气溶胶遥感定量反演研究与应用(陈良富[等]编著)思维导图
- 格式:xmin
- 大小:7.25 KB
- 文档页数:1
气溶胶反演方法利用环境小卫星多光谱数据反演:方法一:1. 利用SPSS计算出大气光学厚度与大气参数(ρ(大气的路径辐射项等效反射率)、S(大气下界的半球反射率)、T(μs )T(μv)(大气上行下行透过率))的对应关系,据此建立查找表,然后利用多波段数据进行地气解耦,得到大气光学厚度。
2. 构建查询表利用6S模型构建气溶胶光学厚度查询表,输入参数为:太阳天顶角,气溶胶模式,550nm波长处气溶胶光学厚度的等级,查找表计算的波段(第一和第三波段),海拔高度。
3. 数据预处理(1)重采样,为了加快运算速度和提高信噪比;(2)辐射定标,将图像的DN值转化为表观反射率。
4. 结果反演根据获得的表观反射率计算出NDVI(用于识别暗目标),利用获得的太阳高度角对查找表进行插值,得到要计算波段的不同大气光学厚度下的大气参数:ρ0、S、T(μs)T(μv)。
5. 图像平滑与成图输出在获得大气光学厚度后,对结果图像进行平滑处理,达到内插部分非暗目标点的监测值并抑制异常点的目的,采用9×9像元的距离加权平均的滤波方法进行;将结果导入ArcMap中,进行叠加矢量图,分等定级以及添加图名图例等操作,制成专题图。
方法二:1.对要反演气溶胶光学厚度的卫星图像惊醒地理和辐射率校正2.然后用MODTRAN模型模拟生成τ(气溶胶光学厚度)和ρ(地表反射率)的查找表3.接着判断卫星观测到的地表像元反射率Lobs与MODTRAN模拟的大气总辐射Ltotal是否相等。
4.如果不等,就改变ρ,再用MODTRAN重新计算Ltotal,再判断是否相等。
5.如果相等,则根据ρ和τ的关系曲线,由反演出的地表反射率ρmap,计算到气溶胶光学厚度分布τmap。
利用环境小卫星高光谱数据反演:方法:1.选择用于反演的波段2.假设利用某种气溶胶模式条件下,计算红波段和近红外波段表观反射率,不考虑临近效应影响。
大气散射在可见—近红外波段影响是比较大的,在可见波段影响最大,其次是近红外波段,在中波红外接近于零,因此,在利用近红外波段反演气溶胶光学特性之前,可以在清洁大气的假设下利用6S或者MODTRAN辐射传输模型进行大气校正。
分类号密级UDC 编号中国科学院研究生院博士学位论文城市地区大气气溶胶遥感反演研究孙林指导教师柳钦火研究员中国科学院遥感应用研究所申请学位级别博士学科专业名称地图学与地理信息系统论文提交日期 2006年5月论文答辩日期 2006年6月3日培养单位中国科学院遥感应用研究所学位授予单位中国科学院研究生院答辩委员会主席城市地区大气气溶胶遥感反演研究摘要本文主要研究城市地区的气溶胶反演问题,反演的气溶胶参数有:气溶胶光学厚度和气溶胶的粒子谱。
文中主要研究了两种卫星数据的城市地区气溶胶反演方法:一种是国外在轨运行的中分辨率成像光谱仪(MODIS)数据,具有36个通道,空间分辨率分别为250米、500米和1000米;一种是国内的即将发射的环境与减灾卫星(HJ-1)高光谱成像仪数据,具有约135个通道,空间分辨率为100米。
根据不同卫星数据的空间分辨率及光谱分辨率等参数特征,文中共使用三种气溶胶光学厚度反演方法反演城市地区的气溶胶光学厚度,分别是:结构函数法、浓密植被算法及高反差地表法,使用高反差地表法反演的环境与减灾卫星的多波段气溶胶光学厚度反演了气溶胶的粒子谱。
浓密植被算法能够很好的反演陆地上浓密植被像元的气溶胶光学厚度,对于城市地区而言,当卫星数据的空间分辨率较高时,城市中分布较多的森林公园、草坪等区域,可以作为浓密植被算法反演时要求的浓密植被像元;当卫星数据的空间分辨率较低时,难以找到满足浓密植被要求的像元,致使浓密植被算法很难在城市这样的地区使用,基于大气透过率的结构函数法(又称对比算法)可以适用于高反射率地区气溶胶光学厚度反演,有望解决城市地区气溶胶光学厚度的反演问题;对于高光谱数据,高反差地表法能够方便的反演出在其波段设置范围内的气溶胶光学厚度的谱分布,帮助我们更清楚的了解气溶胶的尺度谱分布等性质根据MODIS数据的空间分辩率特点,文中使用结构函数法反演MODIS数据城市地区的气溶胶光学厚度。
由于城市地区地表的空间结构非常复杂,地表二向反射特性非常明显,给结构函数法精确反演城市地区的气溶胶光学厚度带来了严峻挑战,为降低城市地区地表的二向反射特性对结构函数法反演气溶胶光学厚度的影响,文中发展了城市地区的BRDF模型,并将BRDF模型用于北京地区的气溶胶光学厚度反演。
气溶胶光学厚度的高光谱遥感反演及其环境效应【摘要】:气溶胶是研究全球气候变化和大气污染的重要参数,也是进行定量遥感必须获得的参数。
本文针对人口密集、工业化程度高的城市区域范围,探索高光谱数据遥感反演气溶胶光学厚度的方法,应用中科院上海技术物理研究所自行研制的模块化成像光谱仪(OMIS),结合MODIS卫星资料和地面太阳光度计监测,试图形成“星载—机载—地面”三个高度立体遥测,实现城市气溶胶光学厚度的反演,并进一步研究其环境效应。
具体工作及结果如下:1)比较分析各种气溶胶光学厚度遥感反演方法的适用性和局限性,并介绍了太阳光度计地基遥测原理。
2)分别介绍了MODIS、OMIS和地基高光谱数据的特点及数据预处理过程、分析典型地物的光谱特征。
3)采用高反差地表法,对2002年10月7日的机载OMIS高光谱数据,进行了气溶胶光学厚度反演的尝试性试验,给出了初步的反演结果,在502-590nm波段处的气溶胶光学厚度值在0.175-0.314之间。
反演结果符合当天的空气质量状况,与能见度进行比较,以证明反演结果的正确性,说明利用高光谱、高空间分辨率的机载遥感数据可以反演城市气溶胶光学厚度。
4)进行大气辐射传输模型的模拟与分析,利用MODIS红、蓝通道数据分析地表反射率、气溶胶类型、气溶胶组份、水汽、臭氧等因素对气溶胶反演的影响;建立了表观反射率—地表反射率—气溶胶光学厚度之间的查算表,结合城市地表特点,探索基于MODIS数据的双目标对比法进行气溶胶光学厚度的反演。
5)利用地面站点能见度和卫星遥感的气溶胶光学厚度资料,建立了一个二者之间季节平均的简单关系,得到上海地区各季的气溶胶标高在春季、夏季、秋季和冬季分别为:1251m,1957m,791.7m和776.4m;并利用标高数据和气溶胶光学厚度的季节分布,反演上海地区区域能见度的季节平均分布,证实上海城区在冬春季平均能见度较差,市区中心能见度在10km以下;低能见度中心分布明显,且主要分布在杨浦、桃浦、吴淞等工业区范围。
高时相陆表大气气溶胶卫星遥感定量反演的开题报告一、研究背景气溶胶是指悬浮在大气中的小颗粒物质,它对大气光学和物理化学过程产生重要影响,且与气候变化有着密切联系。
气溶胶影响着大气的透明度、辐射平衡、降水形态、云微物理等多重要过程。
因此,精确地测量和模拟气溶胶在大气中的时空分布和光学性质,对于了解大气物理环境和气候变化等重要问题具有重要意义。
卫星遥感技术是研究大气气溶胶的重要手段之一,具有覆盖范围广、反演时间快、监测周期长等优点。
在众多气溶胶遥感反演方法中,基于光学性质反演的方法是最为通用和成熟的方法之一。
其中,高时相陆表大气气溶胶卫星遥感定量反演方法,能够在足够优秀的时间空间分辨率下,精准地反演陆表气溶胶的激光雷达数据,进而实现陆表气溶胶的数量和分布特征提取。
二、研究目标本研究的主要目标是基于高时相陆表大气气溶胶雷达数据,研究开展气溶胶的遥感定量反演方法,实现对陆地地表气溶胶的定量分析、提取气溶胶时空分布特征等。
三、研究内容1. 理论研究:对气溶胶遥感定量反演的基本理论进行梳理和总结,探讨气溶胶特征参数的物理意义、反演方法的数学与物理基础等问题。
2. 卫星遥感数据分析:使用高时相INSAR数据、雷达数据等多源遥感数据开展复合探测,在时间和空间维度上重建气溶胶时空分布的变化特征。
3. 模型建立:基于气溶胶反射率和散射率的遥感定量反演方法建立相关的数学模型。
4. 实验验证:针对不同的气溶胶类型和地理环境,对提取出的不同特征物理量、气溶胶类型和遥感数据反演结果进行比对和实验验证。
四、研究意义通过建立快速反演气溶胶在大气中时空变化规律的方法,对于深入研究气溶胶在大气中的行为、理解其物理化学机制、探究其与全球变化之间的关系等都具有重要意义。
此外,本研究的方法还有助于制定气溶胶管理和维护空气质量的政策。