等倾干涉和等厚干涉对光源的要求
- 格式:docx
- 大小:36.84 KB
- 文档页数:2
等倾干涉(equal inclination interference )几束光发生干涉时,光的加强或减弱的条件只决定于光束方向的一种干涉现象。
例如,光通过两面平行的透明介质薄膜时,从上下表面反射的光产生的干涉就属于这种干涉。
设薄膜的厚度是d ,折射率是n 2,周围介质的折射率是n 1,光射入薄膜时的入射角是i ,在薄膜中的折射角是r ,则从反射光中看到明暗条纹的条件是:2)12(s i n 222122λ+=-m i n n d 亮条纹 22sin 222122λm i n n d =-暗条纹m =0,1,2……或 2)12(c o s22λ+=m r dn 亮条纹 22cos 22λmr dn = 暗条纹m =0,1,2……从上述条件可以看出,产生明暗条纹的条件只决定于光的入射角或折射角,即光的干涉情况只决定于光的倾角。
对于等倾干涉来说,不仅点光源可以产生清晰的干涉条件,扩展光源也可以产生清晰的干涉条件,即光源的大小对等倾干涉条纹的形状没有影响。
实际上,光源上每一点都会产生一组等倾干涉条纹,而且这些条纹的位置互相重合,因此使干涉条纹更加明亮。
例如,图1-22-27中的a 和b 是从光源的S 1和S 2点发出的两束平行光,它们对薄膜的入射角i 相同。
从薄膜的上下表面反射出的两束光的光程差相同,干涉情况相同。
由于这些反射光也是平行光,经透镜L 后会聚于同一点S (如果不用透镜,它们的干涉条纹将产生在无限远处)。
具有其他倾角的光线将会聚于另一点。
等倾干涉条纹也可以通过薄膜的透射光中看到。
由于直接透射的光比经过两次或更多次反射后透射出的光强更多,所以透射光的干涉条纹不如反射光的条纹清晰。
薄膜的厚度对条纹的影响比较大。
厚度d越大,相邻亮条纹间的距离越小,即条纹越密,越不易辨认。
金属线胀系数的测定1.为什么要在温度和千分表稳定的时候读数?测定固体的线性膨胀系数时,温度会逐渐上升,并超越你设定的温度值,再继续等待,温度会降低,直至温度稳定至千分表10秒钟不转动一格,再读数,能减小系统误差。
2.隔热棒的作用是什么?与被测物接触的一端为什么是尖的?隔热和力的传递作用,做成尖的,接触面积最小民间小样品与千分表的热传递。
隔热和力的传递作用。
一端是尖的,是减少样品与测量设备(千分尺)的热传递,保证千分尺测试到的就是样品的受热伸长量.3.为什么被测物体与千分表探头需保持在同一直线?只有受力在同一直线,千分表才能测出样品的真实伸长量,否则只是伸长量的分量。
4.两根材料相同,粗细、长度不同的金属棒,在同样的温度变化范围内,他们的线膨胀系数是否相同?线膨胀系数是材料的属性,只要是同一材料就一样。
落球法液体粘滞系数测量1.斯托克斯公式的应用条件是什么?本实验是怎样去满足这些条件的?又如何进行修正的?无限宽广的液体,无涡流,液体静止,小球刚性,表面光滑,恒温条件,无初速度下落,匀速过程满足该公式;本实验采用刚性小球,使小球的半径远小于液面,体积可忽略不计,放入小球时尽量轻来满足公式适用条件;修正:d/2R。
前乘修正系数2.4;d/2h前乘修正系数3.3.2.在特定的液体中,如果钢珠直径增大一些,测量结果如何变化?如果钢珠从高处掷下,测量结果如何变化?钢珠直径增大,测量结果变大,钢珠从高处掷下,测量结果变小。
3.讨论本实验造成不确定度增大的主要因素是什么,如何改进?小球受容器体积限制,使小球尽可能在中央下落;小球有初速度,释放小球尽量轻。
杨氏模量的测定1.本实验中必须满足哪些实验条件?金属丝必须材质和尺寸均均匀;韧性要好,能够承重一定规格的钩码;金属丝长度要足够,一般要求两米左右。
2.为什么要使钢丝处于伸直状态?因为拉直后才能保证加力后正确测出钢丝伸长量。
3.如何判断在整个加减砝码过程中钢丝是弹性形变?在增砝码过程和减砝码过程中,相同质量砝码的情况,前后两次测得金属丝的长度没有很大差别,说明金属丝进行的是弹性形变。
实验一霍尔效应及其应用【预习思考题】1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。
霍尔系数,载流子浓度,电导率,迁移率。
2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型?以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。
3.本实验为什么要用3个换向开关?为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。
总之,一共需要3个换向开关。
【分析讨论题】1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行?若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。
要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。
2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源?误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。
实验二声速的测量【预习思考题】1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定?答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。
在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。
若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。
红线对应薄膜厚度相同的位置。
劈角由小变大时,条纹由疏变密,反之亦然三、劈尖的应用(50页 1.10)1、测量细丝直径、微小夹角¾例: 两玻璃片夹一细丝,两片之间形成一个空气薄膜,n 2=1,光垂直入射,i 1≈i 2=0。
∵有额外光程差,∴d 0=0 处为暗条纹。
¾如何测小角度α呢?已知d ,通过测量L ,可计算:α≈d/L 。
αλΔ22n x ≈202n d λΔ=如何求细丝直径d ?=(m-1)λ/2假如一共有m 条,则d =(m-1)Δd 0射,看反射光的干涉条纹。
加热,膨胀,表面上升,条纹有什么变化?待测材料膨胀后,空气膜变薄,如图所示,虚线所需要的光程差值,即该处为一若条纹的最大变形线度为OBA A O 为心的圆,所以条纹是以点为心的一组同心圆,叫做牛顿环。
)(干涉相消⋅⋅⋅=2,1,0j r BA A3、条纹位置此时反射光中看到的O 点是暗点。
¾有额外光程差时,()()⋅⋅⋅=λ+=2,1,0j n R21j 2r 2()⋅⋅⋅=λ=2,1,0j n R2j2r 2条纹位置是由圆形条纹的半径r决定。
亮条纹半径为:暗条纹半径为:¾没有额外光程差时,亮(暗)条纹半径为?此时反射光中看到的O 点是亮点。
4、条纹级次分布、条纹密度条纹级次:内低外高条纹密度:内疏外密条纹向中间收缩,中心条纹被吞没。
条纹向外扩展,中心有条纹冒出。
与等倾条纹的变化情况相反。
透镜上移时:透镜下移时:rBA ′A O5、在透射光中亦可观察到牛顿环。
动画2λ+例题:已知:半径为4cm 的平凸透镜,凸面向下,放在平玻璃板上,透镜和平板的折射率均为1.5,用波长为500nm 的平行光垂直照射,观察反射光的干涉条纹。
求:(1)若透镜边缘恰为暗纹,且共有17条暗纹(若圆心为暗点,也算是一条暗纹),求透镜凸面的曲率半径,和透镜边缘处两反射光的光程差;(2)若透镜向上平移两个波长,干涉条纹如何变化?(如果有额外光程差,要求取。
目录本科生毕业论文诚信声明 (1)等厚干涉与等倾干涉的比较 (2)中文摘要 (2)英文摘要 (2)1. 引言 (2)2 等厚干涉和等倾干涉 (2)2.1等厚干涉 (2)2.2等倾干涉 (3)3.干涉条纹之比较 (4)3.1 牛顿环干涉条纹的半径和间距 (4)3.2等倾干涉条纹的半径和间距 (4)3.3 两种干涉条纹形状的比较 (5)4 .干涉条纹移动规律之比较 (5)参考文献 (5)致谢 (6)本科生毕业论文诚信声明本人郑重声明:所呈交的本科毕业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。
对本文的研究做出重要贡献的个人和集体均已在文中以明确方式明。
本人完全意识到本声明的法律结果由本人承担。
作者签名:二0一年月日等厚干涉与等倾干涉的比较刘xx,付文羽(陇东学院电气工程学院,甘肃庆阳 74500)摘要:对牛顿环等厚干涉和薄膜等倾干涉条纹形成原理, 干涉条纹的半径、间距、干涉级次等进行比较和分析, 揭示两种相似条纹的本质区别。
关键词:等厚干涉等倾干涉条纹半径条纹间距干涉级次Thickness Interference And Isoclinic InterferenceLIU xx, FU Wen-yu(Electrical Engineering College,Longdong University,Qingyang 74500,Gansu)Abstract:Of Newton ring thickness interference and film isoclinic interference fringe formation principle, the radius of the interference fringes,spacing,interference levels compare and analysis,reveals the essential difference between two similar stripe.Key Words: Isopach interference Isoclinic interference Stripe radiusFringe spacing Interference levels1 引言在光学教学中,关于等倾干涉和等厚干涉学生理解起来往往比较困难,有时显得似是而非,容易望文生义从字面上认为“等厚干涉”是指薄膜厚度是等厚的干涉这一错误结论,从而把等倾干涉和等厚干涉混淆起来,笔者通过几年的教学,总结出了等倾干涉和等厚干涉的异同点,以便学习。
实验一迈克耳孙干涉仪的调整与使用【预习思考题】1.迈克尔孙干涉仪是利用什么方法产生两束相干光的?答:迈克尔孙干涉仪是利用分振幅法产生两束相干光的。
2.迈克尔孙干涉仪的等倾和等厚干涉分别在什么条件下产生的?条纹形状如何?随M1、M2’的间距d如何变化?答:(1)等倾干涉条纹的产生通常需要面光源,且M1、M2’应严格平行;等厚干涉条纹的形成则需要M1、M2’不再平行,而是有微小夹角,且二者之间所加的空气膜较薄。
(2)等倾干涉为圆条纹,等厚干涉为直条纹。
(3)d越大,条纹越细越密;d 越小,条纹就越粗越疏。
3.什么样条件下,白光也会产生等厚干涉条纹?当白光等厚干涉条纹的中心被调到视场中央时,M1、M2’两镜子的位置成什么关系?答:白光由于是复色光,相干长度较小,所以只有M1、M2’距离非常接近时,才会有彩色的干涉条纹,且出现在两镜交线附近。
当白光等厚干涉条纹的中心被调到视场中央时,说明M1、M2’已相交。
【分析讨论题】1.用迈克尔孙干涉仪观察到的等倾干涉条纹与牛顿环的干涉条纹有何不同?答:二者虽然都是圆条纹,但牛顿环属于等厚干涉的结果,并且等倾干涉条纹中心级次高,而牛顿环则是边缘的干涉级次高,所以当增大(或减小)空气层厚度时,等倾干涉条纹会向外涌出(或向中心缩进),而牛顿环则会向中心缩进(或向外涌出)。
2.想想如何在迈克尔孙干涉仪上利用白光的等厚干涉条纹测定透明物体的折射率?答:首先将仪器调整到M1、M2’相交,即视场中央能看到白光的零级干涉条纹,然后根据刚才镜子的移动方向选择将透明物体放在哪条光路中(主要是为了避免空程差),继续向原方向移动M1镜,直到再次看到白光的零级条纹出现在刚才所在的位置时,记下M1移动的距离所对应的圆环变化数N,根据,即可求出n。
大物实验报告-光的等厚干涉一、实验目的1.加深对光的波动性,尤其是对干涉现象的认识。
2.了解读数显微镜的使用方法。
3.掌握逐差法处理实验数据。
4.提高误差分析和合理分配的能力。
二、实验原理两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象就是光的干涉现象。
形成稳定干涉的条件是:光波的频率相同、相位差恒定、振动方向一致的相干光源。
光的干涉现象是光的波动性的最直接、最有力的实验证据。
在各种干涉条纹中,等倾干涉条纹和等厚干涉条纹是比较典型的两种。
1.等厚干涉原理:当一束平行光a、b入射到厚度不均匀的透明介质薄膜上时,在薄膜的表面会产生干涉现象。
从上表面反射的光线b1和从下表面反射出上表面的光线a1在B点相遇,由于a1、b1有恒定的光程差,因而将在B点产生干涉。
该式中,λ/2是由于光线从光疏介质照射到光密介质,在界面发射时有一位相突变,即所谓的“半波损失”而附加的光程差,因此明暗纹出现的条件是:同一种条纹所对应的空气厚度是一样的,所以称之为等厚干涉条纹。
要想在实验中观察到并测量这些条纹,还必须满足以下条件:①薄膜上下两平面的夹角足够小,否则将由于条纹太密而无法分辨②显微镜必须聚焦在B点附近,方能看到干涉条纹,也就是说,这样的条纹是有定域问题的。
2.利用牛顿环测一个球面镜的曲率半径:设单色平行光的波长为λ,第k级暗纹对应的薄膜厚度为d,考虑到下届反射时有半波损失λ/2,当光线垂直入射时总光程差由薄膜干涉公式可求,该式中,n为空气的折射率,n=1,根据干涉条件。
原则上,若已知λ,用读数显微镜测出环的半径r,就可以利用上面两个公式求出曲率半径R。
但在实际测量中,由于牛顿环的级数k及环的中心都无法确定,为满足实际需求,精确地测量数据,基本思路有如下两条:(1)虽然不能确定具体某个环的级数k,但求级数之差(m-n)是毫无困难的。
(2)虽然不能确定环心的位置,即无法准确测得半径(或直径),但是测弦长是比较容易的。
等倾干涉和等厚干涉对光源的要求
等倾干涉是指入射光线与干涉体的表面成反射角相等的干涉现象。
当入射光线与干涉体的表面成等倾角时,反射光线之间发生干涉,形成明暗条纹。
这种干涉要求光源具有相干性。
相干性是指光源发出的波列的波长和相位存在一定的关系,从而形成干涉现象。
具体来说,等倾干涉要求光源满足以下要求:
1.单色性:光源发出的光是单色光,即波长非常单一,能够形成相干的波列。
常见的单色光源有激光器和狭缝照明源。
2.空间相干性:指光源发出的波列必须具有一定的空间相干长度,才能形成干涉现象。
空间相干长度是指光源发出的波列在空间中保持干涉的最大长度。
常见的具有空间相干性的光源有激光器和小孔照明源。
3.平直度:光线要求平直,即光线通过的介质应当是均匀的,没有弯曲或折射等现象的发生。
等厚干涉是指在光的干涉过程中,干涉体的厚度是相等的,从而导致干涉条纹的发生。
等厚干涉是一种特殊的等倾干涉,但对于光源的要求会有所不同。
等厚干涉要求光源具备相干性和宽带性。
相干性要求光源发出的波列具有相干性,即波长和相位具有一定的关系。
宽带性要求光源发出的光具有宽带性,即具有一定的频谱宽度。
具体来说,等厚干涉要求光源满足以下要求:
1.带宽:光源发出的光具有一定的频谱宽度,这样才能够形成干涉条纹。
如果光源的光谱过于狭窄,干涉条纹可能会变得模糊不清。
因此,宽
带光源如白光、白炽灯等可以用于等厚干涉。
2.平直度:光线要求平直,即光线通过的介质应当是均匀的,没有弯
曲或折射等现象的发生。
对于等倾干涉和等厚干涉,要求光源具有相干性是一个重要的共同点。
等倾干涉和等厚干涉都是基于光的波动性和相干性的干涉现象,需要具备
相干性的光源才能够产生干涉条纹。
但对于光源的具体要求会有所不同,
等厚干涉对光源的带宽要求更宽,允许使用宽带光源,而等倾干涉则对光
源的单色性要求更高。