铁路通信信号产品的电磁兼容检测技术
- 格式:docx
- 大小:11.26 KB
- 文档页数:2
《铁路技术管理规程》(高速铁路部分)第三章信号、通信一般要求第58条为保证信号、通信设备的质量,应设电务段、通信段等电务维修机构。
电务段、通信段管辖范围应根据信号、通信设备等条件确定。
第59条电务维修机构应具备设备检修、测试场所,配置相应的仪器仪表、工装机具以及交通工具、应急通信设备等。
在动车组、机车和轨道车的检修地点应设列控车载设备、机车信号、列车运行监控装置(LKJ)、轨道车运行控制设备(GYK)及车载无线通信设备等的检修与测试场所。
铁路电务设备维护工作应按设备技术状态进行维修,并按周期进行中修和大修。
电务车载设备结合动车组、机车和轨道车各级检修修程,同步进行检修。
第60条对设有加锁加封的信号设备,应加锁加封,必要时可设置计数器,使用人员应负责其完整。
对加封设备启封使用或对设有计数器的设备每计数一次时,使用人员均须在《行车设备检查登记簿》内登记,写明启封或计数原因。
加封设备启封使用后,应及时通知信号部门加封。
使用计算机技术控制的信号设备实现加锁加封功能时,应使用密码方式操作。
第61条集中联锁车站和自动闭塞区段应装设信号集中监测系统,对信号设备运用状态进行实时监测,实现故障及超限告警。
第62条信号、通信设备及机房,应采取综合防雷措施,设置机房专用空调。
信号及通信设备,应装有防止强电及雷电危害的浪涌保护器等保安设备,电子设备应符合电磁兼容有关规定。
第63条列控车载设备、机车信号设备、列车运行监控装置(LKJ)、轨道车运行控制设备(GYK)和车载无线通信设备等的电源,均应取自车上直流控制电源系统,直流输出电压为110 V时,电压波动允许范围为-20%~+5%。
信号第64条信号机按用途分为进站、出站、通过、进路、复示、调车信号机等。
第65条各种信号机及表示器,在正常情况下的显示距离:1.高柱进站、高柱通过信号机,不得小于1 000 m;2.高柱出站、高柱进路信号机,不得小于800 m;3.调车、矮型进站、矮型出站、矮型进路、矮型通过、复示信号机,引导信号及各种表示器,不得小于200 m。
英国标准铁路应用—电磁兼容性第3-2部分:机车机车—设备欧洲标准EN50121-3-2:2000具有英国标准的地位未经BSI的许可,不是复制,版权法允许的除外。
国家标准前言本英国标准是EN 50121-3-2:2000的正式英文版。
它取代DD ENV 50121-3-2:1996,该版本已取消。
英国受技术委员会的委托参与编写GEL/9铁路电技术应用,它负责:—帮助调查以理解正文;—将解释或变更建议方面的调查呈送负责的欧洲委员会,并使英国同行保持消息灵通;—监控相关的国际和欧洲发展并在英国传播。
应秘书的要求,可获得一份本委员会的组织名单。
相互参照本文件中提及的执行国际或欧洲出版物的英国标准可在BSI标准产品目录中名为“国际标准函件索引”一节找到,也可用BSI标准电子产品目录“Find”(查找)设备找到。
一个英国标准不会包括一个合同所有必需的条款。
英国标准的用户应对其正确应用负责。
符合英国标准并不使它本身免除法定义务。
本英国标准是在委员会电技术部门的指导下编制的,在标准委员会的授权下出版并于2000年12月15日生效。
BSI 12-2000ISBN 0 580 36755X本文件中的BSI版权通知示明什么时候最终颁发本文件。
自出版以来签发的修正意见。
修正号日期意见欧洲标准EN 50121-3-21 / 192000年9月ICS 29.020;29.280;45.060.01英文版铁路应用—电磁兼容性第3-2部分:机车车辆—设备本欧洲标准由CENELEC于2000年4月1日批准。
CENELEC成员必定符合CEN/CENELEC内部条例,该条例规定了本欧洲标准所给国家标准地位的条件,而不需要作任何变更。
向中央秘书处或向任何CENELEC成员申请,就可获得有关这种国家标准的最新清单和文献目录参考件。
本欧洲标准有三种正式版本(英文、法文、德文)。
任何其它语言的版本应在CENELEC 成员负责下翻译成自己的语言并通知中央秘书处具有正式版本的相同地位。
铁路通信电子系统设计中的电磁兼容性引言随着铁路通信技术的不断发展,铁路通信电子系统在列车运行控制、信号传输、车载设备等方面起着至关重要的作用。
铁路环境中存在大量的电磁干扰源,如电气化供电系统、列车牵引系统、通信信号系统等,这些干扰源可能会对铁路通信电子系统的正常运行造成影响,从而影响列车的安全和正常运行。
保证铁路通信电子系统的电磁兼容性至关重要。
一、电磁兼容性的定义电磁兼容性(Electromagnetic Compatibility,EMC)是指电子设备在电磁环境中能够正常工作而且不对周围的其他设备产生干扰的能力。
在铁路通信电子系统设计中,电磁兼容性包括两个方面的问题,即电磁干扰抑制和抗干扰能力。
电磁干扰抑制是指在设计铁路通信电子系统时,要尽可能抑制系统自身产生的电磁干扰,减少对周围设备的干扰。
抗干扰能力是指铁路通信电子系统在电磁环境中能够正常工作而不受外部电磁干扰的影响。
二、影响铁路通信电子系统电磁兼容性的因素1.铁路环境中的电磁干扰源:铁路环境中存在大量的电磁干扰源,如电气化铁路供电系统、列车牵引系统、通信信号系统等,这些系统产生的电磁辐射和传导干扰会对铁路通信电子系统产生影响。
2.电磁环境复杂性:铁路环境中电磁干扰源众多,而且列车在运行过程中会经过多种不同的电磁环境,如高速行驶、弯道、山区、城市等,这些环境因素都可能影响铁路通信电子系统的电磁兼容性。
3.系统设计缺陷:铁路通信电子系统设计中存在的电磁兼容性缺陷,如电磁屏蔽不足、线路布局不当、电磁耦合等问题,也会影响系统的电磁兼容性。
三、提高铁路通信电子系统电磁兼容性的方法1.系统设计:在铁路通信电子系统设计中,应该充分考虑电磁兼容性的要求,尽可能采取一些设计措施来提高系统的抗干扰能力。
采用合适的电磁屏蔽技术、优化线路布局、选择抗干扰能力强的器件等。
2.电磁兼容性测试:在系统设计完成后,进行电磁兼容性测试是非常重要的,通过测试可以评估系统在电磁环境中的抗干扰能力,及时发现和解决潜在的电磁兼容性问题。
铁路信号设备雷电及电磁兼容容综合防护摘要:随着铁路信号设备向数字化、网络化、智能化和综合化方向发展,大规模集成电路和低耐压器件在信号设备中大量使用,电磁兼容、雷电所带来的危害越来越大,对雷电的防护已成为保证铁路安全运输的重要问题。
本文主要铁路信号设备雷电及电磁兼容综合防护来进行分析。
关键词:铁路信号;信号设备;雷电防护;电磁兼容防护引言标志着中国铁路高速时代到来的铁路的大规模建设正蓬勃开展,它为通信信号、列车控制、调度指挥等系统设备提出了新的更高的要求。
而这些系统设备采用的大量微电子器件,对雷电和电气化干扰电压极为敏感。
因此,必须研究铁路信号设备的雷电防护和电磁兼容问题,以确保信号设备全天候安全运行和列车安全正点。
1铁路信号设备的电磁兼容1.1过电压对微电子设备的危害这里所说的“过电压”是指可能对电子设备造成损害或使电子设备失效,超过电子设备所能耐受的电压。
过电压是一个相对的概念,对于机电设备,几百伏甚至数千伏的电压是“过电压”,但对于微电子设备,有时十几伏就算是“过电压”了。
1.2电磁兼容高压电力输电线的谐波干扰、电气化铁路牵引供电系统的工作和故障干扰、无线电射频干扰、工业设备谐波干扰、雷电放电浪涌干扰、高压静电放电干扰和核磁脉冲干扰等都会造成地球上的电磁环境持续恶化。
而与此同时,电子设备小型化对干扰的防卫能力降低,使从前不会对设备造成损害的较小的电磁干扰,都有可能损坏微电子设备。
所以为了减小恶劣电磁环境对电子设备的危害,必须考虑电磁兼容。
“电磁兼容”是一门关于防止电磁干扰(EMl),专门学科。
它有2个含义:一是电力、电子系统和电气、电子设备间在电子环境中相互兼顾、相互包容,相互间的干扰都在相互能够容忍的范围内,任何设备不能成为影响其他设备的干扰源,同时也应避免被其他设备所干扰;二是电力、电子系统和电气、电子设备间在大自然的电磁环境中,能够承受干扰并在有干扰的环境中能按设计要求正常工作。
2改善计算机设备所处场地的电磁环境2.1建筑物防护雷击时,建筑物外部和内部都可诱导出雷电浪涌。
中国列车运行控制系统CTCS技术规范总则(暂行)二零零三年十月目录CTCS技术规范-总则 (1)1范围与目标 (1)2引用标准 (1)3名词术语 (1)3.1 名词术语 (1)3.2 缩写语 (1)4系统描述 (2)4.1 定义 (2)4.2 基本功能 (2)4.3 CTCS体系结构 (3)4.4 系统构成 (3)5CTCS分级 (4)5.1 CTCS 0级 (4)5.2 CTCS 1级 (5)5.3 CTCS 2级 (5)5.4 CTCS 3级 (6)5.5 CTCS 4级 (7)6CTCS级间关系 (8)7CTCS系列规范 (8)附录 A (9)A.1CTCS背景 (9)A.2ERTMS概述 (10)A.3ETCS简介 (12)A.4GSM-R简介 (12)前言为适应铁路跨越式发展,保证我国铁路运输安全,满足互通运营需求,适应提速战略和高速建设的实施,迫切需要规范化的列车运行控制系统。
本标准结合中国国情,以现行《铁路技术管理规程》为依据,以ETCS技术规范为蓝本进行编制。
本标准起草单位:铁道部运输局基础部中国铁道科学研究院北京交通大学北京全路通信信号研究设计院北京和利时浩通科技发展有限公司本标准主要起草人:马念文、范明、杨悌惠、唐涛、钟章队、李开成、罗松、黄蔚、陆伟、何春明、李智。
CTCS技术规范-总则1 范围与目标本标准规定中国列车运行控制系统(简称CTCS)技术体制及基本框架。
本标准适用于各种铁路区段及客运列车。
本标准为CTCS技术规范总则。
本标准目标是提高安全性能,满足互通运营,规范系统设计,适应发展需求。
2 引用标准TB/T 1407-1998 列车牵引计算规程EEIG FRS-Version 4.29 ETCS功能需求规范SUBSET-026 ETCS系统需求规范99E5362 ETCS功能综述3 名词术语3.1 名词术语允许速度列车运行过程中允许达到的最高安全速度。
目标速度列车运行前方目标点允许的最高速度。
en50121标准
EN50121标准是欧共体的电磁兼容指令89/336/EEC下的标准,该标准
专门针对安装在铁路轨道或站台边的信号及通信传输设备的电磁兼容
性进行规范。
这个标准主要包含以下测试内容:
1. 电磁兼容EMC抗扰度测试,包括静电放电试验、射频辐射抗扰度试验、电快速瞬变脉冲群试验、浪涌冲击试验、射频传导抗扰度试验、
工频磁场抗扰度试验等。
2. 电磁兼容EMC发射测试,包括电源端子骚扰电压(传导发射试验)、机箱端口发射试验(辐射发射试验)等。
该标准适用于铁路信号产品、铁路通信信号产品、列车控制与诊断系统、车载电脑、工业交换机、轨道交通电工电子设备等设备。
通过
EN50121-4标准等级的测试,可以确认工业通讯设备足以在铁道环境上的通信及传输工作。
以上内容仅供参考,如需更多信息,建议查阅EN50121标准或咨询相
关电磁兼容专家。
铁路通信信号产品的电磁兼容检测技术
随着铁路通信信号系统的不断发展和智能化程度的提高,对于其稳定性和可靠性的要
求也越来越高。
而电磁兼容性是保障信号系统正常运行的关键因素之一,因此电磁兼容检
测技术对于铁路通信信号产品来说至关重要。
本文将介绍一些常用的铁路通信信号产品的
电磁兼容检测技术。
1. 电磁屏蔽技术
电磁屏蔽技术是一种常用的电磁兼容解决方案,通过采用特殊材料和结构设计,将电
磁辐射或干扰信号限制在特定区域内,避免对其他设备或电路产生干扰。
在铁路通信信号
产品中,可以采用金属屏蔽箱、屏蔽板、密封隔离屏蔽等技术手段,来达到电磁屏蔽的效果。
2. 防护地处理技术
防护地是指对信号产品内部地接点或黏胶剂点进行特殊的处理,以减少或消除电磁干
扰的影响。
防护地处理技术可以通过增加防护地的面积或改变接地方式来实现,以降低信
号产品对电磁场的敏感度。
3. 滤波器技术
滤波器技术是一种常用的电磁兼容解决方案,通过选择合适的滤波器参数和电路结构,在信号产品输入端加入滤波电路,以抑制特定频率的电磁干扰信号。
铁路通信信号产品中
常用的滤波器包括低通滤波器、高通滤波器和带通滤波器等,可以根据不同需求选择适当
的滤波器类型。
4. 电磁干扰源定位技术
电磁干扰源定位技术是一种利用电磁测向原理来定位干扰源的技术。
通过在信号系统
中设置接收天线和测向仪,可以实时监测信号系统周围的电磁场强度,并根据测得的信号
进行波向测量和干扰源定位,以便及时采取干扰源消除措施。
5. 电磁兼容测试技术
电磁兼容测试技术是一种常用的电磁兼容检测方法,通过对信号产品进行规范的测试
和评估,以验证其电磁兼容性能是否符合相关标准和要求。
电磁兼容测试技术通常包括电
磁辐射测试、电磁传导测试、电磁场耐受性测试等,可以帮助发现和解决信号产品中存在
的电磁兼容问题。
铁路通信信号产品的电磁兼容检测技术包括电磁屏蔽技术、防护地处理技术、滤波器
技术、电磁干扰源定位技术和电磁兼容测试技术等。
这些技术手段能够有效地降低电磁干
扰对信号系统的影响,提高信号产品的稳定性和可靠性。
在实际应用中,可以根据具体需求选择相应的技术手段,以确保铁路通信信号系统的正常运行。