三角恒等变换说课稿 教案 教学设计
- 格式:doc
- 大小:62.19 KB
- 文档页数:2
三角恒等变换备课教案备课教案:三角恒等变换一、引言三角恒等变换是高中数学中的重要内容,对于学生深入理解三角函数的性质和应用具有重要意义。
本教案将通过引导学生发现和探究三角恒等变换的规律,帮助学生理解和掌握相关的变换技巧。
二、知识背景1. 三角函数的基本关系:(1) 正弦函数:sinθ = 对边/斜边(2) 余弦函数:cosθ = 邻边/斜边(3) 正切函数:tanθ = 对边/邻边2. 三角函数的周期性:(1) 正弦函数、余弦函数的周期是2π(2) 正切函数的周期是π3. 三角函数的基本恒等式:(1) 余弦函数的平方与正弦函数的平方和为1:cos^2θ + sin^2θ = 1(2) 正切函数与余切函数的乘积始终等于1:tanθ · cotθ = 1(3) 正弦函数与余切函数、余弦函数与正切函数的关系:sinθ/cotθ = cosθcosθ/tanθ = sinθ三、教学过程1. 引入:通过提问的方式引导学生回顾三角函数的基本关系和周期性规律。
2. 发现:给出一个具体的三角函数等式,例如sinθ = cos(π/2 - θ),请学生尝试寻找与之相关的恒等式。
3. 探究:根据学生的发现,引导学生使用初等三角函数的定义和已知的三角函数恒等式,进行推导和证明,找出恒等式的变换规律。
4. 总结:整理学生的发现和推导过程,总结三角恒等变换的基本规律,并给出示例进行演示和讲解。
5. 练习:提供一些练习题,让学生运用所学的三角恒等变换规律,解决相关的三角函数等式和问题。
四、教学评价1. 通过观察学生的推导过程和解题思路,评价他们对三角恒等变换规律的理解和掌握情况。
2. 提供针对性的反馈和指导,帮助学生纠正错误和加深对知识点的理解。
3. 鼓励学生积极参与课堂讨论和解题过程,培养他们的合作和思考能力。
五、课后作业1. 题目一:证明sin(π/2 - θ) = cosθ。
2. 题目二:利用三角恒等变换,化简并求解tanθ + 1 = secθ的解。
必修四第3章 三角恒等变形3.2 简单的三角恒等变换教学目的:知识目标:掌握二倍角的正弦、余弦、正切公式能用所学知识解决有关综合问题情感目标:创设问题情境,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求.教学重点:二倍角的正弦、余弦、正切公式教学难点:二倍角的正弦、余弦、正切公式教学过程:导入新课思路1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.思路2.(问题导入)出示问题,让学生计算,若sin α=53,α∈(2π,π),求sin2α,cos2α的值.学生会很容易看出:()22sin sin sin cos cos sin sin cos ααααααααα=+=+=的,以此展开新课,并由此展开联想推出其他公式.提出问题①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写) ②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式? ③在得到的C 2α公式中,还有其他表示形式吗?④细心观察二倍角公式结构,有什么特征呢?⑤能看出公式中角的含义吗?思考过公式成立的条件吗?⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos 2( )-sin 2( ). ⑦思考过公式的逆用吗?想一想C 2α还有哪些变形?⑧请思考以下问题:sin2α=2sin α吗?cos2α=2cos α吗?tan2α=2tan α?活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.sin(α+β)=sin αcos β+cos αsin βsin2α=2sin αcos α(S 2α);cos(α+β)=cos αcos β-sin αsin βcos2α=cos 2α-sin 2α(C 2α); tan(α+β)=)(tan 1tan 22tan tan tan 1tan tan 22ααααβαβαT -=⇒-+ 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学生结合sin 2α+cos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R .但公式(T 2α)需在α≠21kπ+4π和α≠kπ+2π(k ∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=kπ+2π,k ∈Z 时,虽然tan α不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,2a 是4a 的二倍,3α是23a 的二倍,3a 是6a 的二倍,2π-α是4π-2a 的二倍等,所有这些都可以应用二倍角公式.例如:sin 2a =2sin 4a cos 4a ,cos 3a =cos 26a -sin 26a 等等. 问题⑦,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=21sin6α,4sin 4a cos 4a =2(2sin 4a cos 4a )=2sin 2a ,40tan 140tan 22-=tan80°,cos 22α-sin 22α=cos4α,tan2α=2tanα(1-tan 2α)等等. 问题⑧,一般情况下:sin2α≠2sinα,cos2α≠2cosα,tan2α≠2tanα.若sin2α=2sin α,则2sin αcos α=2sin α,即sin α=0或cos α=1,此时α=kπ(k ∈Z ).若cos2α=2cos α,则2cos 2α-2cos α-1=0,即cos α=231-(cos α=231+舍去). 若tan2α=2tan α,则aa 2tan 1tan 2-=2tan α,∴tan α=0,即α=kπ(k ∈Z ). 解答:①—⑧(略)二、例题讲解例1 已知2sin 3α=,(,)2παπ∈,3cos 5β=-,3(,)2πβπ∈.求sin()αβ+的值.解 由2sin 3α=,(,)2παπ∈,得cosα又由3cos 5β=-,3(,)2πβπ∈,得sinβ=-45,∴sin()sin cos cos sin αβαβαβ+=+=234()()355-+-=. 点拨 本例主要介绍正弦和角公式的“正用”.让学生从条件、求解结果等方面展开讨论,自己改编习题,并予以解答.预设三:条件不变,求sin()αβ-的值.预设四:改变角的范围,仍然求sin()αβ+的值.期望学生出现改编后,角度范围与三角函数值不配套,对于预设四要请学生对改变条件的合理性进行探讨,如学生改变了角的取值范围,可能会出现矛盾等.教师再予以点拨.期望学生出现改编后,角度范围与三角函数值不配套,如已知2sin 3α=-,(,)2παπ∈,3cos 5β=-,3(,)2πβπ∈.求sin()αβ+的值. 预设五:把角度限制去掉,即已知2sin 3α=-,3cos 5β=-,求sin()αβ+的值.让学生讨论解的情况,通过以上讨论使学生能从正面熟练应用公式.例2 化简(1)sin14°cos16°+sin16°cos14°= 12; (2)sin()cos cos()sin αββαββ-+-= sinα ;(3)cos (70°+α)sin (170°-α)-sin (70°+α)cos (10°+α)=2. 点拨 本例目的在于让学生能熟悉两角和与差的正弦公式的逆用. 预设六:怎样求 3 sin15°+cos15°的值?引导学生利用特殊角的三角函数构造两角和的三角函数公式,为后面学习辅助角公式打下伏笔.例3 已知,,.()222k k k k z πππαβπαπβπ+≠+≠+≠+∈,4cos 5β=,α,β均为锐角,求sinα.帮助学生分析条件,寻找解题的突破口.即让学生发现α=(α+β)-β,这样问题就可以得到解决.解 ∵α,β均为锐角,则0°<α+β<180°,∴sinβ>0,sin (α+β)>0, 由5cos()13αβ+=得12sin()13αβ+=,由4cos 5β=得3sin 5β=. ∴sin[()]sin()cos cos()sin αββαββαββ+-=+-+124533313513565=⨯-⨯=. 点拨 本例主要介绍利用“变角”,创造应用和角公式的条件,使问题获得解决.常见变角有β=(α+β)-α,2α+β=(α+β)+α,2α=(α+β)+(α-β),2β=(α+β)-(α-β)……预设七:让学生讨论问题:“已知15cos(30),(30,90)17αα-︒=∈︒︒,求sinα的值”.请同学们提出解题方案. 可能性解决方案一:将15cos(30)17α-︒=展开,得到115sin 2217αα+=,由α∈(30°,90°)知sinα>0,cosα>0,再结合22sin cos 1αα+=,可求得sinα的值.必须指出此方案运算量大,不易求解.可能性解决方二:变角α=(α-30°)+30°,由α∈(30°,90°)知sin(30)0α-︒>,利用正弦的和角公式可以较快地解决此问题.必须指出通过变角,构造应用公式的条件,这是一种创造性的学习,有利于培养学生的创新精神.例4 求证: sin(2)sin 2cos()sin sin A B B A B A A+-+=. 预设八:由学生自主完成对本题的分析,找出解决本题的突破口,即将等式中的角统一用A +B 及A 来表示,以消除角的差异.证 左边=sin[()]2cos()sin sin A B A A B A A++-+ sin()cos cos()sin 2cos()sin sin A B A A B A A B A A+++-+=sin()cos cos()sin sin A B A A B A A +-+=sin[()]sin sin sin A B A B A A+-===右边. ∴等式成立.点拨 本题是通过变角达到灵活运用公式的一个典范,通过角的变换消除角的差异,这是三角变换的重要思路之一.例5 求2cos10sin 20cos 20︒-︒︒的值. 预设九:学生讨论,寻找角度之间的关系,使非特殊角与特殊角挂上钩.让学生发现解决本题的关键在于统一角度,不难得到10°=30°-20°.解 原式=2cos(3020)sin 202(cos30cos 20sin 30sin 20)sin 20cos 20cos 20︒-︒-︒︒︒+︒︒-︒=︒︒=12(cos 20sin 20)sin 2022cos 20︒+︒-︒=︒点拨 非特殊角的三角函数求值问题,通常要挖掘题目中的隐含条件,以达到创造使用公式的条件.课堂小结:二倍角的正弦、余弦、正切公式222cos cos sin ααα=-22sin sin cos ααα=22tan tan 21tan ααα=- 板书设计:。
第2课时(一)导入新课思路1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:α=(α+β)-β,2α=(α+β)+(α-β)=(4π+α)-(4π-α),4π+α=2π-(4π-α)等,你能总结出三角变换的哪些策略?由此探讨展开.思路 2.(复习导入)前面已经学过如何把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,本节主要研究函数y=asinx+bcosx 的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能.(二)推进新课、新知探究、提出问题①三角函数y=sinx ,y=cosx 的周期,最大值和最小值是多少? ②函数y=asinx+bcosx 的变形与应用是怎样的? ③三角变换在几何问题中有什么应用?活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2kπ(k∈Z 且k≠0),最小正周期都是2π.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx 的周期是2kπ(k∈Z 且k≠0),且最小正周期是2π,函数y=sin2x 的周期是kπ(k∈Z 且k≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1].函数y=asinx+bcosx=22b a +(2222sin ba b x ba a +++cosx ),∵(sin ,cos 1)()(2222222222=+=+=+++ba b ba aba b ba a ϕ从而可令φ,则有asinx+bcosx=22b a +(sinxcosφ+cosxsinφ)=22b a +sin (x+φ).因此,我们有如下结论:asinx+bcosx=22b a +sin (x+φ),其中tanφ=ab.在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题.我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:①y=sin x ,y=cosx 的周期是2kπ(k∈Z 且k≠0),最小正周期都是2π;最大值都是1,最小值都是-1.②—③(略)见活动.(三)应用示例思路1例1 如图1,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠C OP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积. 活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到: S=AB ·BC=(cosα33-sinα)sinα=sinαcosα-33-sin 2α. 求这种y=asin 2x+bsinxcosx+ccos 2x 函数的最值,应先降幂,再利用公式化成Asin(ωx+φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:图1(1)找出S 与α之间的函数关系; (2)由得出的函数关系,求S 的最大值.解:在Rt△OBC 中,BC =cosα,BC=sinα,在Rt△OAD 中,OADA=tan60°=3, 所以OA=33DA=33BC=33sinα. 所以AB=OB-OA =cosα33-sinα. 设矩形ABCD 的面积为S,则 S=AB ·BC=(cosα33-sinα)sinα=sinαcosα33-sin 2α =21sin2α+63cos2α-63=31(23sin2α+21cos2α)-63=31sin(2α+6π)-63. 由于0<α<3π,所以当2α+6π=2π,即α=6π时,S 最大=31-63=63.因此,当α=6π时,矩形ABCD 的面积最大,最大面积为63. 点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠C OP =α”,结论改成“求矩形ABCD 的最大面积”,这时,对自变量可多一种选择,如设AD=x,S=x(x x 3312--),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.变式训练(2007年高考辽宁卷,19) 已知函数f(x)=sin(ωx+6π)+sin(ωx -6π)-2cos 22xω,x∈R(其中ω>0).(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为2π,求函数y=f(x)的单调增区间.解:(1)f(x)=23sinωx+21cosωx+23sinωx -21cosωx -(cosωx+1) =2(23sinωx -21cosωx)-1=2sin(ωx -6π)-1. 由-1≤sin(ωx -6π)≤1,得-3≤2sin(ωx -6π)-1≤1,可知函数f(x)的值域为[-3,1].(2)由题设条件及三角函数图象和性质,可知y=f(x)的周期为π,又由ω>0,得ωπ2=π,即得ω=2.于是有f(x)=2sin(2x-6π)-1,再由2kπ-2π≤2x -6π≤2kπ+2π(k∈Z),解得kπ-6π≤x≤kπ+3π(k∈Z).所以y=f(x)的单调增区间为[kπ-6π,kπ+3π](k∈Z).点评:本题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.例1 求函数y=sin 4x+23sinxcosx-cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题. 解:y=sin 4x+23sinxcosx-cos 4x=(sin 2x+cos 2x)(sin 2x-cos 2x)+3sin2x=3sin2x-cos2x=2sin(2x-6π).故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0,3π],[65π,π]. 点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.变式训练已知函数f(x)=cos 4x-2sinxcosx-sin 4x,(1)求f(x)的最小正周期; (2)若x∈[0,2π],求f(x)的最大、最小值.解:f(x)=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x=cos2x-sin2x=2cos(2x+4π),所以,f(x)的最小正周期T=22π=π. (2)因为x∈[0,2π],所以2x+4π∈[4π,45π].当2x+4π=4π时,cos(2x+4π)取得最大值22, 当2x+4π=π时,cos(2x+4π)取得最小值-1.所以,在[0,2π]上的最大值为1,最小值为-2.和即sin(-ωx+φ)=sin(ωx+φ),所以-cosφsinωx=cosφsinωx 对任意x 都成立. 又ω>0,所以,得cosφ=0. 依题设0≤φ≤π,所以,解得φ=2π.由f(x)的图象关于点M 对称,得f(43π-x)=-f(43π+x).取x=0,得f(43π)=-f(43π),所以f(43π)=0.∵f(43π)=sin(43ωπ+2π)=cos 43ωπ,∴cos 43ωπ=0.又ω>0,得43ωπ=2π+kπ,k=0,1,2,….∴ω=32(2k+1),k=0,1,2,…. 当k=0时,ω=32,f(x)=sin(32x+2π)在[0,2π]上是减函数;当k=1时,ω=2,f(x)=sin(2x+2π)在[0,2π]上是减函数;当k≥2时,ω≥310,f(x)=sin(ωx+2π)在[0,2π]上不是单调函数. 所以,综合得ω=32或ω=2.点评:本题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题.点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先21又∵tanα=tan[(α-β)+β]=ββαββαtan )tan(1tan )tan(--+-=31<1.且0<α<π,∴0<α<4π.∴0<2α<2π.又tanβ=71-<0,且β∈(0,π), ∴2π<β<π,-π<-β<2π-.∴-π<2α-β<0.∴2α-β=43π-. 点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cosα;若α∈(2π-,2π),则求sinα等.(四)课堂小结本节课主要研究了通过三角恒等变形,把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学.(五)作业。
本章复习本章知识网络教学分析理解领会新课标的编写意图.新课标中三角函数部分共分三个板块完成:必修4《三角函数》、《三角恒等变换》、必修5《解三角形》,本章是第二个板块;其中三角函数模型是主线,三角变换是关键.三角函数及其三角恒等变换不仅有着广泛的实际应用,而且是进一步学习中学后续内容和高等数学的基础,因而成为高考中对基础知识、基本技能和基本思想方法考查的重要内容之一.切实掌握三角函数的基本变换思想是复习掌握好本章的关键.三角函数的恒等变形,不仅在三角函数的化简、求值问题中应用,而且在研究第一章三角函数的图象与性质时、在后续内容解三角形中也应用广泛.解决三角函数的恒等变形问题,其关键在掌握基本变换思想,运用三角恒等变形的主要途径——变角,变函数,变结构,注意公式的灵活应用.三角恒等变换是一种基本技能,从题型上一般表现为对三角式的化简、求值与证明.对所给三角式进行三角恒等变换时,除需使用三角公式外,一般还需运用代数式的运算法则或公式.如平方差公式、立方差公式等.对三角公式不仅要掌握其“原形”,更要掌握其“变形”,解题时才能真正达到运用自如,左右逢源的境界.基本变换思想主要是:①化成“三个一”:即化为一个角的一种三角函数的一次方的形式y=A sin(ωx+φ);②化成“两个一”:即化为一个角的一种三角函数的二次型结构,再用配方法求解;③“合二为一”:对于形如a sinθ+b cosθ的式子,引入辅助角φ并化成a2+b2sin(θ+φ)的形式(但在这里不要增加难度,仅限于特殊值、特殊角即可).高考对整个三角问题的考查主要集中在三个方面:一是三角函数的图象与性质,包括:定义域、值域、单调性、奇偶性、周期性、对称性等等;二是三角式的恒等变换,包括:化简、证明、直接求值、条件求值、求最值等;三是三角综合运用.特别是结合下一章的解三角形及与向量的交汇更是高考经久不衰的热点.因此复习中要充分运用数形结合的思想,利用向量的工具性,灵活运用三角函数的图象和性质解题,掌握化简和求值问题的解题规律和途径.学完本章后,前一章平面向量更有了用武之地,它是沟通代数、几何、与三角函数的一种重要工具,三角函数又具有较强的渗透力,切实提高三角函数的综合能力是复习好本章的保证.因此,我们可以通过整合,将三角函数,平面向量结成一个知识板块来复习,并进行三角与向量相融合的综合训练,这样更有利于学生对平面向量、三角函数及三角恒等变换的深刻理解及运用.三维目标1.通过复习全章知识方法,掌握两角和与差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式.并能正确地运用上述公式化简三角函数式、求某些角的三角函数值、证明较简单的三角恒等式以及解决一些简单的实际问题.2.掌握简单的三角恒等变换的基本思想方法,并结合向量解决一些基本的综合问题.3.通过三角恒等变换体会数学的逻辑性的特征,进一步理解数学的化归思想、方程思想和代换意识,认识事物之间是相互依存、相互联系的.重点难点教学重点:和角公式、差角公式、倍角公式及其灵活应用.教学难点:和角公式、差角公式、倍角公式在三角恒等变换中的综合运用.课时安排2课时教学过程第1课时导入新课思路1.(直接导入)在第一章三角函数的基础上,我们一起又探究学习了第三章简单三角恒等变换的有关知识,并掌握了一定的分析问题与解决问题的方法,提高了我们的思维能力与运算能力.现在我们一起对本章进行小结与复习,进一步巩固本章所学的知识,请同学们画出本章的知识框图,由此进入复习.思路2.(问题导入)本章学习了几个公式?推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变换与代数式的变换有什么相同点?有什么不同点?对三角函数式特点的分析对你提高三角恒等变换的能力有什么帮助?通过学生解决这些问题展开全章的复习.推进新课知识回顾提出问题①列出本章所学的11个公式,回顾、思考并回答:推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变换与代数式的变换有什么相同点?有什么不同点?三角函数式特点的分析对你提高三角恒等变换的能力有什么帮助?②三角函数的变换灵活性大、方法多,回顾从前所学,三角变换都有哪些变换?③如果对三角函数变换题型进行归类,那么回顾从前所学,常见的基本题型有哪些? 活动:问题①,本章的11个三角恒等变换公式中,余弦的差角公式是其他公式的基础,由它出发,用-β代替β,α=β等换元法就可以推导出其他公式.见下表:式教学会有积极的意义.由于公式中的字母可以代表数、式、函数等有数学意义的式子,因此可以根据需要对公式进行适当的数学处理,或代换,或迭代,或取特殊值等等.如:tan α+tan β=tan(α+β)(1-tan αtan β),tan αtan β=1-tan α+tan βtan (α+β),1=tan αtan β+tan α+tan βtan (α+β), 1+cos2α=2cos 2α,1-cos2α=2sin 2α等.(2)角的变换,角度变换是三角函数恒等变换的首选方法,在进行三角恒等变换时,对角之间的关系必须进行认真的观察联想,分析角之间的和、差、倍、分关系.在数值角的三角函数式化简中,要特别注意是否能够产生特殊角;熟悉两角互余、互补的各种形式;或者引入辅助角进行角的变换等.如:α=(α+β)-β;2α=(α+β)+(α-β);π4-α=π2-(π4+α);π6+α=π2-(π3-α)等.还需熟练掌握一些常见的式子:如:sin x ±cos x =2sin(x ±π4),sin x ±3cos x =2sin(x ±π3)等. 问题③,教师引导学生回顾总结,适时的点拨学生,常见三角恒等变换的基本题型有求值、化简、证明.对于求值,常见的有给角求值、给值求值、给值求角.1°给角求值的关键是正确地分析角之间的关系,准确地选用公式,要注意产生特殊角,同时把非特殊角的三角函数值相约或相消,从而求出三角函数式的值;2°给值求值的关键是分析已知式与待求式之间角、函数、结构间差异,有目的地将已知式、待求式的一方或两方加以变换,找出它们之间的联系,最后求出待求式的值;3°给值求角的关键是先求出该角的某一三角函数值,其次判断该角对应函数的单调区间,最后求出角.对于化简,有两种常见的形式:1°未指明答案的恒等变形,这时应把结果化为最简形式;2°根据解题需要将三角函数式化为某种特定的形式,例如一角一函数的形式,以便研究它的各种性质.无论是何种形式的化简,都要切实注意角度变换、函数变换等各种变换.对于证明,它包括无条件的恒等式和有附加条件恒等式的证明.1°无条件恒等式的证明,需认真分析等式两边三角函数式的特点,角度、函数、结构的差异,一般由繁的一边往简的一边证,逐步消除差异,最后达到统一.对于较难的题目,可以用分析法帮助思考,或分析法和综合法联用.2°有附加条件的恒等式的证明,关键是恰当地利用附加条件,需认真分析条件式和结论式中三角函数之间的联系,从分析过程中发现条件应怎样利用,证明这类恒等式时,还常常用到消元法和基本量方法.讨论结果:①~③略.应用示例思路1例1(1)化简tan2A tan(30°-A )+tan2A ·tan(60°-A )+tan(30°-A )tan(60°-A );(2)已知α为锐角,且tan α=12,求sin2αcos α-sin αsin2αcos2α的值. 活动:本例是一个三角函数化简求值问题,属于给出某些角的三角函数式的值,求另外一些三角函数式的值.关键是正确运用三角变换公式及常用思想方法,探索已知式与欲求式之间的差异和联系的途径和方法.教师可以大胆放手,让学生自己独立探究,必要时给予适时的点拨引导.但要让学生明白,从高考角度来看,关于三角函数求值问题是个重要题型、命题热点,一直备受高考的青睐.因为三角函数求值问题能综合考查考生三角变换、代数变形的基本运算能力和灵活运用公式、合理选用公式、准确选择解题方向的思维能力,且题目的答案可以简单明了.并让学生明了解决这类问题时应在认准目标的前提下,从结构式的特点去分析,以寻找到合理、简捷的解题方法,切忌不分青红皂白地盲目运用三角公式.比如在本例的(1)中,首先应想到将倍角化为单角这一基本的转化方法.教师还应点拨学生思考,求三角函数式的值必须明确求值的目标.一般来说,题设中给出的是一个或某几个特定角,即便这些角都不是特殊角,其最终结果也应该是一个具体的实数;题设中给出的是某种或几种参变量关系,其结果既可能是一个具体的实数,也可能是含参变量的某种代数式.如本例的(2)中,目标是“弦”且是“和差角”,而条件是“切”且是“单角”.在学生探讨向目标转化的过程中,由于视角不同,思考方式不同,学生会有多种解法,教师应鼓励学生一题多解,对新颖解法给予表扬.解:(1)∵tan(90°-2A)=tan[(30°-A)+(60°-A)]=tan(30°-A)+tan(60°-A)1-tan(30°-A)tan(60°-A),∴tan(30°-A)+tan(60°-A)=tan(90°-2A)[1-tan(30°-A)tan(60°-A)].∴原式=tan2A[tan(30°-A)+tan(60°-A)]+tan(30°-A)tan(60°-A)=tan2A tan(90°-2A)[1-tan(30°-A)tan(60°-A)]+tan(30°-A)tan(60°-A)律,如本例,联想条件的形式,确定目标选用和角的正切.这一点要提醒学生在解题过程中细细体会,领悟其要领,掌握其实质.解:∵3sin[(α+β)-α]=sin[(α+β)+α],3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,sin(α+β)cos α=2cos(α+β)sin α,∵α、β∈(0,π4),∴0<α+β<π2. ∴cos(α+β)≠0,cos α≠0.∴tan(α+β)=2tan α.由4tan α2=1-tan 2α2,得4tan α21-tan 2α2=1, 即得2tan α=1,代入tan(α+β)=2tan α,得tan(α+β)=1.又0<α+β<π2,∴α+β=π4. 点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.思路2例1已知θ∈(π2,π),2cos 2θ-sin θcos θ-sin 2θ=0,求tan θ和sin(2θ+π3)的值. 活动:本题主要训练同角三角函数的基本关系式、二倍角公式以及三角函数恒等变形的基础知识和基本运算技能,是一道较为综合的题目.本题能较全面地考查到三角函数的重要公式,有多种解题的切入口,通过探究学生可从中体会不同的数学思想方法,本题解题思路清晰,运算过程不繁杂,不必要运用特殊的解题技巧.本题基本解法是常规的因式分解法,也可运用方程的思想,通过换元先解一个一元二次方程,还可以运用三角函数的定义来解题.可以说是一道较为简单、考查全面的好题,教师可完全放给学生自己探究,必要时给以tan 2θ+tan θ-2=0.tan θ=1〕. =sin θcos θ+3cos 2θsin 2θ+cos 2θ-32 =tan θ+3tan 2θ+1-32 =-4+3310. 点评:三角函数的解法多样,教师应鼓励学生一题多解,如本题中,可由方程组⎩⎪⎨⎪⎧sin θ=-2cos θ,sin 2θ+cos 2θ=1,解得sin θ,cos θ的值,再代入得解,也是一种不错的思路.课堂小结1.先由学生总结归纳本节所复习的知识及数学思想方法,明确三角恒等变换所涉及的公式,主要是和角公式、差角公式、倍角公式,这些公式主要用于三角函数式的计算、化简与推导,它们在数学和许多其他学科中都有广泛的应用,必须熟练掌握,并搞清这些公式的逻辑关系和推导公式过程中所涉及的数学思想方法.2.教师强调,对一些公式不仅会用,还会逆用、变形用.三角函数是三角变换的对象,在进行三角恒等变换时,要认清三角函数式的角的特征、函数名称的特征和式子结构特征,以便使用恰当的变形手段,巧妙地解决问题.作业课本复习参考题A组3.设计感想1.本节为全章复习课,教案设计的指导思想是:通过设计的教学程序,引导学生对全章,甚至对涉及前两章的相关内容进行全面的复习整合,在掌握数学知识的同时,深刻领悟数学思想方法,提高他们分析问题、解决问题的能力.2.本章在新课程中的位置是承上启下,前有三角函数,后有解三角形,所以三角函数式的恒等变形是解决有关三角问题的重要环节,蕴含着丰富的数学思想方法,教师在指导学生复习时要引导学生深刻领悟这一点.3.三角函数公式众多,教学时要充分体现新课标的“以学生发展为本”的新理念,让学生亲自探究体验,切忌被动学习、死记硬背、机械的训练.在指导学生运用三角公式进行三角变换时,注意点拨学生从三角函数名称和角的差异双角度去综合分析,再从差异的分析中决定三角公式的选取,不可生搬硬套题型.第2课时βA.154π B.5π4C.7π4D.5π4或7π4答案:C 注意选用α+β的余弦.2.已知a =(sin α-cos α,2 007),b =(sin α+cos α,1),且a ∥b ,则tan2α-1cos2α等于( ) A .-2 007 B .-12 007C .2 007 D.12 007答案:C 需利用向量平行的条件对已知进行转化,然后把所求式子切化弦,通分后再利用倍角公式化单角来解决.3.已知α∈(π2,π),sin α=35,则tan(α+π4)等于( ) A.17B .7C .-17D .-7 答案:A 利用同角三角函数的基本关系式可求得余弦值,然后利用和角的正切公式解决.4.已知tan(π4+θ)+tan(π4-θ)=4,且-π<θ<-π2, 求sin 2θ-2sin θcos θ-cos 2θ的值.答案:由tan(π4+θ)+tan(π4-θ)=4,三角求值题倍受命题人的青睐,使得成为出题频率较高的知识点,但其难度较小.如以上几例,让学生在探究中体会怎样选择有用的公式或其变形式.应用示例思路1例1若cos(π4-x )=-45,5π4<x <7π4,求sin2x -2sin 2x 1+tan x. 活动:本例是课本总复习B 组题中的一道姊妹题,具有很好的训练价值,其变形式子在多处的高考试题中都有所体现.教师引导学生探讨题目中的已知条件与所求式子的角的关系,寻找解决问题的突破口.如转化为已知一个角(π4-x )的三角函数值,求这个角的其余三角函数值的问题.这样可以将所求式子化简,使其出现(π4-x )这个角的三角函数.教师要鼓励学生多视角观察,以探求更多的解题思路,从中比较最优解法.解:sin2x -2sin 2x 1+tan x =2sin x (cos x -sin x )cos x cos x +sin x =sin2x (cos x -sin x )cos x +sin x=sin2x 1-tan x 1+tan x=sin2x tan(π4-x )=cos(π2-2x )tan(π4-x ) =[2cos 2(π4-x )-1]tan(π4-x ). ∵5π4<x <7π4,∴-3π2<π4-x <-π. 又∵cos(π4-x )=-45,∴sin(π4-x )=35,tan(π4-x )=-34. ∴原式=(2×1625-1)×(-34)=-21100. 例2已知sin 22α+sin2αcos α-cos2α=1,α∈(0,π2),求sin α、tan α的值. 活动:本题是2002年高考试卷解答题的第一题,但常解常新.虽然综合性很强,但试题难度并不大,对学生的逻辑思维能力和运算能力有很好的训练价值.本题主要考查同角三角函数的基本关系式、二倍角公式以及三角函数恒等变形的基础知识和基本运算技能.按照较易题的要求来考查三角函数的重点知识.教师大胆放手让学生探究,必要时适时的给予点拨,鼓励学生一题多解.解答本题常出现的失误有:(1)记错三角公式,如“cos2α=2sin 2α-1”等;(2)解题中未能及时消去相同的项以简化运算,如将原式化为关于sin α的四次方程,造成运算烦琐,或不能得到结果;(3)用一个算式去除等式两边时,未先确认这个算式不等于零,推理不严密;(4)恒等变形中,移项时符号出错或合并同类项时系数出错,导致解题结果错误.可以此来检查学生的掌握程度.解:方法一,由倍角公式:sin2α=2sin αcos α,cos2α=2cos 2α-1,得4sin 2αcos 2α+2sin αcos 2α-2cos 2α=0⇔2cos 2α(2sin 2α+sin α-1)=0⇔2cos 2α(2sin α-1)·(sin α+1)=0.∵α∈(0,π2),∴sin α+1≠0,cos 2α≠0. ∴2sin α-1=0,即sin α=12.∵α∈(0,π2),∴sin2α≠-2cos α.∴sin2α=cos α(以下同方法二). 点评:本题是考查三角函数的综合题,能抓住“二倍角公式”和“同角三角函数关系式”这两个知识重点,把它们有机地组合在一起.解题过程运用“换元法”等基本数学方法,体现方程思想,在考查基础知识的基本技能的同时达到考查数学思想方法的目标.+π6)∵x ∈[0,π2], ∴2x +π6∈[π6,7π6]. ∴-12≤sin(2x +π6)≤1. 因此,由f (x )的值域为[-5,1],可得⎩⎪⎨⎪⎧ a >0,-2a ×(-12)+2a +b =1,-2a ×1+2a +b =-5或⎩⎪⎨⎪⎧ a <0,-2a ×1+2a +b =1,-2a ×(-12)+2a +b =-5.∴⎩⎪⎨⎪⎧ a =2,b =-5或⎩⎪⎨⎪⎧a =-2,b =1. 点评:解题运用通性通法,不追求特殊解题技巧,使多数考生能较轻松的完成.解完后教师及时引导学生进行反思,注意体会解决本题用到的数学思想方法. (2)求sin2α-2cos 2sin (α-π4)的值. 活动:三角函数化简求值题的难度属于容易题,整个三角题目的高考难度也如此.因此在平时指导学生训练时教师要控制好这个难度.根据正切和角公式,由本题条件易得正切值,再将所求式子化简求值即可.对于本题的探究解答,可完全放给学生自己完成,教师只需在关键地方对部分学生给予指导点拨.解:(1)由tan(α+π4)=-12,π2<α<π,得1+tan α1-tan α=-12, 解之,得tan α=-3.(2)sin2α-2cos 2α2sin (α-π4)=2sin αcos α-2cos 2αsin α-cos α=2cos α,∵π2<α<π,且tan α=-3, ∴cos α=-1010. 即原式的值为-105. 点评:解这类求值题一定要在化简上多下些功夫,至于究竟化简到什么位置,这要具体结合题目条件而定.学生解完后教师要引导学生进行反思,并要求学生书写规范,思路清晰,解答过程简洁流畅. 1212=π6,求sin α-β4的值.活动:本题是一道经典试题,多次多处用作试题,题目基础性强但难度不大,题干结构优美,主要考查向量及运算、三角函数公式变换的有关知识,以及综合探究问题和解决问题的能力.教师先让学生探究思路,寻找解题方向,适时的点拨学生.思考过程要从角、三角函数种类、式子结构形式三个方面寻找共同特点,从而作出归纳.可由已知找到θ1、θ2与α、β的关系,由θ1-θ2=π6,求得α-β2,进而求得sin α-β2的值. 解:由题意知a =2cos α2(cos α2,sin α2),b =(2sin 2β2,2sin β2cos β2)=2sin β2(sin β2,cos β2), ∵α∈(0,π),β∈(π,2π),∴α2∈(0,π2),β2∈(π2,π).故|a |=2cos α2,|b |=2sin β2. cos θ1=a ·c |a ||c |=2cos 2α22cos α2=cos α2,∴θ1=α2. cos θ2=b ·c |b ||c |=2sin 2β22sin β2=sin β2=cos(β2-π2), ∵0<β2-π2<π2,∴θ2=β2-π2. 又θ1-θ2=π6,∴α2-β2+π2=π6.∴α-β2=-π3. sin α-β=-π)=-1.1.由学生回顾总结,通过本节课的复习对三角函数知识方法的整合达到高考要求了吗?对三角函数、平面向量、三角恒等变换有哪些新的认识?2.教师画龙点睛,点出处理三角函数及恒等变换问题,重在正确、熟练地运用三角公式,并注意总结公式的应用经验,对一些公式不仅正用,还要逆用、变形用;在运用相关公式时,注意观察角之间的关系,认清三角函数式的角的特征、函数名称的特征和式子结构特征.更重要的是学会具体问题具体分析的科学方法.。
三角恒等变换教案一、教学目标1. 知识与技能:(1)理解三角恒等变换的概念和意义;(2)掌握三角恒等变换的基本公式;(3)能够运用三角恒等变换解决实际问题。
2. 过程与方法:(1)通过观察和分析,培养学生的逻辑思维能力;(2)通过练习和应用,提高学生解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生的团队合作意识和解决问题的自信心。
二、教学内容1. 三角恒等变换的概念和意义(1)引入三角函数的定义和图像;(2)解释三角恒等变换的含义和作用。
2. 三角恒等变换的基本公式(1)sin(α±β)的公式;(2)cos(α±β)的公式;(3)tan(α±β)的公式。
三、教学过程1. 导入(1)复习相关三角函数的定义和图像;(2)提出问题,引导学生思考三角恒等变换的必要性。
2. 新课讲解(1)讲解三角恒等变换的概念和意义;(2)引导学生推导三角恒等变换的基本公式。
3. 练习与应用(1)布置相关的练习题,巩固学生对三角恒等变换的理解;(2)引导学生运用三角恒等变换解决实际问题。
四、教学评价1. 课堂讲解的评价:(1)观察学生在课堂上的参与度和理解程度;(2)通过提问和回答,检查学生对三角恒等变换的理解。
2. 练习题的评价:(1)检查学生完成练习题的情况和答案的正确性;(2)分析学生在解题过程中存在的问题和错误,及时进行反馈和指导。
五、教学资源1. 教学PPT:包含三角恒等变换的概念、意义和基本公式的讲解;2. 练习题:提供相关的练习题,供学生巩固和应用所学知识;3. 教学参考书:提供详细的三角恒等变换的讲解和例题。
六、教学策略1. 案例分析:通过分析具体的三角函数例子,让学生理解恒等变换的应用。
2. 小组讨论:让学生分组讨论三角恒等变换的性质,促进学生之间的交流和合作。
3. 问题解决:设计一些实际问题,让学生运用所学的三角恒等变换知识去解决,提高学生的应用能力。
简单的三角恒等变换说课稿一、说教材(一)作用与地位本文《简单的三角恒等变换》是高中数学课程中的重要组成部分,属于三角函数章节。
它不仅承担着巩固学生对三角函数基础知识的掌握,而且肩负着培养学生逻辑思维能力和数学变换技巧的重任。
在数学教育中,三角恒等变换是联系实际应用与理论推导的桥梁,通过学习,学生能够更好地理解数学在自然科学和社会科学中的应用。
(二)主要内容本文主要围绕以下三个方面的内容展开:1. 三角恒等变换的基本概念:包括正弦、余弦、正切的和差公式、倍角公式、半角公式等。
2. 三角恒等变换的基本方法:运用上述公式进行三角函数式的化简、求值等。
3. 三角恒等变换在实际问题中的应用:结合实际案例,让学生体验三角恒等变换在解决具体问题时的作用。
二、说教学目标(一)知识与技能目标1. 理解并掌握三角恒等变换的基本概念和基本方法。
2. 能够熟练运用三角恒等变换解决实际问题。
3. 培养学生的逻辑思维能力和数学变换技巧。
(二)过程与方法目标1. 通过自主探究、合作交流,培养学生主动学习的习惯。
2. 通过问题解决,提高学生分析问题、解决问题的能力。
(三)情感态度与价值观目标1. 培养学生对数学的兴趣和热爱,提高学生的数学素养。
2. 引导学生认识到数学在现实生活中的重要作用,增强学生的应用意识。
三、说教学重难点(一)重点1. 三角恒等变换的基本概念和基本方法。
2. 三角恒等变换在实际问题中的应用。
(二)难点1. 理解并熟练运用三角恒等变换公式。
2. 解决实际问题时,能够灵活运用三角恒等变换。
四、说教法(一)启发法在教学过程中,我将以启发式教学为主,引导学生通过观察、思考、总结等环节,自主发现三角恒等变换的规律。
具体操作如下:1. 以实际问题导入,激发学生的好奇心和求知欲。
2. 引导学生回顾已学的三角函数知识,为新知识的学习做好铺垫。
3. 设计一系列具有启发性的问题,让学生在思考问题的过程中,自然地发现三角恒等变换的规律。
教学计划:《三角恒等变换》一、教学目标知识与技能:学生能够理解并掌握三角恒等变换的基本公式,包括和差化积、积化和差、二倍角公式等。
学生能够熟练运用三角恒等变换公式进行化简、求值及证明。
培养学生的逻辑推理能力和代数运算能力。
过程与方法:通过观察、分析、归纳等数学活动,引导学生发现三角恒等变换的规律。
采用“公式推导—例题讲解—练习巩固”的教学模式,帮助学生逐步掌握三角恒等变换的方法。
鼓励学生自主探究,通过小组合作解决复杂问题,培养团队协作能力。
情感态度与价值观:激发学生对数学学习的兴趣,感受数学的美妙与和谐。
培养学生的耐心和细心,养成严谨的科学态度。
引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。
二、教学重点和难点重点:三角恒等变换的基本公式及其推导过程;运用公式进行化简、求值及证明。
难点:灵活运用三角恒等变换公式解决复杂问题;理解并记忆众多公式的内在联系。
三、教学过程1. 导入新课(5分钟)情境引入:通过展示一些与三角恒等变换相关的实际问题(如天文学中的角度计算、物理学中的波动分析等),引导学生思考这些问题背后可能涉及的数学知识,从而引出三角恒等变换的主题。
复习旧知:简要回顾三角函数的基本性质、图像及诱导公式,为学习三角恒等变换做好铺垫。
明确目标:介绍本节课的学习目标,即掌握三角恒等变换的基本公式及其应用。
2. 公式推导(15分钟)和差化积公式推导:通过图形展示和代数运算相结合的方式,引导学生推导出和差化积公式。
强调公式的推导过程,帮助学生理解公式的来源和含义。
积化和差公式推导:类比和差化积公式的推导过程,引导学生自主推导积化和差公式。
鼓励学生提出疑问和见解,促进课堂互动。
二倍角公式推导:利用三角函数的倍角关系,引导学生推导出二倍角公式。
强调公式的记忆方法和应用技巧。
3. 例题讲解(10分钟)基础例题:选取具有代表性的基础例题进行讲解,如利用三角恒等变换公式化简表达式、求三角函数值等。
三角恒等变换教案三角恒等变换教案一、教学目标:1.能够掌握三角恒等变换的概念和基本性质;2.能够灵活运用三角恒等变换求解简单的三角函数值;3.能够理解三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。
二、教学内容:1.三角恒等变换的定义和基本性质;2.三角恒等变换与三角函数的图像、周期、奇偶性之间的关系;3.使用三角恒等变换求解简单的三角函数值。
三、教学重难点:1.三角恒等变换的基本性质的理解和运用;2.三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。
四、教学方法:1.讲授结合练习,理论与实际相结合;2.举例分析和解题演练。
五、教学过程:第一步:引入新知识(10分钟)向学生简单介绍三角恒等变换的概念,并与他们讨论三角函数的图像、周期、奇偶性。
通过讨论的方法,激发学生的兴趣,引导学生主动思考。
第二步:讲解三角恒等变换的基本性质(15分钟)1.角的关系:讲解正弦、余弦、正切函数之间的关系,以及正角、负角之间的关系。
2.平方关系:讲解正弦、余弦、正切函数的平方和、平方差以及积与商之间的关系。
3.倒数关系:讲解正弦、余弦、正切函数的倒数之间的关系。
第三步:练习应用(20分钟)1.通过示例的方式,向学生展示如何使用三角恒等变换求解简单的三角函数值。
2.组织学生进行练习,让学生分小组进行解题,及时给予指导和反馈。
第四步:总结归纳(10分钟)请学生总结三角恒等变换的基本性质,并与他们讨论三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。
第五步:小结(5分钟)对本节课学习的内容进行小结,并激发学生对三角函数的兴趣,鼓励他们进一步实践和研究。
六、教学反思本节课采用了理论与实际相结合的教学方法,通过讨论、演示和练习,使学生能够深入理解三角恒等变换的基本性质,并能够熟练灵活地应用。
课堂上,我积极引导学生思考和互动,激发了学生的学习兴趣和积极性。
但是,部分学生在练习环节遇到了一些困难,建议将练习题目难易程度适当调整,以使学生在解题过程中能够灵活运用所学知识。
人教版高中必修4(B版)第三章三角恒等变换教学设计一、教学目标1.理解三角恒等变换的概念和性质。
2.掌握正弦、余弦、正切的恒等变换公式。
3.能够使用三角函数的恒等变换公式求解三角函数的值。
二、教学重点难点1.三角恒等变换概念和性质的理解。
2.正弦、余弦、正切的恒等变换公式的记忆和应用。
三、教学内容及方法1. 教学内容1.三角恒等变换的概念和性质。
2.正弦、余弦、正切的恒等变换公式。
2. 教学方法1.给出例题,并通过例题引出概念和性质。
2.讲解正弦、余弦、正切的恒等变换公式,并进行示例演练。
3.练习题的讲解和答疑。
四、教学过程设计1. 导入环节1.介绍本节课的主题和目标。
2.提问学生对三角恒等变换的了解和认识,引出三角恒等变换的概念和性质。
2. 讲解环节1.以例题的形式引出正弦、余弦、正切的恒等变换公式,讲解公式的推导过程和应用方法。
2.通过多组例题演示如何使用恒等变换公式求解三角函数的值。
3. 练习环节1.发放练习题,让学生进行练习并自行检验答案。
2.推广题目,让学生进行自主探究,并对想法进行讨论和答疑。
五、教学评估1.通过课后作业检查和测试等方式进行评估,考察学生对三角恒等变换的掌握情况。
2.针对评估结果进行适当调整和讲解,弥补学生掌握不足和漏洞。
六、教学资源1.PowerPoint演示文稿。
2.练习题和解答。
3.可视化三角恒等变换的工具软件,如GeoGebra或Desmos。
七、反思总结三角恒等变换是高中数学中比较基础而又重要的概念之一。
因此,在教学过程中,既要重视学生的掌握程度,也要注意教学内容和方式的生动和丰富。
此次教学中,我结合多组例题,并使用工具软件进行可视化演示,使学生可以更加深入地理解三角恒等变换的概念和性质,同时也更好地掌握了正弦、余弦、正切的恒等变换公式。
最后课后的总结和评估,也能帮助学生更深入地理解和记忆知识点。
《三角恒等变换》教学案第1课时两角和与差的余弦教学过程一、问题情境[1]在实数运算中,有公式a(b+c)=ab+ac;在向量运算中,有公式a·(b+c)=a·b+a·c;在三角运算中,有公式cos(α-β)=cosα-cosβ吗?如果没有,式子一定不成立吗?二、数学建构问题1在直角坐标系xOy中,以Ox为始边分别作角α,β (0≤β≤α≤π),其终边分别与单位圆交于P1,P2,则向量,的夹角是多少?·的值是多少?[2](图1)由图1可得向量,的夹角是α-β,=(cosα,sinα),=(cosβ,sinβ).一方面,由向量数量积的定义,有·=||·||cos(α-β)=cos(α-β).另一方面,由向量数量积的坐标表示,有·=cosαcosβ+sinαsinβ.从而cos(α-β)=cosαcosβ+sinαsinβ, 0≤β≤α≤π.问题2如果α,β∈R,上述公式还成立吗?[3]当α-β∈[0,π]时,α-β就是,的夹角,所以cos(α-β)=cosαcosβ+sinαsinβ.对于任意的α,β,总可选适当的整数k,使α-β-2kπ∈[-π,π).记β1=β+2kπ,则β1与β的终边相同,且α-β1∈[-π,π),从而|α-β1|≤π,|α-β1|就是,的夹角.因此cos(|α-β1|)=cos(α-β1)=cos(α-β-2kπ)=cos(α-β)=cosαcosβ+sinαsinβ.综上,cos(α-β)=cosαcosβ+sinαsinβ,这就是两角差的余弦公式,记为C(α-β).问题3cos(β-α)的展开式是什么?它与cos(α-β)展开式相等吗?为什么?cos(β-α)=cosαcosβ+sinαsinβ,它们展开式相等.因为余弦函数是偶函数,所以cos(α-β)=cos(β-α).问题4能利用两角差的余弦公式求cos(α+β)吗?[4]在两角差的余弦公式中,用-β代替β,就可以得到cos(α+β)=cosαcosβ-sinαsinβ,这就是两角和的余弦公式,记为C(α+β).思考“用-β代替β”的换元方法体现在图形上有什么几何意义?能直接利用向量的数量积推出两角和的余弦公式吗?用“-β代替β”的几何意义就是作出角β关于x轴的对称图形.(一) 公式理解1. 结构特征:①左边是两角差的余弦,右边是同名积的和;②左边是两角和的余弦,右边是同名积的差.2. 公式中的α,β可以是任意的角(或式子).3. 当α,β中有一个是90°的整数倍时,用诱导公式比较简便.(二) 巩固概念问题5请利用两角和(差)的余弦公式证明cos=sinα.[5]cos=cos cosα+sin sinα=sinα.三、数学运用【例1】利用两角和(差)的余弦公式,求cos75°,cos15°,sin15°,tan15°.[6][处理建议]引导学生将75°, 15°转化为两个特殊角的和或差,正弦需转化为余弦.[规范板书]解(1) 方法1:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=.方法2:cos75°=cos(120°-45°)=cos120°cos45°+sin120°sin45°=.(2) 方法1:cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=.方法2:cos15°=cos(60°-45°)=cos60°cos45°+sin60°sin45°=.(3) sin15°=cos(90°-75°)=cos75°=.(4) tan15°===2-.[题后反思](1)两角差(和)的余弦公式也适用于形式上不是差(和)角,但可以拆分成两角差(和)的情形;(2)角的拆分可能有多种形式,要根据题目选择适当的拆分.变式化简cos+cos.[规范板书]解原式=cos cosα-sin sinα+cos cosα+sin sinα=cosα.【例2】不查表,求下列式子的值:(1) cos120°cos15°-sin120°sin15°;(2) cos58°sin77°+sin122°sin13°.[处理建议]本例是逆用两角和(差)的余弦公式求值,要引导学生构造公式中的结构.[规范板书]解(1)原式=cos(120°+15°)=cos135°=-.(2) 原式=cos58°cos13°+sin58°sin13°=cos(58°-13°)=.变式不查表,求cos215°-sin215°的值.[规范板书]解cos215°-sin215°=cos(15°+15°)=.[题后反思] 只有式子结构与公式结构完全相同时才能逆用公式,否则需对式子进行变形.【例3】已知sinα=,α∈,cosβ=-,β∈,求cos(α+β)的值.[处理建议]由公式C(α+β)可知,欲求cos(α+β),应先计算cosα,sinβ的值.cosα,sinβ是通过sin2x+cos2x=1(x为任意角)来求解的,要注意“±”的选取.[规范板书]解因为α∈,sinα=,所以cosα=-=-=-.又因为cosβ=-,β∈π,,所以sinβ=-=-=-,所以cos(α+β)=cosαcosβ-sinαsinβ=-×--×=.[题后反思]思考:在例3中,你能求出sin(α+β)的值吗?*【例4】若α,β为锐角,且满足cosα=,cos(α+β)=,求cosβ的值.[处理建议]先由学生自己分析解题思路,可能是“展开cos(α+β),与sin2β+cos2β=1联立,解方程组”.再引导学生观察发现α,α+β,β三个角之间的关系为β=(α+β)-α,用两角差的余弦公式求解.最后由学生比较两种方法的简易度,让学生体会拆角方法的简捷和思路的合理性.[规范板书]解因为α,β为锐角,所以0<α<, 0<β<, 0<α+β<π.因为cosα=,cos(α+β)=,所以sinα=,sin(α+β)=,所以cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=×+×=.[题后反思] 在“给式求值”问题中,要注意用已知角来表示所求角.如本题已知角为α+β和α,所求角是β,则β=(α+β)-α.变式已知cos(2α-β)=-,sin(α-2β)=,且<α<, 0<β<,求cos(α+β)的值.[处理建议]引导学生寻找已知角与所求角之间的关系,即(2α-β)-(α-2β)=α+β.由α,β的取值范围,分别求出2α-β,α-2β的正弦值和余弦值,再利用公式即可求解.[规范板书]解∵<α<, 0<β<,∴<2α-β<π,-<α-2β<.由cos(2α-β)=-,sin(α-2β)=,得sin(2α-β)=,cos(α-2β)=,∴cos(α+β)=cos[(2α-β)-(α-2β)]=cos(2α-β)·cos(α-2β)+sin(2α-β)·sin(α-2β)=×+×=.四、课堂练习1. 化简:cos(30°+α)-cos(30°-α)=-sinα.2. 化简:cos65°cos115°-cos25°sin115°=-1.提示原式=cos65°cos115°-sin65°sin115°=cos(65°+115°)=cos180°=-1.3. 已知sinα=,α∈,cosβ=-,β是第三象限角,则cos(α-β)=-.提示因为α∈,sinα=,所以cosα=-=-=-.又因为cosβ=-,β是第三象限角,所以sinβ=-=-=-,所以cos(α-β)=cosαcosβ+sinαsinβ=×+×=-.4. 已知α∈,cos=,则cosα=.提示因为α∈,所以α-∈,所以sin=-.因此,cosα=cos=cos-sin=.五、课堂小结1. 运用向量数量积的定义及坐标运算公式推导两角差的余弦公式,在两角差的余弦公式上用赋值法得到两角和的余弦公式.2. 两角和与差的余弦公式的结构特证.3. 三角变换时,注意角与角的关系(用已知角表示所求角).第2课时两角和与差的正弦(1)教学过程一、问题情境[1]如何求sin15°的值?二、数学建构问题1上节课中,我们是如何求sin15°的值?我们是将sin15°变换成cos75°,再利用两角和的余弦公式来计算.而sin15°=sin(45°-30°),有没有两角和(差)的正弦公式?问题2能否用上述方法,将sin(α+β)转化成某个角的余弦?sin(α+β)=cos.问题3上述中涉及三个角和的余弦,如何展开才能使结果只含有α,β的正弦和余弦?cos=cos=cos cosβ+sin sinβ=sinαcosβ+cosαsinβ,即sin(α+β)=sinαcosβ+cosαsinβ,这就是两角和的正弦公式,记为S(α+β).问题4能得到两角差的正弦公式吗?即sin(α-β)=.[2]解法一在两角和的正弦公式中,用-β代替β,就可以得到sin(α-β)=sinαcosβ-cosαsinβ,这就是两角差的正弦公式,记为S(α-β).解法二sin(α-β)=cos-(α-β)=cos-α+β=cos-αcosβ-sin-αsinβ=sinαcosβ-cosαsinβ.问题5能用同角三角函数的关系,由C(α±β)推导出S(α±β)?这样做有什么困难?用同角三角函数的关系推导时,会遇到符号确定的困难.问题6sin(β-α)的展开式是什么?它与sin(α-β)的展开式相同吗?为什么?sin(α-β)=sinβcosα-cosβsina,它与sin(α-β)的展开式互为相反数.因为正弦函数是奇函数,所以sin(β-α)=-sin(α-β).公式理解1. 结构特征:①左边是两角和的正弦,右边是异名积的和;②左边是两角差的余弦,右边是异名积的差.2. 公式中的α,β可以是任意的角(或式子).3. 运用公式要注意角及函数的位置排列顺序.4. 当α,β中有一个是90°的整数倍时,用诱导公式比较简便.三、数学运用【例1】已知sinα=-,α是第四象限角,求sin的值.[处理建议]由学生自己分析解题思路,教师引导学生注意cosα的正负.[规范板书]解因为sinα=-,α是第四象限角,所以cosα==,所以sin-α=sin cosα-cos sinα=×-×=.变式化简:sin+sin.[规范板书]解原式=sin cosα-cos sinα+=2sin cosα=cosα.【例2】已知α∈,sin=,求sinα的值.[处理建议]先由学生自己分析解题思路,可能是“展开sin,与sin2α+cos2α=1联立,解方程组”.再引导学生观察分析α,α+之间的关系,根据两角差的正弦公式求解.[规范板书]解因为α∈,所以α+∈,.又因为sin=,所以cosα+=,所以sinα=sin+α-=sin+αcos-cos+αsin=×-×=-.[题后反思](1)三角变换中要注意角与角的关系,如α=-,α=+等等.(2)利用平方关系确定cos时,一定要注意α+的范围.变式已知α∈,sin=,求sinα的值.[规范板书]解因为α∈,所以α+∈.又因为sin(α+)=,所以cosα+=±.(1) 当cos=-时,cos<cos,所以α+>,即α>(舍去).(2) 当cos=时,sinα=sin=sin cos-cos sin=×-×=-.【例3】已知cos(α+β)=,cosβ=,α,β均为锐角,求sinα的值.[处理建议]先由学生自己分析解题思路,可能是“展开cos(α+β),与sin2β+cos2β=1联立,解方程组”.再引导学生思考:在学习两角和差的余弦公式时,有类似的题目吗?是如何解决的?(将α看成是α+β与β的差,即α=(α+β)-β,再用两角差的正弦公式求解) [规范板书]解因为α,β均为锐角,所以α+β∈(0,π).又因为cos(α+β)=,cosβ=,所以sin(α+β)=,sinβ=,所以sinα=sin=sin(α+β)cosβ-cos(α+β)sinβ=×-×=.[题后反思] (1)在“给式求值”问题中,要注意用已知角来表示所求角.如本题已知角为α+β和β,所求角是α,则α=(α+β)-β.(2)在解三角函数问题时,常通过条件缩小角的范围,避免讨论.如将本题β的范围改为(0,π),则如何求解呢?(由cosβ=,β∈(0,π),得β∈)变式已知<α<, 0<β<,cos=,sin=,试求sin(α+β)的值.[处理建议]引导学生思考:(1) 本题中的已知角是什么?所求角是什么?两者间有什么关系?(已知角是+β,-α,所求角是α+β,两者间的关系是-=+(α+β))(2) 已知角的和是+(α+β),不是α+β,如何求sin(α+β)?(先求cos)[规范板书]解因为<α<, 0<β<,所以-α∈,+β∈.又因为cos=,sin=,所以sin=-,cos=-.所以cos=cos+β--α=cos+βcos-α+sin+βsin-α=-×+×-=-.又因为cos=-sin(α+β),所以sin(α+β)=.*【例4】cos33°cos12°-cos57°cos78°=.[处理建议]引导学生从公式结构出发,构造与公式相同的结构,逆用公式.[规范板书]解法一(用两角和的余弦公式)原式=cos33°cos12°-sin33°sin12°=cos(33°+12°)=.解法二(用两角差的正弦公式)原式=sin57°cos12°-cos57°sin12°=sin(57°-12°)=.[题后反思]逆用公式要注意公式的结构与条件结构是否相同.变式1求函数y=sinx+cosx的最大值.[处理建议]引导学生思考:(1) 正弦函数、余弦函数分别在何时取最大值?(正弦函数当x=2kπ+,k∈Z时取最大值,余弦函数当x=2kπ,k∈Z时取最大值)(2) 题中函数的最值是在x=2kπ+,k∈Z,或x=2kπ,k∈Z时取得吗?(3) 本题如何求最大值?[规范板书]解y=sinxcos+cosxsin=sin.当x+=2kπ+,k∈Z,即x=+2kπ,k∈Z时,函数y取得最大值1.[题后反思]本题还有其他解法吗?(y=sinxsin+cosxcos=cos.当x-=2kπ,k∈Z,即x=+2kπ,k∈Z时,函数y取得最大值1)变式2求函数y=sinx+cosx的最大值.[处理建议]引导学生发现变式1与变式2之间的关系.[规范板书]解y=2sinx+cosx=2sinxsin+cosxcos=2cos x-.当x-=2kπ,k∈Z,即x=+2kπ,k∈Z时,函数y取得最大值2.[题后反思]解题过程中提出的系数2与原系数1,有何关系?(2=)四、课堂练习1. 计算:sin69°cos99°-cos69°sin99°=-.2. 在△ABC中, A=,cos B=,则sin C=.提示∵ A=,∴cos A=sin A=.又∵cos B=,B∈(0,π),∴sin B=,∴sin C=sin(A+B)=sin A cos B+cos A sin B=.3. 函数y=sinx-cosx的最小值是-2.提示y=2=2sin x-.当x-=2kπ-,k∈Z,即x=2kπ-,k∈Z时,函数y 取得最小值-2.4. 已知cosα=,cos(α+β)=,且α,β都为锐角,求sinβ的值.解由已知条件可得sinα=,sin(α+β)=,所以sinβ=sin=sin(α+β)cosα-cos(α+β)sinα=×-×=.五、课堂小结1. 运用两角和与差的余弦公式及三角函数的诱导公式来推导两角和与差的正弦公式.2. 两角和与差的正弦公式的结构特征.3. 三角变换时,注意角与角的关系(用已知角表示所求角).第3课时两角和与差的正弦(2)教学过程一、问题情境化简:sin+cos.二、数学建构活动解决问题情境中的问题.解原式=sin2xcos-cos2xsin+cos2xcos-sin2xsin=sin2x-cos2x+cos2x-sin2x=0.问题1在“两角和与差的余弦”这一课中,我们曾发现在求解三角函数问题时,如果能注意到角与角的关系,可以减少运算量,那么这道题中涉及哪些角,它们有什么关系?从局部看,本题涉及2x,,,它们没有明显关系.从整体来看,本题涉及2x-,2x+,它们的关系为-=.问题2能否根据上述回答想到其他解决思路?原式=sin2x-+cos+2x-=sin2x--sin2x-=0.总结在求解三角函数问题时,要注意角与角之间的关系.三、数学运用【例1】求的值.[处理建议]引导学生寻找题中角的关系,将50°看成60°-10°,从而减少非特殊角的个数(消元的思想).[规范板书]解原式===.[题后反思](1) 通过寻找角与角间的关系,减少非特殊角的个数,这是三角变换的重要思路之一.(2) 思考:为什么不将10°改写成60°—50°?【例2】已知sin(2α+β)+2sinβ=0,cos(α+β)cosα≠0,求证:tanα=3tan(α+β).[处理建议]引导学生观察条件中的角与结论中的角之间的关系.[规范板书]证明sin(2α+β)+2sinβ=sin+2sin=[sin(α+β)c osα+cos(α+β)sinα]+2[sin(α+β)cosα-cos(α+β)sinα]=3sin(α+β)cosα-cos(α+β)sinα=0.又因为cos(α+β)cosα≠0,所以=,即tanα=3tan(α+β).【例3】已知sin(α+β)=,sin(α-β)=-,求的值.[处理建议]引导学生思考:(1) 条件是关于角的正弦,结论是关于角的正切,这种既含有正弦、余弦,又含有正切的问题,我们一般先做什么?(化切为弦,即求)(2) 要求,就要求sinαcosβ,cosαsinβ,条件中有吗?(只需将sin(α+β),sin(α-β)展开即可)[规范板书]解由已知条件得所以从而==×=.[题后反思](1)三角变换要会“执果索因”,如本例及例1中将所求角表示成已知角.(2)本例的解法体现了方程思想.(3)思考:从本例的解题过程可以看出,只要知道sin(α+β),sin(α-β)的值,就可以求出sinαcosβ,cosαsinβ.据此你能用α+β,α-β的正弦与余弦表示sinαcosβ,cosαsinβ,cosαcosβ,sinαsinβ吗?【例4】化简:sin(α+β)cosα-[sin(2α+β)-sinβ].[处理建议]引导学生观察2α+β,β,α+β,α四个角之间的关系,即2α+β=(α+β)+α,β=(α+β)-α,从而可将原三角函数式化为关于角α+β和α的三角函数式,再做适当整合、化简.[规范板书]解原式=sin(α+β)cosα-=sin(α+β)cosα-·2cos(α+β)sinα=sin(α+β)cosα-cos(α+β)sinα=sin=sinβ.[题后反思](1)正确逆用两角和与差的正、余弦公式,是化简三角函数式的基本途径.(2)化简三角函数式要从分析角的关系入手,即找题中角与角的关系,这是化简三角函数式的一个切入点.四、课堂练习1. 求的值.解原式====.2. 证明:=tan(α+β).证明左边===tan(α+β)=右边.五、课堂小结1. 三角变换时,要注意角与角的关系,会“执果索因”.2. 灵活运用两角和(差)公式进行简单的三角函数式的化简、求值和证明.第4课时两角和与差的正切(1)教学过程一、问题情境回顾“两角和与差的余弦”例1中求tan15°的过程,我们是先分别求出sin15°,cos15°,再由同角三角函数关系求出tan15°,那么能否由tan45°和tan30°直接求出tan15°呢?[1]二、数学建构问题1对于一般的角α,β,当α,β,α+β的正切值存在时,能由tanα,tanβ直接表示tan(α+β)吗?tan(α+β)===.问题2上述公式对于任意角α,β都成立吗?当α,β,α+β均不等于kπ+,k∈Z时,式子才成立,这就是两角和的正切公式,记为T(α+β).问题3如何由tanα,tanβ直接表示tan(α-β)?解法一tan(α-β)===.解法二用-β代换β,就可以得到tan(α-β)==.公式理解1. 结构特征:公式右边分子上的符号与左边的符号一致,而分母的符号与分子的符号相反;分子是两角正切值的和与差,分母含有两角正切值的积.2. 公式中的α,β,α+β,α-β的正切值都存在时,公式才能成立.三、数学运用【例1】(1) 已知tanα=,tanβ=,则tan(α+β)=;(2)已知tanα=3,则tan=.答案(1) 1;(2) -.[处理建议]本题是公式的直接运用,可让学生自己求解.变式1已知α,β均为锐角,且tanα=,tanβ=,则α+β=.[处理建议]引导学生思考:(1) 要求角的大小,先要求什么?(角的某个三角函数值和角的范围)(2) 本题中用哪个三角函数?为什么?(本题中用正切.一是因为题中涉及角的正切;二是因为α+β∈(0,π),且在此范围内一个正切值对应一个角)[规范板书]解tan(α+β)===1.又因为α,β均为锐角,所以α+β∈(0,π),所以α+β=.[题后反思]求角的大小,先求角的某一三角函数值和角的范围.变式2如图,三个相同的正方形相接,求证:α+β=.(变式2)[处理建议]引导学生选择适当的三角函数求解.[规范板书]解法一由题可知tanα=,tanβ=,所以tan(α+β)===1.又因为α,β均为锐角,所以α+β∈(0,π),所以α+β=.解法二由题可知cosβ=,sinβ=,cosα=,sinα=,所以cos(α+β)=cosαcosβ-sinαsinβ=×-×=.又因为α,β均为锐角,所以α+β∈(0,π),所以α+β=.【例2】已知=4+,求tan的值.[处理建议]先由学生自己分析解题思路,可能会有两种:一是由已知求出tanα的值,然后由两角差的正切公式求出tan;二是由=tan直接得到答案.引导学生观察条件和结论之间的关系,学会用整体思想去分析问题.[规范板书]解法一由=4+,解出tanα=-,所以tan==4+.解法二tan==4+.变式1求值:.[规范板书]解原式==tan(45°-15°)=.变式2求值:.[规范板书]解原式==tan(60°-15°)=1.【例3】已知tanα与tanβ是方程x2-3x-3=0的两个根,求tan(α+β)的值.[处理建议]本题可以先直接求出tanα,tanβ,然后利用公式求tan(α+β);也可以用韦达定理先求tanα+tanβ,tanαtanβ,然后利用公式求tan(α+β).再让学生比较这两种方法的繁易程度.[规范板书]解法一因为方程x2-3x-3=0的两个根为,所以tanα+tanβ=3,tanαtanβ=-3,所以tan(α+β)===.解法二由题可知Δ=(-3)2-4×(-3)=12>0,所以tanα+tanβ=3,tanαtanβ=-3,所以tan(α+β)===.变式已知tanα与tanβ是方程x2-3x-3=0的两个根,求sin2(α+β)-3sin(α+β)cos(α+β)-3cos2(α+β)的值.[规范板书]解由题可知Δ=(-3)2-4×(-3)=12>0,所以tanα+tanβ=3,tanαtanβ=-3,所以tan(α+β)===.故sin2(α+β)-3sin(α+β)cos(α+β)-3cos2(α+β)====-3.(例4)*【例4】如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A, B两点,已知A, B的横坐标分别为,.(1) 求tan(α+β)的值;(2) 求α+2β的值.[处理建议]引导学生根据三角函数的定义,求出tanα,tanβ,从而求出tan(α+β)和tan(α+2β),并通过α+2β的范围确定α+2β的大小.[规范板书]解由题意知cosα=,cosβ=,又α,β为锐角,∴sinα=,sinβ=.因此tanα=7,tanβ=.(1) tan(α+β)==-3.(2) tan(α+2β)=tan==-1.∵α,β为锐角,∴ 0<α+2β<,∴α+2β=.(变式)变式 如图, A , B 是单位圆O 上的点,且A 点坐标为, B 在第二象限, C 是圆O与x 轴正半轴的交点,△A O B 为正三角形,求tan ∠B O C 的值.[规范板书] 解 由题可知tan ∠A O C =, ∴ tan ∠B O C =tan (∠A O C +60°)====-.四、 课堂练习1. 已知tanα=-2, tanβ=5,则tan (α-β)=.2. 计算:=-.提示 原式==tan (45°+75°)=-.3. 已知α为锐角, cosα=,则tan =-3. 提示 由cosα=, α为锐角,得sinα=,则tanα=2,所以tan==-3.4. 已知0<α<, 0<β<,且tanα, tanβ是方程3x 2+4x-1=0的两根,求α+β的值.解 因为方程3x 2+4x-1=0的两根为,所以tanα+tanβ=-, tanα·tanβ=-,则tan (α+β)===-1.又0<α<, 0<β<,所以α+β∈(0, π), 故α+β=.五、 课堂小结1. 运用两角和与差的正弦、余弦公式推导两角和与差的正切公式.2. 两角和与差的正切公式的结构特征和角的限制.3. 求角的步骤:先求出某个三角函数值,再根据角的范围求解.第5课时 两角和与差的正切(2)教学过程一、 问题情境 已知tan (a+4)=2,则tanα= . 二、 数学建构活动 解决问题情境中的问题. 解 tan==2,解得tanα=.问题1 本题条件中的角与结论中的角分别是什么? 条件中的角是α+,结论中的角是α.问题2在即时体验2中,我们是如何求cosα的?先用条件中的角表示结论中的角,即α=-,再用两角差的余弦公式求解.问题3本题还有其他解法吗?tanα=tan+α-==.三、数学运用【例1】已知tan=2,tan=3,求tan(α+β)的值.[处理建议]先由学生自己分析解题思路,可能的思路有两个:一是由tan=2求出tanα,由tan=3求出tanβ,然后再求tan(α+β);二是由-=+α+β,先求出tan,而后再求tan(α+β).再引导学生比较两种方法的繁简程度.[规范板书]解∵tan+α+β=tanβ+--α===,∴tan(α+β)=tan===.[题后反思]在三角函数“给式求值”问题中,要注意已知角与所求角之间的关系.【例2】证明:tan x-tan=.[处理建议]用问题:“本题中涉及几个角?它们有什么关系?”引导学生寻找角与角之间的关系.[规范板书]证明右边====tan-tan=左边.变式已知sin(2α+β)=5sinβ,求证:3tanα=2tan(α+β).[规范板书]证明由题可知sin(α+β)+α=5sin,则sin(α+β)cosα+cos(α+β)sinα=5,化简得4sin(α+β)cosα=6cos(α+β)sinα,两边同除以cosαcos(α+β)得3tanα=2tan(α+β).【例3】求tan23°+tan37°+tan23°tan37°的值.[处理建议]引导学生由式中含有两角正切值的和与积,联想到两角和差的正切公式.[规范板书]解原式=tan(23°+37°)(1-tan23°tan37°)+tan23°tan37°=.[题后反思] 当题中出现两角正切值的和(差)与积时,要联想到两角和(差)的正切公式的变形:tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtanβ).变式在斜三角形ABC中,求证:tan A+tan B+tan C=tan A tan B tan C.[处理建议]引导学生分析式子的结构,发现式子中含正切值的和与积.[规范板书]证明在斜三角形ABC中,有A+B+C=π,即A+B=π-C,且A, B,A+B≠,所以左边=tan(A+B)(1-tan A tan B)+tan C=tan(π-C)(1-tan A tan B)+tan C=tan A tan B tan C=右边.[题后反思]一般地,当角A, B, C满足什么条件时,能使等式tan A+tan B+tan C=tan A tan B tan C成立?(一般地,当A+B+C=kπ,k∈Z时,此结论成立)【例4】如图(1),两座建筑物AB, CD的高度分别为9m和15m,从建筑物 AB的顶部A看建筑物 CD的张角∠CAD=45°,求建筑物AB与CD的底部之间的距离BD.(例4(1))(例4(2))[处理建议]引导学生通过作 CD的垂线 A E,将中涉及到的量转移到两个直角三角形中.[规范板书]解如图(2),作A E⊥CD于E.因为AB∥CD, AB=9, CD=15,所以D E=9,E C=6.设A E=x,∠CA E=α.因为∠CAD=45°,所以∠DA E=45°-α.在Rt△A E C和Rt△A E D中,有tanα=,tan(45°-α)=.因为tan(45°-α)=,所以=,解得x=18,x=-3(舍去).答:建筑物 AB与 CD的底部之间的距离 BD为18m.四、课堂练习1. 已知tan(α-β)=,tan=,则tan=.提示tanα+=tan(α-β)+β+=.2. 计算:=.提示原式===.(第3题)3. 如图,在矩形ABCD中,AB=a, BC=2a,在BC上取一点P,使得AB+B P=P D,求tan∠A P D的值.解由AB+B P=P D,得a+B P=,解得B P=a,故C P=a.设∠A P B=α,∠D P C=β,则tanα==,tanβ==,所以tan(α+β)==-18,所以tan∠A P D=tan(π-α-β)=-tan(α+β)=18.五、课堂小结1. 三角变换时,要注意角与角的关系,学会“执果索因”.2. 当条件中出现两角正切值的和(差)时,会用两角和(差)的正切公式的变形解题.第6课时二倍角的三角函数(1)教学过程一、问题情境问题我们已经知道函数y=sin2x与y=sinx的图象关系,也知道α+β的正弦、余弦和正切可用α,β的正弦、余弦和正切来表示,那么角α的三角函数和角2α的三角函数之间有怎样的数量关系?[1]在S(α+β), C(α+β),T(α+β)公式中,令β=α,就可以得到结果:sin2α=2sinαcosα(S2α);cos2α=cos2α-sin2α(C2α);tan2α=(T2α).二、数学建构问题1二倍角公式中,角有限制吗?二倍角的正弦、余弦公式中的角是任意角,但二倍角的正切公式中,2α≠+kπ,α≠+kπ,k∈Z.问题2二倍角的余弦公式中,同时出现了sin2α,cos2α,能否只保留一个?能.cos2α=2cos2α-1,cos2α=1-2sin2α.三、数学运用【例1】已知sinα=,α∈,求sin2α,cos2α,tan2α的值.[2][处理建议]引导学生先求出cosα的值,然后正确运用二倍角公式计算.[规范板书]解因为sinα=,α∈,所以cosα=-.于是,sin2α=2sinαcosα=2××=-,cos2α=1-2sin2α=1-2×=-,tan2α==×=.[题后反思] (1)还有其他方法求tan2α吗?(tanα==-,tan2α=)(2)已知sinα,求cos2α时,用公式cos2α=1-2sin2α可以避免讨论.若用sin22α+cos22α=1求解,则cos2α=±.哪种是错误答案,如何修正?(cos2α=±是错的.因为sinα=,α∈,所以α∈, 2α∈,所以cos2α=-)(3)已知角的某个三角函数值及范围,可以缩小角的范围.变式已知sinα=0.8,α∈,求sin2α,cos2α的值.[规范板书]解因为sinα=0.8,α∈,所以cosα=0.6,所以sin2α=2sinαcosα=0.96,cos2α=1-2sin2α=-0.28.【例2】化简:(1) cos cos ;(2) cos4-sin4;(3) .[处理建议]引导学生从公式的结构出发,构造与公式相同的结构,逆用公式.[规范板书]解(1)原式=cos sin==sin=.(2) 原式=cos2-sin2cos2+sin2=cos2-sin2=cosα.(3) 原式=·=tan45°=.[题后反思] (1)公式变形:sinαcosα=sin2α;(2)倍角公式中的倍角是相对的,如4α是2α的倍角,α是的倍角等.变式(1) 计算:-=4;(2)化简:-=tan2α.[规范板书]解(1)原式====4.(2) 原式==tan2α.【例3】求证:=.[处理建议]引导学生思考:(1) 式子左右两边有什么差异?(从角的差异来看,左边角是右边角的二倍;从名称的差异来看,题中涉及正弦、余弦和正切)(2) 三角变换时,从哪个差异入手比较简单?(从角的差异入手)[规范板书]证明左边====tan2θ==右边.∴原式得证.[题后反思] (1)三角变换时,首先要找到角与角之间的关系,如倍角关系、α=(α+β)-β等.(2)当题中出现1+cosα, 1-cosα时,要想到用倍角公式消1.变式若270°<α<360°,则=-cos.[处理建议]引导学生对结构“1+cos2α”进行变形,同时要注意开方后“±”的选取.[规范板书]解因为270°<α<360°,所以135°<<180°,cosα>0,cos<0.原式=====-cos.四、课堂练习1. 计算:(1) (sin15°+cos15°)2=.(2) sin22°30'cos22°30'=.(3) -=.(4) sin2-cos2=-.2. 求证:=tan(+x).证明====tan.五、课堂小结1. 运用两角和的正弦、余弦、正切公式推导出二倍角公式.2. 注意二倍角正切公式中角的限制.3. 三角变换技巧:①变名;②变角;③变结构.第7课时二倍角的三角函数(2)教学过程一、数学运用【例1】已知sinθ+cosθ=,θ∈,求sinθ·cosθ,sin2θ,cos2θ,sinθ,cosθ的值.[处理建议]先由学生自己分析解题思路,可能是“联立方程sinθ+cosθ=与sin2θ+cos2θ=1求解”.再引导学生思考:(1)能否不通过sinθ,cosθ,直接求出sinθcosθ,sin2θ,cos2θ?(2) 结论中的sinθcosθ在条件中并没有出现,如何才能出现?(只需将sinθ+cosθ=平方即可)[规范板书]解法一由sinθ+cosθ=,得sinθ=-cosθ,将其代入恒等式sin2θ+cos2θ=1,得+cos2θ=1,化简得50cos2θ-10cosθ-24=0,解得cosθ=-或cosθ=.又因为θ∈,所以cosθ=-,则sinθ=-cosθ=,于是sinθ·cosθ=-,sin2θ=-,cos2θ=1-2sin2θ=1-2×=-.综上所述,sinθ·cosθ=-,sin2θ=-,cos2θ=-,sinθ=,cosθ=-.解法二由题意知(sinθ+cosθ)2=1+2sinθcosθ=,所以sinθcosθ=-,sin2θ=-.又因为θ∈,所以2θ∈,故cos2θ=-.(cosθ-sinθ)2=1-2sinθcosθ=,又因为θ∈,所以cosθ-sinθ=-,与sinθ+cosθ=联立,解得sinθ=,cosθ=-.综上所述,sinθ·cosθ=-,sin2θ=-,cos2θ=-,sinθ=,cosθ=-.[题后反思](1)三角变换时要会“执果索因”,即用已知条件构造结果中的结构.(2)sinα+cosα,sinα·cosα,sinα-cosα三者之间可以互相转化.变式将例1中“θ∈”改为“θ∈(0,π)”.[处理建议]在解题过程中,引导学生根据结果适当缩小角的范围.[规范板书]解法一由sinθ+cosθ=,得sinθ=-cosθ,将其代入恒等式sin2θ+cos2θ=1,得+cos2θ=1,化简得50cos2θ-10cosθ-24=0,解得cosθ=-或cosθ=,代入sinθ=-cosθ,所以或又因为θ∈(0,π),所以以下同例1的解法一.解法二由题可知(sinθ+cosθ)2=1+2sinθcosθ=,所以sinθcosθ=-,sin2θ=-.又因为θ∈(0,π),所以θ∈.又因为sinθ+cosθ=>0,所以θ∈,即2θ∈,故cos2θ=-.以下同例1题的解法二.[题后反思] 三角函数问题常需根据条件缩小角的范围,以避免讨论.【例2】已知sin=,0<θ<,求cos2θ,cos的值.[处理建议]引导学生寻找条件中的角与结论中角的关系.关系有两种:一是将条件中的-θ转化成θ求解;二是条件中角的两倍与结论中的2θ的和是,即2+2θ=.[规范板书]解法一因为0<θ<,所以-θ∈.又因为sin=,所以cos=,所以sinθ=sin--θ=cos-θ-sin-θ==,cosθ=.于是,cos2θ=1-2sin2θ=,cos=(cosθ-sinθ)=.解法二因为0<θ<,所以-θ∈.又因为sin=,所以cos-θ=,所以sin-2θ=2sin-θcos-θ=2××=,即cos2θ=,cos+θ=cos--θ=sin-θ=.[题后反思]三角变换时,要注意题中角与角的关系:如是否可以用一(两)个角表示其他角;α±β,α±2β是否特殊角等.变式设sin=,则sin2θ=-.[处理建议]引导学生思考:题中的角+θ与结论中的角2θ之间有什么关系?2+θ-2θ=[规范板书]解cos=cos2+θ=1-2sin2+θ=,所以sin2θ=-cos=-.【例3】化简:sin2α-+sin2α+-sin2α.[处理建议]引导学生分析式中角的关系与结构特征.[规范板书]解法一原式=+-sin2α=sin2α+cos2α-sin2α=.解法二由倍角公式cos2α=1-2sin2α,得sin2α=,于是,原式=+-=-=-=.[题后反思](1)二倍角余弦公式的变形(降幂公式):sin2α=,cos2α=.(2) 三角变换也可从“变结构”入手,常见的结构有1+cosα, 1-cosα等.变式求证:cos8α-sin8α=cos2α(1-sin22α).[处理建议]引导学生思考:(1)式子的左右两边有什么差异?(结构上的差异:三角函数的次方不同;角上的差异:角α与角2α有倍角关系)(2)本题从什么差异入手比较简单?(从结构入手,将左边的次数降低)[规范板书]证明左边=(cos4α-sin4α)(cos4α+sin4α)=(cos2α-sin2α)(cos2α+sin2α)(cos4α+sin4α)=cos2α·(cos2α+sin2α)2-2sin2αcos2α=cos2α·1-2sin2αcos2α=cos2α·=右边.*【例4】在半圆钢板上截取一块矩形材料,怎样截取能使这个矩形的面积最大?[处理建议]引导学生作图,并选择圆心角∠B O A(θ)为自变量,建立关于θ的函数,同时注意应用题的书写规范.[规范板书](例4)解如图,设∠B O A=θ,且θ为锐角,半圆的半径为R,则面积最大的矩形ABCD必内接于半圆O,且两边长分别为AB=Rsinθ, DA=2O A=2Rcosθ,所以这个矩形的面积S=AB·DA=Rsinθ·2Rcosθ=R2sin2θ.所以当sin2θ=1(θ为锐角),即θ=45°时,矩形ABCD的面积取得最大值R2.此时AD=R, AB=R.答:当这个矩形的两边长与半圆的半径的比是1∶2∶时,所截矩形的面积最大.[题后反思]求解与圆有关的最值问题时,常以圆心角为自变量.变式在一个圆的所有内接矩形中,怎样的矩形面积最大?[规范板书]解设ABCD是☉O的内接矩形,☉O半径为R,∠ACB=θ,则AB=2Rsinθ, BC=2Rcosθ,所以矩形ABCD的面积S=AB·BC=4R2sinθcosθ=2R2sin2θ.当sin2θ=1(θ为锐角),即θ=45°时,矩形ABCD的面积最大.二、课堂练习1. 已知sin=,则sin2x=.提示sin2x=cos-2x=cos2-x=1-2sin2-x=1-2×2=.2. 如果sin2α=,α∈,那么cosα-sinα=-.提示(cosα-sinα)2=1-sin2α=,又α∈,所以cosα-sinα<0,故cosα-sinα=-.3. 化简:cos2θ+cos2+cos2.解法一原式=++=+++=.解法二原式=cos2θ++=cos2θ+cos2θ+sinθcosθ+sin2θ+cos2θ-sinθcosθ+sin2θ=.三、课堂小结1. sinα+cosα,sinαcosα,sinα-cosα三者之间的转化.2. 三角变换技巧:①变名(化切为弦);②变角(用已知角表示所求角);③变结构(降幂公式).第8课时本章复习教学过程一、数学运用【例1】化简:.[处理建议]观察分析待化简的式子,可以看到分子较容易处理,它是二倍角余弦公式的逆用.分母相对复杂,从名称看,有弦有切;从角看,两个角与分子中的角都不同,但-α,+α互余;从结构看,涉及正弦的平方.而后请学生从式子“角”、“结构”上的差异着手,使用不同的公式求解.[规范板书]解法一原式=(复角化单角) =(化切为弦)==1.(化简繁分式)解法二原式=(将分母化同角) =(化切为弦)===1.(逆用二倍角正弦公式) [题后反思]三角变换的实质是灵活地运用公式进行运算,在这个过程中,要从“名”、“角”、“结构”上的差异入手.变式化简:.[规范板书]解原式=·=·tan10°=·=-2.【例2】若sin=,则cos=-.[处理建议]引导学生找出已知角与所求角,并找出两角之间的关系:2+=π.[规范板书]解cos+2α=cosπ-2-α=-cos2-α=2sin2-π-1=-.[题后反思]三角变换过程中要注意寻找题中角与角的关系.变式1设α为锐角,若cos=,则sin=.[规范板书]解∵α为锐角,∴<α+<.又cos=,∴sin=.∴sin=2sin cos=,cos=2cos2-1=.∴sin=sin=sin cos-cos sin=.[题后反思]本题是2012年江苏高考卷第11题,解题的关键是寻找所求角与已知角之间的关系.本题也可以先求出sinα和cosα的值,从而可求得sin2α和cos2α的值,进一步可求得sin的值.变式2已知函数f(x)=sin+cos,x∈R.(1) 求f(x)的最小正周期和最小值;(2) 已知cos(β-α)=,cos(β+α)=-, 0<α<β≤,求证:-2=0.[规范板书]解(1)因为f(x)=sin+sin x-+=2sin x-,所以T=2π,f(x)的最小值为-2.(2) 由已知可得cosβcosα+sinβsinα=,cosβcosα-s inβsinα=-,两式相加得2cosαcosβ=0.又因为0<α<β≤,所以β=,所以-2=-2=0.【例3】已知函数f(x)=sin-cos+2cos2x.(1) 求f的值;(2) 求f(x)的最大值及相应x的值.[处理建议]第(1)问可直接代入化简、求值;第(2)问需将函数f(x)化为A sin(ωx+φ)+B 的形式.[规范板书]解(1) f=sin2×+-cos2×++2cos2=sin-。
数学教案三角恒等变换数学教案:三角恒等变换引言:三角恒等变换是高中数学中的重要内容,它在解题过程中具有广泛的应用。
本教案将通过多种实例,引导学生理解三角恒等变换的概念、性质及应用,提高学生解决三角函数相关问题的能力。
一、知识导入:基本概念与性质(500字左右)1. 引入:提出实际中的三角形问题,引发学生思考三角形之间的关系。
2. 提出三角恒等变换的概念,并解释其意义和用途。
3. 结合基本三角函数的定义,介绍三角恒等变换的性质和基本公式。
二、基本恒等变换(500字左右)1. 说明三角恒等变换的基本形式,并给出示例。
2. 推导和解释基本恒等变换的推导过程,帮助学生理解其中的数学原理。
3. 针对不同类型的三角函数,列举相应的基本恒等变换公式。
三、应用实例一:解三角方程(500字左右)1. 提供一些实际问题,通过三角恒等变换的方法,将其转化为解方程的问题。
2. 引导学生通过恒等变换的方式,解决多种类型的三角方程。
3. 鼓励学生总结解题方法和技巧,帮助他们深入理解三角恒等变换的实际应用。
四、应用实例二:三角函数的求值与简化(500字左右)1. 提供一些实际问题,要求学生利用三角恒等变换简化复杂的三角函数式子。
2. 引导学生通过代入不同的角度值,比较不同的三角函数值,推导出恒等变换的结果。
3. 帮助学生发现并总结三角函数简化的一般规律。
五、综合应用:证明三角恒等式(500字左右)1. 提出一些已知的三角恒等式,要求学生通过恒等变换的方式来证明其正确性。
2. 指导学生进行恒等变换的证明过程,注重逻辑推理和数学推导的合理性。
3. 提供一些挑战性问题,鼓励学生运用恒等变换证明复杂的三角恒等式。
六、总结与拓展(200字左右)1. 总结三角恒等变换的基本思想和方法,强调其在解题中的重要性。
2. 提供一些额外的拓展问题,引导学生进一步思考和应用所学的三角恒等变换知识。
3. 引导学生关注数学以及实际生活中的三角形相关问题,并从中发现和解决问题的方法。
高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。
2、能够运用三角恒等式进行简单的三角恒等变换。
3、培养学生的逻辑推理能力和数学运算能力。
教学重点1、三角恒等式的理解和记忆。
2、三角恒等变换的方法和步骤。
教学难点三角恒等式的灵活运用和复杂三角表达式的化简。
教学准备1、多媒体课件,包含三角恒等式、例题和练习题。
2、黑板和粉笔。
教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。
提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。
2、通过实例演示如何使用三角恒等式进行三角恒等变换。
3、引导学生总结三角恒等变换的.一般方法和步骤。
三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。
教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。
四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。
鼓励学生相互讨论,分享解题思路和方法。
五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。
布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。
教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。
但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。
在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。
同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。
高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。
能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。
简单的三角恒等变换(2)一、教学目标1、通过三角恒等变形,形如x b x a cos sin +的函数转化为)sin(ϕ+=x A y 的函数;2、灵活利用公式,通过三角恒等变形,解决函数的最值、周期、单调性等问题。
二、教学重点与难点重点:三角恒等变形的应用。
难点:三角恒等变形。
三、教学过程(一)复习:二倍角公式。
(二)典型例题分析︒︒︒+︒︒⋅︒=10cos 10sin 30cos 10cos 30sin 50sin 2︒︒⋅︒=10cos 40sin 40cos 2 110cos 10cos 10cos 80sin =︒︒=︒︒=. 例3.已知函数x x x x x f 44sin cos sin 2cos )(--=(1) 求)(x f 的最小正周期,(2)当]2,0[π∈x 时,求)(x f 的最小值及取得最小值时x 的集合.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.例4.若函数]20[cos 22sin 3)(2π,m x x x f 在区间++=上的最大值为6,求常数m 的值及此函数当R x ∈时的最小值及取得最小值时x 的集合。
(三)练习:教材P142面第4题。
(四)小结:(1) 二倍角公式:.tan 1tan 22tan ,sin 11cos 2sin cos 2cos ,cos sin 22sin 22222ααααααααααα-=-=-=-==(2)二倍角变式:αααα2cos 1sin 2,2cos 21cos 222-=+=(3)三角变形技巧和代数变形技巧常见的三角变形技巧有①切割化弦;②“1”的变用;③统一角度,统一函数,统一形式等等.(五)作业:《习案》作业三十四。
简单的三角恒等变换教案(一)一.教学目标1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力。
2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用。
3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.二、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.三、教学设想:(一)复习:三角函数的和(差)公式,倍角公式(二)新课讲授:1、由二倍角公式引导学生思考:2αα与有什么样的关系?学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台. 例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin 2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=. 又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2.已知135sin =α,且α在第三象限,求2tan α的值。
人教版高中必修43.2简单的三角恒等变换教学设计一、教学目标1.理解三角恒等变换的相关概念;2.掌握三角恒等变换的基本性质;3.能够运用三角恒等变换解决实际问题。
二、教学重点和难点教学重点:三角恒等变换的基本性质。
教学难点:如何应用三角恒等变换解决实际问题。
三、教学准备1.教师准备好课件;2.准备好白板笔、橡皮、直尺和三角板等教学用具。
四、教学过程1. 导入环节教师首先通过简单的实例热身,让学生了解三角恒等变换的概念和作用。
例如:已知 $\\sin x=\\dfrac{3}{5}$,求 $\\cos x$ 和 $\\tan x$。
2. 讲授环节(1)三角恒等变换的定义教师通过课件和白板,讲解三角恒等变换的概念和定义。
(2)三角恒等变换的基本性质教师通过课件和三角板等教学用具,讲解三角恒等变换的基本性质。
例如,$\\sin(\\pi+\\theta)=-\\sin\\theta$,$\\cos(\\pi+\\theta)=-\\cos\\theta$,$\\tan(\\pi+\\theta)=\\tan\\theta$ 等。
(3)三角恒等变换的应用教师通过课件和实例,讲解如何应用三角恒等变换解决实际问题。
例如,根据所学的三角恒等变换,求证$\\sin\\left(\\dfrac{\\pi}{4}+\\theta\\right)=\\cos\\left(\\dfrac{\\pi}{ 4}-\\theta\\right)$。
3. 练习环节教师布置一些练习题,让学生在课堂上完成。
例如:已知 $\\cos\\alpha=-\\dfrac{3}{5}$,求$\\sin(90^{\\circ}+\\alpha)$ 和 $\\tan\\alpha$。
4. 总结环节教师通过回顾本节课的重点和难点,让学生对本节课所学内容有较深刻的认识和理解。
五、教学反思本节课是关于三角恒等变换的基本性质和应用,学生反应良好,能够很好地理解和掌握三角恒等变换的基本性质,在实例应用中也表现出较好的运用能力。
第三章三角恒等变换密云县编写组第一部分:第三章的教学设计一、教材分析1.教学内容本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.2.在模块内容体系中的地位和作用在第一章三角函数的学习的基础上,学习简单的三角变换是对三角函数的进一步深化也是为必修5中的解三角形做铺垫.3.总体教学目标(1)了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;(2)理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;(3)运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.4.重点、难点分析本章内容的重点是两角差的余弦公式的推导及在推导过程中体现的思想方法,同时也是难点.5.其他相关问题本章内容安排贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容”的理念,严格控制了三角变换及应用的繁、难程度,尤其注意了不以半角公式,积化和差以及和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习.二、教学方式概述应以教师为主导学生为主体的启发式教学为主,以学生为主体探究式教学为辅.三、教学资源概述充分利用多媒体课件四、教学内容及课时安排建议 1.本章知识结构如下图:2.教学内容本章的内容分为两节:“两角和与差的正弦、余弦和正切公式”,“简单的三角恒等变换”. (1)三角恒等变换的学习以代数变换与同角三角函数式的变换的学习基础,和其他数学变换一样,它包括变换的对象,变换的依据和方法等要素.本章变换的对象要由只含一个角的三角函数拓展为包含两个角的三角函数式,因此建立起一套包含两个角的三角函数式变换的公式.(2)本章是以两角差的余弦公式作为基础来推导其它的公式,具体过程如下:()()()()22,,C C S T C S T αβαβαβαβααε-+±±→→→→(3)本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,暗线是发展推理和运算的能力,因此在本章全部内容的安排上,特别注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,使他们能够依据三角函数的特点,逐渐明确三角变换不仅包括式子结构形式变换,还包括式子中的角的变换,以及不同三角函数之间的变换,引导学生逐渐拓广有关公式在变换过程中的作用,强化运用数学思想方法指导设计变换思路的意识,并且也注意了引导的层次性和渐进性. 3.课时分配本章教学时间约8课时,具体分配如下:3.1两角和与差的正弦、余弦、和正切公式 约4课时 3.2简单的恒等变换 约3课时 复习 约1课时§3.1 两角和与差的正弦、余弦和正切公式一、学习目标:本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用. 二、教学重点与难点1. 重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;2. 难点:两角差的余弦公式的探索与证明. 三、教学内容安排3.1.1 两角差的余弦公式两角差的余弦公式的推导是本节的重点和难点,尤其是要引导学生通过主动参与,独立探索,自己得出结果更是难点.教科书P136章前图由实际例子引出已知两个角的正弦、余弦、正切来研究这两个角和、差的正弦、余弦、正切.这是实际的需要是为了解决实际问题所以我们要研究两角差的余弦公式()cos ?αβ-=、两角和的余弦公式()cos ?αβ+=两角差的正弦公式()sin ?αβ-=、两角和的正弦公式()sin ?αβ+=等知识.探究过程:1.通过展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到c o s ()c o s c o s s αβαβαβ-=+,认识两角差余弦公式的结构. 2.引导用向量法证明两角差余弦公式.然后通过两个例题来巩固所学公式例1利用和、差角余弦公式求cos 75、cos15的值. 解:分析:把15构造成两个特殊角的和、差.()231cos15cos 4530cos 45cos30sin 45sin 302=-=+=⨯= 点评:本例说明差角余弦公式也适用于形式上不是差角,但可以拆分成两角差的情形.实际上,由于公式对任意角都成立,因此在使用公式时应当根据需要对角进行灵活表示.例如:()cos15cos 6045=-,要学会灵活运用.本例结束后思考如何求sin 75,引导用诱导公式sin()cos 2παα-=,为后面推导出正弦两角和与差公式做准备. 例2已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭本例是运用两角差的基础题,主要训练学生思维的有序性,逐步培养学生良好思维习惯. §3.1.2 两角和与差的正弦、余弦、正切公式本节课以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.通过上节课的学习推导出了两角差的余弦,引导学生推导两角和的余弦公式,然后引导学生推出两角和与差的正弦公式和正切公式. 例3已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.解:因为3sin ,5αα=-是第四象限角,得4cos 5α===,3sin 35tan 4cos 45ααα-===- ,于是有43sin sin cos cos sin 444252510πππααα⎛⎫⎛⎫-=-=--=⎪ ⎪⎝⎭⎝⎭43cos cos cos sin sin 444252510πππααα⎛⎫⎛⎫+=-=--=⎪ ⎪⎝⎭⎝⎭3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭本例是运用和差角公式的基础题,要注意认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要做什么准备.还要重视思维过程的表述,不能只看结果而不顾过程表述的准确性和简洁性.解答完本例可以把条件是α是第四象限角去掉,让学生考察结果和求解过程会有什么影响.引导学生正确使用分类讨论的方法. 例4利用和(差)角公式计算下列各式的值:(1)sin 72cos 42cos72sin 42-;(2)cos 20cos70sin 20sin 70-;(3)1tan151tan15+-.解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.(1)()1sin 72cos 42cos72sin 42sin 7242sin 302-=-==; (2)()cos 20cos70sin 20sin 70cos 2070cos900-=+==;(3)()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--.本例体现了对公式的全面理解上的要求,即要求学生能够从正(从左到右使用公式)、反(从右到左使用公式)两个角度使用公式.与正用相比反用表现的是一种逆向思维,他不仅要求有一定的逆向思维意识,对思维的灵活性要求较高,而且对公式要求更全面更深刻的理解. §3.1.3 二倍角的正弦、余弦和正切公式本节以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.学生先回顾一下两角和的正弦、余弦和正切公式,由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), 公式推导:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--. 注意:2,22k k ππαπαπ≠+≠+ ()k z ∈例题讲解 例5已知5sin 2,,1342ππαα=<<求sin 4,cos 4,tan 4ααα的值. 解:由,42ππα<<得22παπ<<.又因为5sin 2,13α=12cos 213α===-.于是512120sin 42sin 2cos 221313169ααα⎛⎫==⨯⨯-=- ⎪⎝⎭; 225119cos 412sin 21213169αα⎛⎫=-=-⨯=⎪⎝⎭;120sin 4120169tan 4119cos 4119169ααα-===-. 通过本例要求学生对“倍”的相对性有一定的认识,灵活运用“倍” 的变换,体现了思维的灵活性,对学生推理能力的发展起到很好的推导作用. 例6 在ABC ∆中,4cos 5A =,tan 2B =,求tan(22)A B +的值.本例采用两种方法来解决:一种是先求出tan 2A 和tan 2B 从而求出tan(22)A B +,另一种是先求出tan()A B +再求出tan(22)A B +.这两种方法都是对倍角公式与和角公式的联合运用,本质上没有什么区别.值得注意的是在三角形的背景下研究问题,会带来一些隐含条件,如0,A A B C ππ<<++=等,教学中可以在学生自己尝试解决问题后,引导他们进行适当的小结.学生基础较好的班级可以直接求tan 2C 的值.四、教学资源建议 充分利用多媒体课件五、教学方法与学习指导策略建议以问题为核心,采用启发式教学.指导学生如何根据以学知识推导本章的十一个公式. 六、课堂评价建议1.情绪变化:通过探究活动学生表现出来的情绪变化,给每名同学打分.2.参与度:从课堂积极举手回答问题情况和自主探究的情况来了解,学生是否动手实践,对教师提出的问题是否是进行深层次的思考.3.讨论交流:小组讨论时能否能阐述自己的观点,对不同的观点进行分析,每组组长根据学生的表现情况给每名同学打分.4.学习水平:通过课后访谈和作业分析来了解学生的学习水平是否提高.5.知识水平:(1)通过作业了解学生是否掌握了三角变换的十一个基本公式. (2) 通过章节检测题来检验学生是否掌握了十一个基本公式.3.2 简单的三角恒等变换(3个课时)一、学习目标:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力 三、教学内容安排例 例题安排:例1试以cos α表示222sin,cos ,tan 222ααα.解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题.因为2cos 12sin 2αα=-,可以得到21cos sin22αα-=; 因为2cos 2cos12αα=-,可以得到21cos cos 22αα+=. 又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例2求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦;(2)、sin sin 2sincos22θϕθϕθϕ+-+=.证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-.两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sin cos22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想?例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3求函数sin y x x =的周期,最大值和最小值.解:sin y x x =+这种形式我们在前面见过,1sin 2sin 2sin 223y x x x x x π⎛⎫⎛⎫==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.例4 如图3.2-1 已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD是扇形的内接矩形.记COP α∠=,求当角α取何值时,矩形ABCD 的面积最大?并求出这图3.2-1O个最大面积.分析:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行: (1)找出S 与α之间的函数关系; (2)由得到的函数关系,求出S 的最大值. 解:在Rt OBC ∆中,cos ,sin OB BC αα==在Rt OAD ∆中,tan603DA OA==,所以sin 333OA DA BC α===.所以cos sin 3AB OA OA αα=-=-.设矩形ABCD 的面积为S ,则(cos sin )sin 3S AB BC ααα=⋅=-1)66πα+-由03πα<<,得52666πππα<+<,所以当262ππα+=,即6πα=时,S 最大13-=6因此,当6πα=时,矩形ABCD 的面积最大,最大面积为6.本例是一个实际问题,需要建立函数模型,建立函数模型时,对自变量可多一种选择,如果设AD=x ,则)3S x x =.尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.复习安排(1课时)知识与方法小结:1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、2π±β代替β、α=β等换元法可以推导出其它公式.你能根据下图回顾推导过程吗?2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来.3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围.4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等.5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cos α= cos βcos (α-β)- sin βsin (α-β),1= sin 2α+cos 2α,0030tan 130tan 1-+=000030tan 45tan 130tan 45tan -+=tan (450+300)等. 6.自己根据学生状况适当配备例题.四、教学资源建议.充分利用多媒体课件五、教学方法与学习指导策略建议以问题为核心,采用启发式教学.指导学生如何根据式子的结构进行三角变换.六、课堂评价建议:1.情绪变化:通过探究活动学生表现出来的情绪变化,给每名同学打分.2.参与度:从课堂积极举手回答问题情况和自主探究的情况来了解,学生是否动手实践,对教师提出的问题是否是进行深层次的思考.3.讨论交流:小组讨论时能否能阐述自己的观点,对不同的观点进行分析,每组组长根据学生的表现情况给每名同学打分.4.学习水平:通过课后访谈和作业分析来了解学生的学习水平是否提高.5.知识水平:(1)通过作业了解学生是否掌握了三角变换的基本方法和基本能力.(2) 通过章节检测题来检验学生是否掌握了三角变换的基本方法和基本能力.。
三角恒等变换
一、教学目标
进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:
二、知识与方法:
1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、2
π±β代替β、α=β等换元法可以推导出其它公式。
你能根据下图回顾推导过程吗?
2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;
3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围。
4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等。
5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cos α= cos βcos (α-β)- sin βsin (α-β),1= sin 2α+cos 2α,0030tan 130tan 1-+=000030
tan 45tan 130tan 45tan -+=tan (450+300)等。
例题
例1 已知sin (α+β)=
32,sin (α-β)=51,求β
αtan tan 的值。
例2求值:cos24°﹣sin6°﹣cos72°
例3 化简(1)
0070sin 120sin 3-;(2)sin 2αsin 2β+cos 2αcos 2β-21cos2αcos2β。
例4 设为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:α+2β=2π。