1-24 图1.1-25 像方远心光路 1.1.6远距物镜 远距物镜是一种焦距很长而镜筒较短的物镜,从物镜前表面到像平面的距离小于焦距,这对于长焦距物镜来说,有利于缩短物镜的轴向尺寸。

基础光学实验实验报告

基础光学实验 一、实验仪器 从基础光学轨道系统,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,DataStudio软件系统 二、实验简介 利用传感器扫描激光衍射斑点,可标度各个衍射单缝之间光强与距离变化的具体规律。同样可采集干涉双缝或多缝的光强分布规律。与理论值相对比,并比较干涉和衍射模式的异同。 理论基础 衍射:当光通过单缝后发生衍射,光强极小(暗点)的衍射图案由下式给出 asinθ=m’λ(m’=1,2,3,….)(1) 其中a是狭缝宽度,θ为衍射角度,λ是光的波长。 下图所以为激光实际衍射图案,光强与位置关系可由计算机采集得到。衍射θ角是指从单缝中心到第一级小,则m’为衍射分布级 数。

双缝干涉:当光通过两个狭缝发生干涉,从中央最大值(亮点)到单侧某极大的角度由下式给出: dsinθ=mλ(m=1,2,3,….)(2) 其中d是狭缝间距,θ为从中心到第m级最大的夹角,λ是光的波长,m为级数(0为中心最高,1为第一级的最大,2为第二级的最大…从中心向外计数)。 如下图所示,为双缝干涉的各级光强包络与狭缝的具体关系。 三、实验预备 1.将单缝盘安装到光圈支架上,单缝盘可在光圈支架上旋转,将光圈支架的螺丝拧紧,使单缝盘在使用过程中不能转动。要选择所需的狭缝,秩序旋转光栅片中所需的狭缝到单缝盘中心即可。 2、将采集数据的光传感器与转动传感器安装在光学轨道的另一侧,并调整方向。 3、将激光器只对准狭缝,主义光栅盘侧靠近激光器大约几厘米的距离,打开激光器(切勿

直视激光)。调整光栅盘与激光器。 4、自左向右和向上向下的调节激光束的位置,直至光束的中心通过狭缝,一旦这个位置确定,请勿在实验过程中调整激光束。 5、初始光传感器增益开关为×10,根据光强适时调整。并根据右图正确讲转动传感器及光传感器接入科学工作室500. 6、打开DataStudio软件,并设置文件名。 四、实验内容 A、单缝衍射 1、旋转单缝光栅,使激光光束通过设置为0.16毫米的单缝。 2、采集数据前,将光传感器移动衍射光斑的一侧,使传感器采集狭缝到需要扫描的起点。 3、在计算机上启动传感器,然后慢慢允许推动旋转运动传感器扫描衍射斑点,完成扫描后点击停止传感器。若果光强过低或者过高,改变光传感器(1×,10×,100×)。 4、使用式(1)确定狭缝宽度: (a)测量中央主级大到每一侧上的第一个极小值之间的距离S。 (b)激光波长使用激光器上的参数。 (c)测量单缝光栅到光传感器的前部之间的距离L。 (d)利用以上数据计算至少两个不同的最小值和平均的答案。分析计算结果与标准缝宽之间的误差以及主要来源。 B、双峰衍射 1、将单缝光栅转为多缝光栅。选择狭缝间距为0.25mm(d)和狭缝官渡0.04mm(a)的多缝。 2、采集数据前,将光传感器移动衍射光板的一侧,是传感器采集狭缝到需要扫描的起点。 3、在计算机上启动传感器,然后慢慢允许推动旋转运动传感器扫描衍射斑点。完成扫描后点击停止传感器。如光强过低或者过高,改变光传感器(1×,10×,100×)。 4、利用DataStudio软件来测量主极大到一侧第一、二、三次极大的距离,并测量整个包络宽度。 5、测量最大的中心之间的距离和第二次和第三次的最大侧。测量距离从中央最高最低衍射(干扰)模式。 6、使用式(2)确定缝间距: (a) 测量中央主级大到每一侧上的第n个极大值之间的距离H n(n=1,2,3)。 (b)测量单缝光栅到光传感器的前部之间的距离L。

远心镜头技术及选型

远心镜头技术及选型 远心镜头(Telecentric),主要是为纠正传统镜头的视差而特殊设计的镜头,它可以在一定的物距范围内,使得到的图像放大倍率不会随物距的变化而变化,这对被测物不在同一物面上的情况是非常重要的应用。远心镜头由于其特有的平行光路设计一直为对镜头畸变要求很高的机器视觉应用场合所青睐,目前世界知名镜头厂商如美国Navitar、德国施乃德、Opto Engineering、日本Kowa等厂商已经有了自己品牌的远心镜头产品线。但是远心镜头由于应用领域不是非常广泛一直带着神秘色彩而不为人所熟知,下面让专家来引导我们一起破解远心镜头神秘的平行光艺术。 Navitar、施乃德、Opto Engineering、computar、Kowa这些知名的镜头企业都有自己的远心镜头产品线。我们知道远心镜头有普通镜头所不具有的平行光路的独特性,那么实现这种平行光是否是远心镜头的制造难点?除了这个技术特性外,远心镜头的研发、制造还有哪些技术难点?Mr.Claudio Sedazzari总裁以他多年的经验向我们介绍到Opto Engineering镜头本身的设计要求十分苛刻,以确保优秀的远心特性。组成镜头的光学零件和机械零件的制造过程更为严格。对此Opto Engineering开发了专用设备,用于对这些零部件进行测试。同时,对于每组镜头的测试与定标,Opto Engineering都倍加用心。该公司投入了数年的时间和数目可观的资金用于研发这些设备,以这些设备为依托,Opto Engineering可以制作出足以应对机器视觉使用的远心镜头。CBC梁立经理介绍,设计平行光成像的远心镜头理论上并不复杂,但若想达到一定解析能力和成像质量就是另外一回事了。远心镜头的设计和制造难度确实要大于一般意义上的镜头,究其原因是由于远心镜头光学镜片的尺寸都比较大,使得边缘光线的各类相差的校正难度增大,要想获得良好的边缘视场的成像质量,需要更高的产品设计和制造精度,有很多时候是需要设计者具有比较丰富的设计经验方能实现的。 远心光学系统图示 曾经有一种观点认为远心镜头主要解决畸变问题,那么普通工业镜头通过与标定板的组合可以有意识的通过软件算法矫正,也就是说远心镜头是可以替代的。CBC梁立经理及Mr.Claudio Sedazzari都对这种观点做了一定的反驳。梁经理认为,远心镜头解决的不单单是畸变的问题,远心镜头的独特光学特性决定了其在某些场和是无法采用普通工业镜头予以替代的,例如其更大的景深范围可以很好地适应现场的工作环境,这不是只通过算法就能解决的问题。Mr.Claudio Sedazzari总裁也提出了类似的看法,他认为:远心镜头的主要特点并不是低畸变,而是远心特性:物体在视场内移动时,其在不同位置的放大率不会发生改变,另外,对于物体上不同物距的特征,可以在同一时刻完成检测。低畸变只是远心镜头的附加属性。典型的远心镜头是低畸变的,然而许多其它种类的优质镜头畸变也相当小。不过非远心的光学系统在大多数测量应用中是不宜使用的,因为这种光学系统无法确保视场内一致的放大率,于是总会造成测量精度的下降。

双远心镜头技术优势简述

工业相机,选择迪奥科技。 双远心镜头技术优势简述 远心镜头主要是为纠正传统工业镜头视差而设计,其主光线与镜头光源平行,根据远心光路分类设计原理分别有物方远心和像方远心,而双侧远心是综合这两者的双重作用,用于视觉检测和测量领域可以有更好的成像效果和成像精度。这里简要阐述双远心镜头的几点技术优势: 一、无透视误差 在计量学应用中进行精密线性测量时,经常需要从物体标准正面(完全不包括侧面)观测。此外,许多机械零件无法精确放置,测量时间距也在不断地变化。而软件工程师却需要能精确反映实物的图像。远心镜头可以完美解决以上困惑:因为入射光瞳可位于无穷远处,成像时只会接收平行光轴的主射线。 二、近乎零失真度 畸变系数即实物大小与图像传感器成像大小的差异百分比。普通机器镜头通常有高于1~2%的畸变,可能严重影响测量时的精确水平。(如:实际 50 毫米宽的物体,在这种镜头下成像宽度可能达到 51毫米)。比方说畸变小于 0.1% :实际宽 50毫米的物体,在成像时宽度绝不会大于 50.05 毫米,相比之下,畸变系数仅为普通镜头的二十分之一。梯形畸变(亦即梯形失真效应或“薄棱镜”效应)不仅会导致成像不对称,也难以采用软件校正,是成像中需要消减的另一个重要因素。 三、高分辨率 图像分辨率一般以量化图像传感器既有空间频率对比度的 CTF (对比传递函数)衡量,单位为lp/mm(每毫米线耦数)。采用普通的集合了大量廉价的低像素、低分辨率镜头,最后只能生成模糊的影像。而采用远心镜头,即使是配合小像素图像传感器(如 5.5百万像素, 2/3″),也能生成高分辨率图像。 四、更精准更一致的放大率 一般普通远心镜头只接收与光轴平行的光束,但在使用普通远心镜头时,光束通过物镜后就与一般光线路径无异,因此光线会以不同的角度投射到感应芯片上,形成误差。也就是说,光束在通过一般的远心镜头后即失去了远心的特性,因此物体在感应芯片上的成像依然会变形,而且离中心点距离越远的光点变形程度越严重,因此当物体位移时,光束成像的中心位置也会跟着改变,造成放大倍率上的误差。 非双侧远心镜头就算在物镜上具有良好的远心特性,但就整体系统而言,非双侧远心镜头的放大倍率具较低的稳定度。通过双侧远心镜头的光束则在物镜与成像

光学基础学习报告

光学基础学习报告 一、教学内容: 光电镜头是用来作为光电接收器(CCD,CMOS )的光学传感器元件。 光学特性参数: 1、 焦距EFL (学名f ’) 是指主面到相应焦点的距离(如图1.1) 图1.1 每个镜片都有前后两个主面-前主面和后主面(放大率为1的共轭面)。相应的也有两个焦点-前焦和后焦。 凸透镜:双凸;平凸;正弯月(如图1.1) 图1.2 凹透镜:双凹;平凹;负弯月 图 1.3

折射率实际反映的是光在物质中传播速度与真空中速度的比值关系。 薄透镜:)]1()1[()1('12 1R R n f -?-== Φ Φ—透镜光焦距; f ’—焦距; n —折射率; R 1,R 2-两球面曲率半径 厚透镜:2 1221)1()]1()1[()1('1R nR d n R R n f -+ -?-==Φ d -中心厚度 干涉仪与光距座可以量测f ’,R1,R2,d →利用上述的公式可以计算出n 值,从而来确定所用材料。 A 、 EFL 增加,TOTR (光学总长)增加;要降低TOTR 就必须降低EFL ,但EFL 降低, 像高就要降低 B 、 EFL 与某些象差相关 C 、 EFL 上升将使F/NO 增大 D 、 EFL ,FOV (视场角)和IMA (像高)三者间有关系 tanFOV ?=EFL IMA -铁三角关系 EFL 的增大(减小)会使像高变大(小),为了保持像高,就必须要增大(减小)FOV ,然而FOV 的增大会使得REL (相对照度)的数值增大。 2、 BFL 后焦距(学名后截距) 图2.1 3、 F 数(F/NO ) D f NO F '/= f ’-FEL D 入-入瞳直径 入瞳为光阑经其前方光学镜片所成的像,反映进入光学系统的光线 A 、 与MTF 相关,F/NO ↑,则MTF ↑;反之下降 B 、 与景深相关,F/NO ↑,则景深↑,反之下降 C 、 与象差相关,F/NO ↑,则象差↓,反之增加 D 、 与光通量相关,F/NO ↑,则光通量↓,反之增加 对于光电镜头,F/NO 最大在2.8~3.5之间(经验值)允许有±5%的误差,在物方有照

光电光学系统

§8.6 光电光学系统 现代光电系统无一不把光学、精密机械、光电转换、电子和计算机技术结合起来,实现其系统的数字化、图像化、智能化和自动化。为达到上述目的,除设计各种不同用途的光电光学系统外,光电能量转换或光电图像转换、数据信号采集与处理、模数转换和计算机处理与分析等都是实现上述目的所不可缺少的重要环节。由于本章篇幅所限,下面主要介绍二种光电光学系统。 一、红外夜视光学系统 由于红外光辐射具有较强的辐射能量和在大气中具有较高的穿透本领,因此红外光探测系统在卫星摄影、军事目标跟踪和夜视观察等方面得到了广泛应用。但由于红外光辐射对人眼不敏感,不可能用人眼来直接接收红外光所成的光学图像,所以必须把红外光所成的图像转变成人眼可视的光学图像。例如用于军事上的红外夜视观察仪器,其原理如图L1为望远物镜,L2为观察目镜,在望远物镜的像面和观察目镜的物面之间加入一红外变像管,其作用是把红外光所成的图像变成可视光图像。为了使红外变像管的接收靶面能获得均匀的像面光照度,望远物镜应尽量设计成像方远心系统,以减小物镜轴外像点的像方视场角。物镜L1所成的不可见图像y'应和变像管的接收靶面重合,y'经红外变像管后成倒像为y",y"应与变像管的显示屏重合,经目镜放大后供人眼观察。因为y"可看成是自发光图像,目镜的光阑位置可单独考虑。 二、光电检测系统 由于CCD光电器件具有高灵敏度、高分辨率、数据采集方便等优点,且与计算机结合,很容易实现检测系统的自动化和数字化。因此近年来利用CCD作为光电转换器件的尺寸自动检测系统、自动定位系统、图像扫描系统得到越来越广泛的应用。下面简要介绍CCD光电检测系统的基本原理和光学系统特性。 CCD光电检测系统的原理框图,由光源发出的光经照明系统均匀照射被检测物体,被检测物体经物镜成像在CCD器件的靶面上(检测系统多采用线阵CCD),

远心镜头参数术语大全

远心镜头参数术语大全 机器视觉系统中,镜头相当于人的眼睛,其主要作用是将目标的光学图像聚焦在图像传感器(相机)的光敏面阵上。视觉系统处理的所有图像信息均通过镜头得到,镜头的质量直接影响到视觉系统的整体性能。下面部分摘自艾菲特光电对机器视觉远心镜头相关术语专业介绍。 https://www.doczj.com/doc/262458133.html, 一、远心光学系统: 指主光线平行于镜头光学轴的光学系统。而光从物体朝向镜头发出,与光学轴保持平行,甚至在轴外同样如此,则称为物体侧远心光学系统。光从镜头朝向影像,与与光学轴保持平行,甚至在轴外同样如此,则称为影像侧远心光学系统。 https://www.doczj.com/doc/262458133.html, 二、远心镜头 远心镜头指主光线与镜头光源平行的镜头。有物体侧的远心,成像侧的远心,两侧的远

心行头等方式。 通常的镜头 主光线与镜头光轴有角度,因此工件上下移动时,像的大小有变化。 两方远心境头 物方,像方均为主光线与光轴平行 光圈可变,可以得到高的景深,比物方远心境头更能得到稳定的像最适合于测量用图像处理光学系统,但是大型化成本高 物方远心境头 只是物方主光线与镜头主轴平行 工件上下变化,图像的大小基本不会变化 使用同轴落射照明时的必要条件,小型化亦可对应 像方远心境头

只是像方主光线与镜头光轴平行 相机侧即使有安装个体差,也可以吸收摄影倍率的变化 用于色偏移补偿,摄像机本应都采用这种镜头 三、远心光学系统的特色 优点:更小的尺寸。减少镜头数量,可降低成本。 缺点:上下移动物体表面时,会改变物体尺寸或位置。 优点:上下移动物体表面时,不会改变物体尺寸或位 置。使用同轴照明时。可使用更小的尺寸。 缺点:未使用同轴照明时,大于标准镜头的尺寸。 优点:与MML相似,但镜头凸缘后端的尺寸出现极大 差异时,会改善精确度。 缺点:与MML相似,但成本比MML更高。 四、远心 Telecentricity是指物体的倍率误差。倍率误差越小,Telecentricity越高。Telecentricity有各种不同的用途,在镜头使用前,把握Telecentricity很重要。远心镜头的主光线与镜头的光轴平行,Telecentricity不好,远心镜头的使用效果就不好;Telecentricity可以用下图进行简单的确认。

测绘用离轴三反光学系统技术_郭疆

1007-4619 (2012) 增刊-0017-05Journal of Remote Sensing 遥感学报 收稿日期:2012-08-01;修订日期:2012-11-20基金项目:国家自然科学资金(No.60507003) 第一作者简介:郭疆(1976— ),男,副研究员,主要从事空间遥感成像技术的研究。E-mail: guojiang001@https://www.doczj.com/doc/262458133.html, 。 测绘用离轴三反光学系统技术 郭疆1,刘金国1,王国良1,朱磊1,龚大鹏1, 2,齐洪宇1, 2 1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033; 2.中国科学院大学,北京 100049 摘 要:离轴三反光学系统可以同时兼顾长焦距与大视场,可以优化为零畸变、低场曲的光学系统,很好地满足了测绘对光学系统的要求,被公认为航天遥感测绘相机的发展方向。本文阐述了航天测绘相机的现状和发展趋势,对离轴三反光学系统应用于测绘的相机内方位元素定义、焦距计算公式的修正、调焦方式对主点位置精度的影响、系统畸变标定以及系统稳定性等问题进行讨论为中国自主获取高分辨率、高精度的测绘数据提供了技术参考。关键词:长焦距,离轴三反,光学系统,测绘相机中图分类号:TP73/V447.3 文献标志码: A 1 引 言 随着地理信息系统软件技术的不断完善和成熟,制约中国地球空间信息产业发展的瓶颈是基础地理数据获取问题。中国数据产业的生产和需求之间存在着较大矛盾,加之国民经济和社会发展迅速,交通和城市建设等地理要素变化很快,加大了测绘对地理信息更新速度的要求,而数据资源获取速度太慢,制约了地理信息的更新速度。为满足地理信息技术快速发展的需求,迫切需要高分辨率的航天遥感测绘相机去获取大比例尺地图。同时宽视场有利于减少图像的整合处理量,提高测绘精度,缩短重访周期,增强卫星的实时性,也成为航天测绘相机的需求之一。 离轴三反光学系统易于设计成长焦距兼大视场,较同轴光学系统有更多的可优化变量,可以很好的解决镜头畸变和场曲等问题,很好地满足了测绘相机对光学系统的要求,是航天遥感测绘相机的发展方向和趋势(姜会林,1982;Juranek 等,1998;Korsch ,1987;潘君骅,1988)。例如,美国的Quickbird-2、印度的CARTOSAT-I 相机和日本的ALOS-PRISM 相机 均为离轴三反光学系统。日本计划在2015年发射的ALOS3,地面像元分辨率为0.8 m ,幅宽为50 km ,也采用离轴三反光学系统。从以上信息可以看出高分辨率、宽幅、低畸变和平视场是大比例尺航天遥感测绘相机的需求(张科科 等,2008),而采用离轴三反光学系统遥感测绘相机是未来发展趋势。目前,中国离轴三反测绘相机还是空白,而离轴三反测绘相机又有别于同轴系统(常军和姜会林,2003;伍和云和王培纲,2006),需要对离轴三反光学系统应用于测绘的相关理论和模型进行研究,为中国遥感测绘的快速发展打下基础。 2 离轴三反测绘相机需注意的问题 经典测绘数学模型(王任享,2006;王之卓,2007)中,相机模型均按同轴系统进行处理,而离轴三反光学系统由于视场的偏置,其像面不在光轴上,如图1所示,因此航天测绘在采用离轴三反光学系统时,需对测绘模型和公式进行相应的修正,以保证测绘应用的要求。

立式光学仪实验报告doc

立式光学仪实验报告 篇一:光学实验报告 建筑物理 ——光学实验报告实验一:材料的光反射比、透射比测量实验二:采光系数测量 实验三:室内照明实测实验小组成员:指导老师:日期:XX年12月3日星期二实验一、材料的光反射比和光透射比测量 一、实验目的与要求室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光 材料的过透射比进行实测。通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。 二、实验原理和试验方法 (一)、光反射比的实验原理、测量内容和测量方法光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反 射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。 下面是间接测量法。

1. 实验原理 (1)用照度计测量:根据光反射比的定义:光反射比p是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,即: p=φp/φ 因为测量时将使用同一照度计,其受光面积相等,且,所以对于定向反射的表面,我们 可以用上述代入式,整理后得:p=ep/e 对于均匀扩散材料也可以近似的用上述式。可知只要测出材料表面入射光照度e和材料反射光照度ep,即可计算出其反射比。(2) 用照度计和亮度计测量 用照度计和亮度计分别测量被测表面的照度e和亮度l 后按下式计算 p=πl/e 式中:l---被测表面的亮度,cd/m2; e—被测表面的照度,lx 。 2.测量内容要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。每种材料面随机取3个点测量3次,然后取其平均值。 3.测量方法 ①将照度计电源(power)开关拨至“on”,检查电池,如果仪器显示窗出现“batt”字 样,则需要换电池;

大视场离轴三反光学系统设计

14红外2017年8月文章编号:1672-8785(2017)08-0014-05 大视场离轴三反光学系统设计 罗秦以3张冬冬1钮新华^ (1.中国科学院上海技术物理研究所,h海200083 ; 2.中国科学院红外探测与成像技术重点实验室,上海200Q83; 3.中国科学院大学,北京100〇49) 摘要:针对地球环境j s感的大视场和宽光谱的应用需求,在同轴三反学系统的基 础上,通过视场离轴实现了无中心遮拦,并设计了一种焦距为12〇m m、F数为3.5、工 作波长为〇,4?I.65啤、像元尺寸为7.5 n m以及采用C o o k三片式结构的光学系统。在 没有使用自由曲面的情况下,实现了 30°x4°的大视场.其中,主镜为六次双曲面,次 镜为二次扁椭圆面,三镜为四次扁椭圆面。在全视场范围内,该系统在奈奎斯特频率 处的调制传递菡数(Modulation Transfer Rm etion,M T I?)大于0,6,接近翁_射极限。:其藝 散斑崖径的均方根值小于探_器的像元尺寸,畸变小于2.5%,说明本文系统具有优良 的成像性能》 关键词:光学设计;大视场;离轴三反光学系统 中图分类号:TH703 文献标志码:A DOI:10.3969/j.issn.l672-8785.2017.08.003 Optical Design of OfF-axis Three-mirror System with Wide Field LUO Qin ZHANG Dong-dong x,NIU Xin-hua 1 (1. Shanghai Institute of Technical Physicsf Chinese Academy of Sciences, Shanghai 200083, China; 2. Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai 200083, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China) Abstract: To meet the application needs of wide field and wide spectrum of earth environment remote sensing, a center without obstructing is realized by means of field off-axis on the basis of coaxial three- mirror optical systems. An optical system with a Cook three-mirror structure is designed. The optical system has its focal length of 120 mm, F number of 3.5, operating wavelength of 0.4 to 1.65 \xm and pixel size of 7.5 |j.m. it realizes the 30° x 4° large field of view without any free-form surfaces. In the optical system, the primary mirror is a 6 times hyperboloid; the second mirror is a secondary flat ellipse and the third mirror is a 4 times flat ellipse. The system has its Modulation Transfer Function (MTF) greater than 0.6 at the Nyquist freaquency in the whole field of view, which is close to the diffraction limit. Its RMS dispersion spot diameter is less than the pixel size of the detector and its distortion is less than 2.5%. These results show that the system has excellent imaging performance. Key words: optical design; wide field; ofF-axis three-mirror system 收稿日期:2017-03-19 作者简介:罗秦(1992-),男,江西抚州人,硕士研究生,主要从事光学系统设计方面的研究。 E-mail: luoqin888@https://www.doczj.com/doc/262458133.html, I nfrared(monthly)/V ol.38, No.8, A ug 2017https://www.doczj.com/doc/262458133.html,/hw

光学实验报告 (一步彩虹全息)

光学设计性实验报告(一步彩虹全息) 姓名: 学号: 学院:物理学院

一步彩虹全息 摘要彩虹全息是用激光记录全息图, 是用白光再现单色或彩色像的一种全息技术。彩虹全息术的关键之处是在成像光路( 即记录光路) 中加入一狭缝, 这样在干板上也会留下狭缝的像。本文研究了一步彩虹全息图的记录和再现景象的基本原理、一步彩虹全息图与普通全息图的区别和联系、一步彩虹全息的实验光路图,探讨了拍摄一步彩虹全息图的技术要求和注意事项,指出了一步彩虹全息图的制作要点, 得出了影响拍摄效果的佳狭缝宽度、最佳狭缝位置及曝光时间对彩虹全息图再现像的影响。 关键词:一步彩虹全息;狭缝;再现 1 光学实验必须要严密,尽可能地减少实验所产生的误差; 2 实验仪器 防震全息台激光器分束镜成像透镜狭缝干板架光学元件架若干干板备件盒洗像设备一套线绳辅助棒扩束镜2个反射镜2个 3 实验原理 3.1 像面全息图 像面全息图的拍摄是用成像系统使物体成像在全息底板上,在引入一束与之相干的参考光束,即成像面全息图,它可用白光再现。再现象点的位置随波长而变化,其变化量取决于物体到全息平面的距离。 像面全息图的像(或物)位于全息图平面上,再现像也位于全息图上,只是看起来颜色有变化。因此在白光照射下,会因观察角度不同呈现的颜色亦不同。 3.2 彩虹全息的本质 彩虹全息的本质是要在观察者与物体的再现象之间形成一狭缝像,使观察者通过狭缝像来看物体的像,以实现白光再现单色像。若观察者的眼睛在狭缝像附近沿垂直于狭缝的方向移动,将看到颜色按波长顺序变化的再现像。若观察者的眼睛位于狭缝像后方适当位置, 由于狭缝对视场的限制, 通过某一波长所对应的狭缝只能看到再现像的某一条带, 其色彩与该波长对应, 并且狭缝像在空间是连

相关主题
文本预览
相关文档 最新文档