系统辨识
- 格式:docx
- 大小:194.97 KB
- 文档页数:13
系统辨识算法一、引言系统辨识是指通过对系统输入输出数据进行观测和分析,从而建立数学模型以描述和预测系统行为的过程。
系统辨识算法是在给定输入输出数据的基础上,利用数学方法和计算机模拟技术,对系统的结构和参数进行估计和辨识的算法。
系统辨识算法在控制工程、信号处理、机器学习等领域具有广泛的应用。
二、系统辨识方法系统辨识方法可以分为参数辨识和非参数辨识两类。
1. 参数辨识参数辨识是指通过对系统模型中的参数进行估计,来描述和预测系统的行为。
常用的参数辨识方法有最小二乘法、最大似然估计法、递推最小二乘法等。
最小二乘法是一种基于最小化误差平方和的优化方法,通过优化目标函数来估计参数值。
最大似然估计法是一种基于概率统计理论的方法,通过似然函数最大化来估计参数值。
递推最小二乘法是一种基于递推迭代的方法,通过更新参数估计值来逼近真实参数值。
2. 非参数辨识非参数辨识是指通过对系统的输入输出数据进行分析,来估计系统的结构和参数。
常用的非参数辨识方法有频域分析法、时域分析法、小波分析法等。
频域分析法是一种基于信号频谱特性的方法,通过对输入输出信号的频谱进行分析,来估计系统的频率响应。
时域分析法是一种基于信号时域特性的方法,通过对输入输出信号的时序关系进行分析,来估计系统的时域特性。
小波分析法是一种基于小波变换的方法,通过对输入输出信号的小波变换系数进行分析,来估计系统的时频特性。
三、系统辨识应用系统辨识算法在实际工程中有着广泛的应用。
1. 控制工程系统辨识算法在控制系统设计中起到关键作用。
通过对控制对象进行辨识,可以建立准确的数学模型,从而设计出性能优良的控制器。
例如,在自适应控制中,可以利用系统辨识算法来实时辨识系统模型,从而根据实际系统特性调整控制器参数。
2. 信号处理系统辨识算法在信号处理领域有重要应用。
通过对信号进行辨识,可以提取信号的特征和结构,从而实现信号去噪、信号分析、信号识别等目标。
例如,在语音信号处理中,可以利用系统辨识算法来建立语音模型,进而实现语音识别和语音合成。
系统辨识方学习总结一.系统辨识的定义关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。
L.Ljung也给“辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。
出了一个定义:二.系统描述的数学模型按照系统分析的定义,数学模型可以分为时间域和频率域两种。
经典控制理论中微分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程和离散状态空间方程也如此。
一般在经典控制论中采用频域传递函数建模,而在现代控制论中则采用时域状态空间方程建模。
三.系统辨识的步骤与内容(1)先验知识与明确辨识目的这一步为执行辨识任务提供尽可能多的信息。
首先从各个方面尽量的了解待辨识的系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。
对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。
(2)试验设计试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。
主要涉及以下两个问题,扰动信号的选择和采样方法和采样间隔(3)模型结构的确定模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的,对所辨识系统的眼前知识的掌握程度密切相关。
为了讨论模型和类型和结构的选择,引入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。
所谓模型结构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。
在单输入单输出系统的情况下,系统模型结构就只是模型的阶次。
当具有一定阶次的模型的所有参数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。
(4)模型参数的估计参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶段就称为模型参数估计。
(5)模型的验证一个系统的模型被识别出来以后,是否可以接受和利用,它在多大程度上反映出被识别系统的特性,这是必须经过验证的。
第02讲系统辨识三要素系统辨识是指通过对系统输入和输出数据的观测和分析,求解出系统的数学模型的过程。
系统辨识主要有两种方法:非参数辨识和参数辨识。
在进行参数辨识时,需要确定三个基本要素,分别是模型结构、参数估计方法和误差分析方法。
本文将详细介绍这三个要素。
首先,模型结构是系统辨识的核心要素之一、模型结构决定了辨识出的数学模型与实际系统之间的对应关系。
模型结构的选择需要根据实际问题和已有的知识和经验来确定。
常用的模型结构包括线性模型、非线性模型、时变模型等。
例如,对于一个物理系统来说,可以尝试使用一阶惯性环节、二阶惯性环节等常见的线性模型结构进行辨识;对于一个生物系统来说,可以采用Lotka-Volterra模型等非线性模型结构进行辨识。
选择合适的模型结构可以提高系统辨识的精度和可靠性。
其次,参数估计方法是指在给定模型结构的情况下,通过对系统输入和输出数据进行处理和分析,求解出模型参数的过程。
参数估计方法分为两类:最小二乘法和最大似然法。
最小二乘法通过最小化观测数据与模型预测数据之间的残差平方和来估计模型参数;最大似然法通过最大化观测数据的似然函数来估计模型参数。
当观测数据服从高斯分布时,最小二乘法和最大似然法等效。
参数估计方法的选择需要根据数据性质和实际问题来确定。
对于小样本数据,最大似然法常常具有更好的效果;对于大样本数据,最小二乘法通常是更好的选择。
最后,误差分析方法是指用来评估辨识结果的准确性和可信度的方法。
误差分析方法主要包括残差分析、模型检验和辨识结果评价等。
残差分析是通过分析辨识结果与观测数据之间的差异来评估模型拟合程度的方法。
模型检验是通过将辨识结果应用到实际应用中,观察其预测能力和鲁棒性来评价模型的有效性。
辨识结果评价是通过计算模型的性能指标,如均方误差、决定系数等来评估辨识结果的准确性和可靠性。
误差分析方法的选择需要根据实际问题和辨识结果的要求来确定。
对于较为简单的问题,可以选择较为简单的误差分析方法;对于复杂的问题,需要选择更为精确和全面的误差分析方法。
系统辨识的基本步骤
系统辨识的基本步骤包括:
1.数据采集:从现实世界中获取需要识别的信息,例如人脸图像、
语音信号、文字等。
数据采集的质量直接影响到后续的识别效果,因此需要注意采集环境、采集设备等因素。
2.特征提取:从采集到的数据中提取出具有代表性的特征。
3.模型建立:根据提取的特征,建立相应的模型。
4.模型训练:使用训练数据对模型进行训练,调整模型参数,提高
模型的准确性和鲁棒性。
5.模型评估:使用测试数据对模型进行评估,计算模型的精度、召
回率、F1值等指标,以检验模型的性能。
6.模型应用:将训练好的模型应用于实际场景中,进行目标检测、
分类、跟踪等任务。
在实际应用中,还需要根据具体的问题和任务进行适当的调整和改进,以提高系统的性能和适应性。
控制系统中的系统辨识与自适应控制在控制系统中,系统辨识与自适应控制是两个关键的方面。
系统辨识是指通过实验或推理的方法,从输入和输出的数据中提取模型的参数和结构信息,以便更好地理解和控制系统的行为。
而自适应控制是指根据系统辨识得到的模型参数和结构信息,实时地调整控制器的参数以适应系统变化,以提高控制性能。
一、系统辨识1.1 参数辨识参数辨识是指确定系统动态模型中的参数。
常用的方法包括最小二乘法、极大似然估计法等。
最小二乘法是一种常见的参数辨识方法,通过最小化实际输出与模型输出之间的误差平方和来确定参数。
1.2 结构辨识结构辨识是指确定系统动态模型的结构,包括确定系统的阶数、输入输出关系等。
常用的结构辨识方法有ARX模型、ARMA模型等。
ARX模型是指自回归外部输入模型,适用于输入输出具有线性关系的系统。
ARMA模型是指自回归滑动平均模型,适用于输入输出关系存在滞后效应的系统。
二、自适应控制自适应控制是根据系统辨识得到的模型参数和结构信息,动态地调整控制器的参数以适应系统的变化。
常用的自适应控制方法有模型参考自适应控制、模型预测控制等。
2.1 模型参考自适应控制模型参考自适应控制是建立在系统辨识模型基础上的控制方法。
通过将系统输出与参考模型输出进行比较,通过调整控制器参数来减小误差。
常见的模型参考自适应控制方法有自适应PID控制、自适应模糊控制等。
2.2 模型预测控制模型预测控制是一种基于系统辨识模型的控制策略,通过对系统未来的状态进行预测,以求得最优控制输入。
模型预测控制可以同时考虑系统的多个输入和多个输出,具有较好的控制性能。
三、应用案例3.1 机械控制系统在机械控制系统中,系统辨识和自适应控制可以被应用于伺服控制系统。
通过系统辨识可以得到伺服电机的动态模型,然后利用自适应控制方法调整PID控制器的参数,以提高伺服系统的响应速度和稳定性。
3.2 化工控制系统在化工控制系统中,系统辨识和自适应控制可以被应用于控制某个反应器的温度。
系统辨识与模型预测控制系统辨识与模型预测控制是现代控制理论中的关键概念,它们在工程领域中被广泛应用于系统建模及控制设计中。
本文将详细介绍系统辨识与模型预测控制的基本概念、原理、方法和应用。
一、系统辨识系统辨识是指通过实验数据对系统的动态行为进行建模和估计的过程。
它可以帮助我们了解系统的性质和结构,并在控制系统设计中提供准确的数学模型。
系统辨识的主要任务是确定系统的参数和结构,并评估模型的质量。
1.1 参数辨识参数辨识是系统辨识的主要内容之一,它通过收集系统的输入和输出数据,并根据建模方法对参数进行估计。
常用的参数辨识方法包括最小二乘法、极大似然法、频域法等。
参数辨识的结果对建模和控制设计具有重要的指导意义。
1.2 结构辨识结构辨识是指确定系统的数学结构,即选择合适的模型形式和结构。
常用的结构辨识方法有ARX模型、ARMA模型、ARMAX模型等。
结构辨识的关键是根据系统的性质和实际需求选择适当的模型结构,以保证模型的准确性和有效性。
二、模型预测控制模型预测控制是一种基于系统动态模型的控制方法,它通过在线求解最优控制问题实现对系统的控制。
模型预测控制通过对系统未来动态行为的预测,结合控制目标和约束条件,求解优化问题得到最优控制输入。
它具有优良的鲁棒性和适应性,并且能够处理多变量、非线性以及时变系统的控制问题。
2.1 模型建立模型预测控制的第一步是建立系统的数学模型,通常采用系统辨识的方法得到。
模型可以是线性的或非线性的,根据实际需求选择适当的模型结构和参数。
2.2 控制器设计模型预测控制的核心是设计控制器,控制器的目标是使系统输出跟踪参考轨迹,并满足约束条件。
控制器设计通常通过求解一个离散时间最优控制问题来实现,常用的方法有二次规划、线性规划、动态规划等。
2.3 优化求解模型预测控制的关键是求解最优控制问题,将系统的模型和控制目标转化为一个优化问题,并通过数值优化方法求解得到最优解。
常用的优化算法包括线性规划、非线性规划、遗传算法等。
系统辨识理论及应用引言系统辨识是通过对已知输入和输出进行处理,从而识别出系统的数学模型并进行建模的过程。
在现代科学和工程应用中,系统辨识技术被广泛应用于控制系统设计、信号处理、预测和模型识别等领域中。
本文将介绍系统辨识的理论基础、常用方法以及在实际应用中的案例分析,以便读者能够更好地了解系统辨识技术的原理和应用。
系统辨识的理论基础系统辨识的定义系统辨识是一种通过对系统的输入和输出数据进行处理,来推导出系统的数学模型的方法。
系统辨识可以用来描述和预测系统的行为,从而实现对系统的控制和优化。
系统辨识的基本原理系统辨识建模的基本思想是将输入和输出之间的关系表示为一个数学模型。
这个模型可以是线性模型、非线性模型、时变模型等。
在系统辨识中,常用的数学模型包括差分方程模型、状态空间模型、传递函数模型等。
系统辨识的基本原理是通过收集系统的输入和输出数据,然后利用数学方法来推导出系统的数学模型。
这个过程可以看作是一个参数优化的过程,通过不断调整模型参数,使得模型的输出与实际系统的输出尽可能接近。
系统辨识的常用方法系统辨识的常用方法包括参数估计方法、频域分析方法和结构辨识方法。
参数估计方法是最常用的系统辨识方法之一,它通过最小化模型的预测误差来估计模型参数。
常用的参数估计方法包括最小二乘法、最大似然估计法、最小二乘法等。
频域分析方法是基于系统的频率响应特性进行辨识的方法。
常用的频域分析方法包括递归最小二乘法、频域辨识方法等。
结构辨识方法是用来确定系统的结构的方法。
结构辨识方法可以分为模型选择方法和模型结构确定方法。
常用的结构辨识方法包括正则化算法、信息准则准则方法等。
系统辨识的应用控制系统设计系统辨识技术在控制系统设计中起着重要的作用。
通过对系统辨识建模,可以对系统进行建模和优化。
控制系统设计中的系统辨识可以用来预测系统的响应、设计合适的控制器以及优化控制算法。
信号处理系统辨识技术在信号处理中也有广泛的应用。
通过对信号进行系统辨识建模,可以分析信号的特性、提取信号中的有用信息以及去除信号中的干扰等。
系统辨识和降阶模型一、引言系统辨识和降阶模型是现代控制理论中重要的概念和技术,广泛应用于工程领域。
系统辨识是指通过对系统的输入和输出数据进行分析和建模,从而推断出系统的内在特性和行为规律的过程。
降阶模型是指将高阶系统模型转化为低阶系统模型,以简化系统的分析和设计。
二、系统辨识系统辨识是一种通过实验数据来推断系统模型的方法。
它可以基于系统的输入和输出数据,利用统计学和数学建模技术来估计系统的参数和结构。
系统辨识可以分为参数辨识和结构辨识两个层面。
1. 参数辨识参数辨识是指通过对系统的输入输出数据进行分析,估计系统的参数值。
常用的参数辨识方法有最小二乘法、极大似然法和最大熵法等。
最小二乘法是一种通过最小化实际输出与模型输出之间的差异,来估计系统参数的方法。
极大似然法是一种基于概率统计原理的参数估计方法,通过最大化样本数据的似然函数来确定参数值。
最大熵法是一种基于信息论的参数估计方法,通过最大化系统的不确定性来确定参数值。
2. 结构辨识结构辨识是指通过对系统的输入输出数据进行分析,估计系统的结构和模型形式。
常用的结构辨识方法有模型选择准则、系统辨识算法和系统辨识工具等。
模型选择准则是一种评估不同模型的性能和复杂度的方法,常用的准则有AIC准则、BIC准则和MSE准则等。
系统辨识算法是一种通过计算机程序对系统数据进行处理和分析,从而得到系统模型的方法。
系统辨识工具是一种用于辅助系统辨识的软件工具,常用的工具有MATLAB、LabVIEW和Python等。
三、降阶模型降阶模型是指将高阶系统模型转化为低阶系统模型的过程。
降阶模型可以简化系统的分析和设计,提高系统性能和控制效果。
常用的降阶模型方法有模型约简、系统分解和模型识别等。
1. 模型约简模型约简是一种通过舍弃系统模型中的一部分变量和参数,从而降低模型复杂度的方法。
常用的模型约简方法有特征值分解、奇异值分解和模态分析等。
特征值分解是一种通过对系统矩阵进行特征值分解,从而得到系统的特征向量和特征值的方法。
系统辨识的常用方法系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型,是现代控制理论中的一个分支。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
传统的系统辨识方法(1)脉冲响应脉冲响应一般是指系统在输入为单位冲激函数时的输出(响应)。
对于连续时间系统来说,冲激响应一般用函数h(t)来表示.对于无随机噪声的确定性线性系统,当输入信号为一脉冲函数δ(t)时,系统的输出响应 h(t)称为脉冲响应函数。
辨识脉冲响应函数的方法分为直接法、相关法和间接法。
①直接法:将波形较理想的脉冲信号输入系统,按时域的响应方式记录下系统的输出响应,可以是响应曲线或离散值。
②相关法:由著名的维纳—霍夫方程得知:如果输入信号u(t)的自相关函数R(t)是一个脉冲函数kδ(t), 则脉冲响应函数在忽略一个常数因子意义下等于输入输出的互相关函数,即 h(t)=(1/k)Ruy(t)。
实际使用相关法辨识系统的脉冲响应时,常用伪随机信号作为输入信号,由相关仪或数字计算机可获得输入输出的互相关函数Ruy(t),因为伪随机信号的自相关函数 R(t)近似为一个脉冲函数,于是h(t)=(1/k)Ruy(t).这是比较通用的方法。
也可以输入一个带宽足够宽的近似白噪声信号,得到h (t)的近似表示。
③间接法:可以利用功率谱分析方法,先估计出频率响应函数H(ω),然后利用傅里叶逆变换将它变换到时域上,于是便得到脉冲响应h(t)。
(2)最小二乘法最小二乘法(LS)是一种经典的数据处理方法, 但由于最小二乘估计是非一致的、有偏差的, 因而为了克服它的不足, 形成了一些以最小二乘法为基础的辨识方法:广义最小二乘法(GLS)、辅助变量法(IVA)和增广矩阵法(EM),以及将一般的最小二乘法与其它方法相结合的方法,有相关分析——-最小二乘两步法(COR —LS)和随机逼近算法.(3)极大似然法极大似然法(ML)对特殊的噪声模型有很好的性能,具有很好的理论保证;但计算耗费大, 可能得到的是损失函数的局部极小值。
系统辨识综述一、系统辨识概述辨识、状态估计和控制理论是现代控制理论三个互相渗透的领域。
辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。
随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。
然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。
系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。
社会科学和自然科学领域已经投入相当多的人力和物力去观察、研究有关的系统辨识问题。
系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。
从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。
辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。
当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。
辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。
总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。
系统辨识知识点总结归纳一、系统辨识的基本概念系统辨识是指通过对系统的输入和输出进行观察和测量,利用数学模型和算法对系统的结构和行为进行识别和推断的过程。
它在工程技术领域中起着重要的作用,可以用来分析和预测系统的性能,对系统进行控制和优化。
系统辨识涉及信号处理、数学建模、统计推断等多个领域的知识,是一门非常复杂的学科。
二、系统辨识的基本原理系统辨识的基本原理是基于系统的输入和输出数据,利用数学模型和算法对系统的结构和参数进行识别和推断。
其基本步骤包括数据采集、模型建立、参数估计、模型验证等。
系统辨识的关键是如何选择合适的模型和算法,以及如何对系统的输入数据进行预处理和分析。
同时,还需要考虑数据的质量和可靠性,以及模型的简单性和准确性等因素。
三、系统辨识的方法和技术系统辨识的方法和技术包括参数辨识、结构辨识、状态辨识等,具体有线性系统辨识、非线性系统辨识、时变系统辨识、多变量系统辨识等。
这些方法和技术涉及到信号处理、最优控制、统计推断、神经网络、模糊逻辑等多个领域的知识,可以根据不同的系统和问题,选择合适的方法和技术进行应用。
四、系统辨识的应用领域系统辨识的应用领域非常广泛,包括控制系统、信号处理、通信系统、生物医学工程、工业生产等。
在控制系统中,系统辨识可以用来设计控制器,提高系统的稳定性和性能。
在信号处理中,系统辨识可以用来提取信号的特征,分析信号的性质。
在通信系统中,系统辨识可以用来设计调制解调器,提高系统的传输效率和可靠性。
在生物医学工程中,系统辨识可以用来分析生物信号,诊断疾病和设计医疗设备。
在工业生产中,系统辨识可以用来优化生产过程,提高产品质量和效率。
五、系统辨识的发展趋势随着科学技术的不断发展,系统辨识也在不断地发展和完善。
未来,系统辨识的发展趋势主要包括以下几个方面:一是理论方法的创新,将更多的数学、统计和信息理论方法引入系统辨识中,提高系统辨识的理论基础和分析能力;二是算法技术的提高,利用机器学习、深度学习等先进的算法技术,对系统进行更加准确和高效的辨识;三是应用领域的拓展,将系统辨识应用到更多的领域和行业中,为社会经济发展和科技进步作出更大的贡献。
系统辨识及自适应控制实验报告实验报告:系统辨识及自适应控制1.引言系统辨识和自适应控制是现代自动控制领域中的重要研究内容。
系统辨识是通过采集系统输入输出数据,建立数学模型描述系统的动态行为。
自适应控制则是根据系统辨识得到的模型,调整控制器参数以适应系统的变化和外部干扰。
本实验旨在通过实际操作,掌握系统辨识和自适应控制的基本原理和方法。
2.实验目的1)了解系统辨识的基本原理和方法;2)掌握常见的系统辨识方法,包括参数辨识和频域辨识;3)理解自适应控制的基本原理和方法;4)熟悉自适应控制的实现过程;5)通过实验验证系统辨识和自适应控制的有效性。
3.实验原理3.1系统辨识原理系统辨识的目标是通过采集系统输入输出数据,建立数学模型来描述系统的动态特性。
常见的系统辨识方法包括参数辨识和频域辨识两种。
参数辨识是通过拟合实际测量数据,找到最佳的模型参数。
常用的参数辨识方法有最小二乘法、极大似然法和最小误差平方等。
频域辨识则是通过对输入输出信号的频谱分析,得到系统的频率响应特性。
常用的频域辨识方法有傅里叶变换法、相关分析法和谱估计法等。
3.2自适应控制原理自适应控制是根据系统辨识得到的模型,调整控制器参数以适应系统的变化和外部干扰。
自适应控制分为基于模型的自适应控制和模型无关的自适应控制。
基于模型的自适应控制利用系统辨识得到的模型参数,设计相应的控制器来实现自适应控制。
常见的基于模型的自适应控制方法有模型参考自适应控制和模型预测自适应控制等。
模型无关的自适应控制则不依赖于系统辨识的模型,而是根据实际测量数据直接调整控制器参数。
常见的模型无关的自适应控制方法有自适应滑模控制和神经网络控制等。
4.实验内容4.1系统辨识实验在实验中,我们通过采集系统输入输出数据,根据最小二乘法进行参数辨识。
首先设置系统的输入信号,如阶跃信号或正弦信号,并记录对应的输出数据。
然后根据采集到的数据,选取适当的模型结构,通过最小二乘法求解最佳的模型参数。
系统辨识三要素举例引言在系统辨识中,三要素是指系统的输入、输出和系统模型。
本文将依次介绍这三个要素,并通过实例进行详细探讨。
输入系统的输入是指对系统产生作用的影响或刺激。
输入可以是物质的,也可以是能量的,还可以是信息的。
下面通过几个例子来说明。
例子1:水龙头的流水当我们打开水龙头,水就会从水龙头中流出,这里的水流就是系统的输入。
水的流动对于水管系统来说,是一个重要的输入信号,系统会根据这个输入信号进行相应的处理和控制。
例子2:摄影机的光线对于一个摄影机来说,光线是其输入的重要因素之一。
当我们拍摄照片或录制视频时,摄影机会通过镜头接收到光线,将光线转化为电信号,并进行进一步的处理和记录。
例子3:人体感应灯的触发人体感应灯是一种智能照明设备,它可以根据人体的活动来自动感应开关。
当有人经过时,人体感应灯会检测到人体的热量和运动,从而触发开关动作。
这里的人体活动就是系统的输入。
输出系统的输出是指系统对输入作用的响应或处理结果。
输出可以是物质的,也可以是能量的,还可以是信息的。
下面通过几个例子来说明。
例子1:电饭煲的煮饭当我们把米和水放入电饭煲中,并设置好煮饭的时间和火力,电饭煲会通过控制加热和保温等操作,将米饭煮熟并保持在适宜的温度,这里的煮熟的米饭就是系统的输出。
例子2:汽车的速度当我们踩下汽车的油门,汽车会根据输入的油门信号,通过引擎和传动系统的协同工作,将化学能转化为机械能,将汽车推动前进。
这里汽车前进的速度就是系统的输出。
例子3:电视的图像和声音当我们打开电视,通过电视的天线、有线、光盘或网络等输入信号,电视会解码和处理这些信号,并将其转化为图像和声音,供我们观看和聆听。
这里的图像和声音就是电视的输出。
系统模型系统模型是对系统输入与输出关系的抽象描述和数学表达。
通过建立系统模型,可以更好地理解和分析系统的行为特性。
下面通过几个例子来说明。
例子1:弹簧振子弹簧振子是一个经典的力学系统,由质点和弹簧组成。
研究生课程实验封面课程名称:报告题目:学生学号:学生姓名:任课教师:学位类别:1 系统辨识部分1.1 题目直流电动机的辨识与自适应系统设计与仿真1.1.1 工作原理图1是一台最简单的直流电动机的模型,N和S是一对固定的磁极(一般是电磁铁,也可以是永久磁铁)。
磁极之间有一个可以转动的铁质圆柱体,称为电枢铁芯。
铁芯表面固定一个用绝缘导体构成的电枢线圈abcd,线圈的两端分别接到相互绝缘的两个弧形铜片上,弧形铜片称为换向片,它们的组合体称为换向器。
在换向器上放置固定不动而与换向片滑动接触的电刷A和B,线圈abcd通过换向器和电刷接通外电路。
电刷铁芯、电刷线圈和换向器构成的整体称为电枢。
此模型作为电动机运行时,将直流电源加于电刷A和B,例如将电源正极加于电刷A,将电源负极加于电刷B,则线圈abcd中流过电流。
在导体ab中,电流由a流向b,在导体cd中,电流由c流向d。
载流导体ab和cd均处于N和S 极之间的磁场中,受到电磁力的作用。
电磁力的方向由左手定则确定,可知这一对电磁力形成一个转矩,称为电磁转矩,转矩的方向为逆时针方向,使整个电刷逆时针方向旋转。
当电刷旋转180度,导体cd和ab交换位置,如图1所示。
由于电流仍从电刷A流入,使cd中的电流变为由d流向c,而ab中的电流由b流向a,从电刷B流出,用左手定则判别可知,电磁转矩的方向仍是逆时针方向。
由此可见,加于直流电动机的直流电流,借助换向器和电刷的作用,变为电枢线圈中的交变电流。
这种将直流电流变为交变电流的过程称为逆变。
由于电刷线圈所处的磁极也是同时交变的,这使电刷产生的电磁转矩的方向恒定不变,从而确保直流电动机朝确定的方向连续旋转。
这就是直流电动机的基本工作原理。
图1 直流电机工作的基本工作原理1.2 辨识目的对于一个系统,为什么要对它进行辨识?辨识的意义又在哪里?这些问题在很久以前就有人提出过,也进行过深入的研究,并总结出一套成熟的方法:最小二乘辨识方法、最大似然辨识方法、梯度法辨识等等。
然而,这些方法在线性问题上容易解决,而在非线性问题上却相对较复杂,且方法并非唯一,而且找不到统一的设计模式,只能是针对具体问题分析其分线性的问题所在,抓住其影响系统动、静态品质的要害,研究辨识非线性系统模型及控制的理论和方法,进而对系统进行辨识、补偿或控制。
所以,若能够通过辨识得到其精确的模型,则是控制问题的关键。
而本设计中,涉及到的也是相同的问题,对于直流电机,我们给定输入,由输出与输入的相应关系,我们便可以通过辨识得到直流电机的模型参数,进行可以进行模型精确的控制,而避免了对模型的不确定控制。
1.3 直流电机的数学模型直流电机电枢回路的电路方程是:a diu E iRa Ladt-=+ (1.1) 式(1.1)中, a u 是加到电机两端的电压;E 是电机反电势;i 是电枢电流; Ra 是电枢回路总电阻;La 是电枢回路总电感;l LaT Ra=称为电枢回路电磁时间常数。
并且反电动势E 与电机角速度m ω成正比:e m e mE k k ωθ==& (1.2) 式(1.2)中,e k 称为反电势系数;m θ为电机轴的转角。
对于电机而言,其转动轴上的力矩方程为:m l m m m m k i M J J ωθ-==&&& (1.3)式(1.3)中,m k 是电机的力矩系数;l M 是负载力矩;m J 是电机电枢的转动惯量。
对式(1.1)、(1.2)、(1.3)进行拉氏变换得到:()()(()())()()()()a l e m m l m m u s E s Ra I s T I s s E s k s k I s M J s sθθ-=+⎧⎪=⎨⎪-=⎩&& (1.4) 由式(1.4),可得从电枢电压a u 到转速m θ&的传递函数:()()21/11/1/1/11mm l m m a l m m m e m el m Ra k s T s J s k Ra Ra u s T J s J s k k Rak k T s J sθ⋅⋅+==+++⋅⋅⋅+& (1.5)很明显的看出,这是个典型的二阶系统的传递函数。
1.4 系统的输入与输出由式(1.4)的方程组可以得到相应的电动机数学模型的结构框图:图2直流电动机数学模型结构框图根据图2所示的直流电动机数学模型结构图,我们定义系统的输入与输出分别为:系统的输入:给定电压a u 系统的输出:电机转速m θ&1.5 系统的数据采集图3数据采集直流电动机的输入给定电压a u 通过A/D 转换给于Mcu ,同时直流电动机的输出转速m θ&经编码器测量得到,将脉冲数送于Mcu ,Mcu 再经串口将数据发送给电脑。
此时,电动机系统的输入与输出也得知,便可通过电脑分析求解出电机的系统模型。
其中,A/D 转换采用16位精度,输入电压范围7~11V ,100Hz 采样频率的芯片;编码器采用500线精度,表示电机每转一圈,输出500个脉冲。
1.6 输入信号的选择输入采用幅值为7V 的方波信号,如图4所示。
图4 方波信号1.7 系统的仿真由于前面所述的传递函数是连续函数,所以必须将其离散化,取采样时间为0.9s 。
式(1.4)为()()2//m m a l m m m e s k Rau s T J s J s k k Raθ==++&,现取电机的传递函数为:θ=++&2()176.2()0.010.11a s U s s s (1.6)对上式做z 变换,得到离散化的传递函数为:+=-+2()59.9642.59()0.78590.3679N z z U z z z (1.7)将其转换为差分方程为:当然,一个系统并不都是理想的系统,还包括各种系统干扰,以()e K 表示方差为零的系统干扰,于是差分方程就变为:则,其中的参数有1a =-0.7859,2a =0.3679,1b =59.96,2b =42.59。
本系统利用最小二乘递推算法(Recursive Least Squares, RLS )进行辨识,将辨识的结果与理论精确值进行比较,从而分析RLS 算法的优劣。
辨识模型选择观测数据长度=480L ,则经最小二乘递推程序仿真后得到图5 估计的参数 表1 数据对比图6 最小二乘递推算法辨识曲线附加代码如下:clc;clear;%对象参数a=[1 -0.7859 0.3679];b=[59.96 42.59];d=1;na=length(a)-1;nb=length(b)-1; %na、nb为A、B阶次L=480; %仿真长度uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i)yk=zeros(na,1); %输出初值u=7*rand(L,1); %输入采用0-7v之间的随机数%u=7*[ones(L/4,1);-ones(L/4,1);ones(L/4,1);-ones(L/4,1)]; %输入幅值为7V的方波信号v=sqrt(100)*(rand(L,1)-0.5); %产生-0.5—0.5之间的随机数,方差为100 theta=[a(2) a(3) b(1) b(2)];%对象参数真值thetae_1=zeros(na+nb+1,1); %thetae初值P=10^6*eye(na+nb+1);for k=1:Lphi = [-yk;uk(d:d+nb)]; %′此处phi为列向量y(k)=-a(2:na+1)*yk+b*uk(d:d+nb)+xi(k); %采集输出数据y(k)%递推最小二乘法K=P*phi/(1+phi'*P*phi);thetae( : ,k)=thetae_1 + K*(y(k)-phi'*thetae_1);P=(eye(na+nb+1)-K*phi')*P;%更新数据thetae_1 = thetae( : ,k);for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endplot([1:L],thetae); %line([1,L],[theta,theta]);xlabel('k');legend('a1','a2','b1','b2');title('最小二乘递推算法辨识曲线');2 自适应控制部分2.1 提出控制问题直流电机在生活中、工业生产中等用的特别多,而电机的转动容易受输入电压的影响,电压小小的波动就会带动电机转速的波动、超调等,针对这种情况,文中在总结和分析前人的工作的基础上,提出将带有在线辨识的自适应算法应用于电机控制系统中,旨在打破传统的控制策略,寻求更有效的控制方案。
将在线辨识自适应控制算法应用于该系统,利用系统的输入、输出信息,为了实现自适应控制和跟踪时变参数,采用递推最小二乘算法不断的循环调整PID 参数值,使系统运行中保持合适的瞬态参数,以克服传统PID控制器参数不可改变的缺点,提高系统的控制品质,使直流电机系统具有更好的鲁棒性和自适应能力。
2.2 自适应控制硬件直流电机控制系统硬件框图如图2.1所示,其工作原理大致如下:Mcu作为自适应控制的核心器件,得到经A/D转换来的输入模拟信号,再结合编码器反馈回来的直流电机的转速n(k),经MCU的自适应控制算法计算,输出信号u(k)给电子调速器,电子调速器可以将直流电压转换为三相电压信号送予直流电机,其中,编码器是将电机的转速转换为脉冲信号反馈给Mcu。
图2.1直流电机控制系统硬件框图2.2 算法推导及Matlab仿真系统采用自适应极点配置PID控制算法对直流电机的转速进行自适应控制,控制算法结构框图如图2.2所示,控制系统由被控对象、控制器、辨识器构成,辨识器根据最小二乘递推算法,在线地计算被控对象的未知参数,控制器根据辨识参数调整PID 参数,经过不断的辨识和调整,使被控系统的性能指标渐近一致地趋于最优。
图2.2 具有在线辨识的直流电机自适应控制系统被控对象为: 式中()e K 为白噪声。
下面首先首先实现极点配置PID 算法,即离线控制,然后再这个基础之上,实现在线系统辨识的自适应极点配置PID 控制算法。
设被控对象为式中, ()u k 和y()k 表示系统的输入和输出,()e k 为外部扰动,1d ≥为纯延时,且对于本文的直流电机,d=1,1b n =。
令期望闭环特征多项式为:式中,1m a 和2m a 可以根据连续系统的特征多项式ζωω=++22()2m n n A s s s 离散化得到,即其中,σωζ=nϕω=n T s T 为采样周期。