[精品]全国2019年中考数学真题分类汇编 第18讲 相似三角形(无答案)
- 格式:doc
- 大小:1.98 MB
- 文档页数:12
第18讲 《图形的相似》培优训练三角形相似的证明-专题练习专题(一) 利用平行线求比值1.如图,△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,AD =2BD ,AE =2CE ,则AD AB =___,DEBC=___.,第1题图) ,第2题图)2.如图,点D 是EC 的中点,点F 是AC 的中点,AD 与EF 交于点O ,则OFOE=____.3.如图,已知点E 是▱ABCD 中AD 边上一点,且AE ∶DE =3∶2,CE 交BD 于点F ,BF =15 cm ,则DF 的长为___.4.如图,△ABC 中,∠B 的平分线BD 交AC 于点D ,过点D 作DE ∥AB 交BC 于点E ,AB =10,BE =6,求CE 的长.5.如图,▱ABCD 中,点E 是AB 的中点,在AD 上截取2AF =FD ,EF 交AC 于点G ,延长EF 与CD 的延长线交于点H ,求AGGC的值.6.如图,已知△ABC 中,点F 为底边AB 上一点,BF ∶AF =3∶2,取CF 的中点D ,连接AD 并延长交BC 于点E .过点F 作FG ∥AE 交BC 于点G ,求BE ∶EC .7.如图,△ABD 中,点C ,F 分别为BD ,AB 上一点,AC ,DF 交于点E ,且CD ∶BC =2,AE =2CE .求DEEF的值.专题(二) 比例线段的证明一、三点定型法1.如图,▱ABCD 中,点E 是AB 延长线上的一点,DE 交BC 于点F ,求证:DC AE =CFAD.2.如图,△ABC 中,∠BAC =90°,点M 是BC 的中点,DM ⊥BC 交CA 的延长线于点D ,交AB 于点E .求证:AM 2=MD ·ME .3.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠B 的平分线BE 交AC 于点E ,交AD 于点F .求证:BF BE =AB BC.二、等线段代换法4.如图,四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D.求证:AC·BE=CE·AD.5.如图,△ABC中,AB=AC,AD是中线,点P是AD上一点,过点C作CF∥AB,延长BP交AC于点E,交CF于点F.求证:BP2=PE·PF.三、等比代换法6.如图,△ABC中,∠BAC=90°,AD⊥BC于点D,点E为AC的中点,ED的延长线交AB的延长线于点F.求证:AB·AF=AC·DF.专题(三)两次相似问题1.如图,BE,CD是△ABC的高,连接DE.(1)求证:AE·AC=AB·AD;(2)若∠BAC=120°,点M为BC的中点,求证:DE=DM.2.如图,在△PBC中,∠PCB=90°,DA⊥PB于点A,连接AC,BD相交于点E.求证:(1)△P AD∽△PCB;(2)∠PCA=∠PBD;(3)△ADE∽△BCE.3.如图,▱ABCD中,点E在直线AB上,EC交AD于点F,交BD于点G,求证:CG2=FG·EG.4.如图,AD ,BE 是△ABC 的两条高.(1)求证:CE ·CA =CD ·CB ;(2)若EC =5,BC =13,求DEAB的值.5.如图,延长△ABC 的边BC 到点D ,使CD =BC ,取AB 中点F ,DF 交AC 于点E .求AEAC的值.课后作业相似三角形判定练习1、如图1.已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB=3:5,那么CF :CB 等于( )A 、5:8B 、3:8C 、3:5D 、2:52、Rt △ABC 的面积为120,且∠BAC=90°,AD 是斜边上的中线,过点D 作DE ⊥AB 于点E ,连接CE 交AD 于点F ,则△AFE 的面积等于( )A 、18B 、20C 、22D 、242、下列条件中,能判定△ABC ∽△DEF 的有( ) ①∠A=45°,AB=12,AC=15,∠D=45°,DE=16,DF=20; ②AB=12,BC=15,AC=24,DE=20,EF=25,DF=40; ③∠A=47°,AB=15,AC=20,∠E=47°,DE=28,EF=20.A 、0个B 、1个C 、2个D 、3个4、如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的是( )5、如图2,已知△ABC 是等边三角形,点D ,E 分别在边AC ,AB 上,且31AC AD ,AE=BE ,则有( ) A 、△AED ∽△BEDB 、△AED ∽△CBDC 、△AED ∽△ABDD 、△BAD ∽△BCD图1 图2 图3 图4 图5 6、如图3,在Rt △ABC 中,CD 是斜边AB 上的高,则图中相似三角形共有( )对 A 、1B 、2C 、3D 、47、如图4,已知△ABC 和△ABD 都是⊙O 的内接三角形,AC 和BD 相交于点E ,则与△ADE 相似的三角形是( )A 、△BCEB 、△ABEC 、△ABDD 、△ABE8、如图5,等边三角形ABC 的边长为3,P 为BC 上一点,且BP=2,D 为AC 上一点,若∠APD=60°,则CD 的长为( )A 、23 B 、32 C 、21 D 、439、(选做)如图6,P 为线段AB 上一点,AD 与BC 交于点E ,∠PCD=∠A=∠B , BC 交PD 于点F ,AD 交PC 于点G ,则图中相似三角形有( )对A 、1B 、2C 、3D 、4图610、如图7,DE ∥BC ,且DB=AE 。
相似三角形(2019,北京)如图,在△ABC 中,点D 、E 分AB 、AC 边上,DE //BC ,若AD :AB =3:4, AE =6,则AC 等于( )D (A) 3 (B) 4 (C) 6 (D) 8。
(2019,宁德)图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____.(2019,甘肃)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为 米. 9.6(2019,珠海)天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的峰高为1.65米,由此可推断出树高是_______米. 3.3(2019,梧州)如图(2),在Y ABCD 中,E 是对角线BD 上的点,且EF ∥AB ,DE :EB=2:3, EF=4,则CD 的长为_____________。
ABCD EFA E BCD(2019,桂林)如图,已知△ADE 与△ABC 的相似比为1:2,则△ADE 与△ABC 的面积比为( ). A . 1:2 B . 1:4C . 2:1D . 4:1(2019,黔东南)如图,若CD C ABC Rt ,90,0=∠∆为斜边上的高,ACD n AB m AC ∆==则,,的面积与BCD ∆的面积比SsACDBCD ∆∆的值是 ( )A. 22mn B. 221m n -C. 122-m nD. 122+mn(2019,河南)如图,△ABC 中,点DE 分别是ABAC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ;③ACABAE AD =.其中正确的有【 】 (A )3个 (B )2个 (C )1个 (D )0个(2019,河南)如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范EDCBA围是___________________.(2019,沈阳)如图,在□ ABCD 中,点E 在边BC 上,BE :EC =1:2, 连接AE 交BD 于点F ,则△BFE 的面积与△DF A 的面积之 比为 。
2019年全国中考试题解析版分类汇编-相似三角形判定和性质(92页)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!1.〔2017湖北荆州,7,3分〕如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,那么图中相似三角形有〔〕A、1对B、2对C、3对D、4对考点:相似三角形的判定、专题:证明题、分析:根据题目提供的相等的角和图形中隐含的相等的角,利用两对应角对应相等的两三角形相似找到相似三角形即可、解答:解:∵∠CPD=∠A=∠B,∴△PCF∽△BCP△APG∽△BFP△APD∽△GPD应选B、点评:此题考查相似三角形的判定、识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角、2.〔2017江苏无锡,7,3分〕如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形、假设OA:OC=0B:OD,那么以下结论中一定正确的选项是〔〕A、①与②相似B、①与③相似C、①与④相似D、②与③相似考点:相似三角形的判定。
分析:由OA:OC﹣=0B:OD,利用对顶角相等相等,两三角形相似,①与③相似,问题可求、解答:证明:∵OA:OC=0B:OD,∠AOB=∠COD〔对顶角相等〕,∴①与③相似、应选B、点评:此题解答的关键是熟练记住所学的三角形相似的判定定理,此题难度不大,属于基础题、3.〔2017山西,11,2分〕如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G 、F 在BC 边上,四边形DEFG 是正方形、假设DE =2㎝,那么AC 的长为〔〕A、B 、4cm C、D、考点:三角形中位线,相似三角形的相似比专题:相似三角形分析:由题意知DE 是等腰△ABC 的中位线,所以DE ∥BC ,DE =12BC ,因为DE =2㎝,所以BC =4㎝、又DE ∥BC ,所以△ADE ∽△ABC ,且相似比为12、过点A 作AM ⊥BC 于点M 、那么MC =2㎝,由点E 是边AC 的中点,EF ∥AM ,所以FC =1㎝、在△EFC 中,因为正方形DEFG 的边长是2㎝,所以根据勾股定理得ECAC=)cm ,应选D 、 解答:D点评:此题是三角形中位线,等腰三角形的性质,勾股定理,相似三角形的相似比等的综合应用、过点A 作AM ⊥BC 于点M ,构造等腰三角形的高学生不易想到、4.〔2017陕西,9,3分〕如图,在□ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于点G ,延长BE 交CD 的延长线于点H ,那么图中的相似三角形共有〔〕A 、2对B 、3对C 、4对D 、5对考点:相似三角形的判定;平行四边形的性质。
相似三角形知识点知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段dc b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b db d a c=⇔=.(4)合、分比性质:a c a b c db d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零. ③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:baf d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,与原三角形....三边..对应成比例. ②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF =====或或或或等. 注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
2019年中考数学真题知识点分类汇总—相似三角形一、选择题1. (2019广西省贵港市,题号11,分值3分)如图,在ABC ∆中,点D ,E 分别在AB ,AC 边上,//DE BC ,ACD B ∠=∠,若2AD BD =,6BC =,则线段CD 的长为( )A .B .C .D .5 【答案】C .【思路分析】设2AD x =,BD x =,所以3AB x =,易证ADE ABC ∆∆∽,利用相似三角形的性质可求出DE 的长度,以及23AE AC =,再证明ADE ACD ∆∆∽,利用相似三角形的性质即可求出得出AD AE DE AC AD CD==,从而可求出CD 的长度.【解题过程】解:设2AD x =,BD x =,3AB x ∴=,//DE BC ,ADE ABC ∴∆∆∽, ∴DE AD AE BC AB AC==, ∴263DE x x=, 4DE ∴=,23AE AC =, ACD B ∠=∠,ADE B ∠=∠,ADE ACD ∴∠=∠,A A ∠=∠,ADE ACD ∴∆∆∽,∴AD AE DE AC AD CD==, 设2AE y =,3AC y =, ∴23AD y y AD=,AD ∴=, ∴4CD=,CD ∴=,故选:C .【知识点】相似三角形的判定与性质2. (2019贵州省毕节市,题号15,分值3分)如图,在一块斜边长30cm 的直角三角形木板(Rt △ACB )上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC =1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A .100cm 2B .150cm 2C .170cm 2D .200cm 2 【答案】A .【思路分析】设AF =x ,根据正方形的性质用x 表示出EF 、CF ,证明△AEF ∽△ABC ,根据相似三角形的性质求出BC ,根据勾股定理列式求出x ,根据三角形的面积公式、正方形的面积公式计算即可.【解题过程】解:设AF =x ,则AC =3x ,∵四边形CDEF 为正方形,∴EF =CF =2x ,EF ∥BC ,∴△AEF ∽△ABC , ∴EF BC =AF AC =13, ∴BC =6x ,在Rt △ABC 中,AB 2=AC 2+BC 2,即302=(3x )2+(6x )2,解得,x=∴AC=BC=∴剩余部分的面积=12100(cm2),故选:A.【知识点】正方形的性质;相似三角形的应用.3.(2019贵州黔西南州,10,4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【答案】D【解析】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴EFBC=AFAC=13,∴BC=6x,在Rt△ABC中,AB=√(3x)2+(6x)2=3√5x,∴3√5x=30,解得x=2√5,∴AC=6√5,BC=12√5,∴剩余部分的面积=12×6√5×12√5−(4√5)2=100(cm2).故选:D.【知识点】正方形的性质;相似三角形的应用4..(2019海南,12题,3分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为( )A.813B.1513C.2513D.3213第12题图【答案】B【思路分析】根据平行和平分线得到等腰三角形,作DE⊥BC,得到相似三角形,结合中点和相似比,得到线段关系,列出方程,进而求得AP长度.【解题过程】在Rt△ABC中,∠C=90°,AB=5,BC=4,∴AC=3,过点D作DE⊥BC于点E,易证△ABC∽△DQE,∵BD平分∠ABC,PQ∥AB,∴BQ=QD,设QD=BQ=4x,则AP=3x,DP=4x,∴PQ=8x,CP=245x,∴AC=395x=3,∴x=513,AP=3x=1513,故选B.第12题答图【知识点】等腰三角形,相似三角形,一元一次方程5.(2019黑龙江哈尔滨,10,3分)如图,在平行四边形ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD于点N,则下列式子一定正确的是()。
新课标版2019年全国各地中考真题分类详解相似、位似及其应用一、选择题 10.(2019·苏州)如图,在△ABC 中,点D 为BC 边上的一点.且AD =AB =2,AD ⊥AB ,过点D 作DE ⊥AD ,DE 交AC 于点F .若DE =1,则△ABC 的面积为 ( )A .B .4C .D .8第10题图【答案】B【解析】∵AB ⊥AD ,AD ⊥DE ,∴∠BAD =∠ADE =90°,∴DE ∥AB ,∴∠CED =∠CAB ,∵∠C =∠C ,∴△CED ∽△CAB ,∵DE =1,AB =2,即DE ∶AB =1∶2,∴S △DEC ∶S △ACB =1∶4,∴S 四边形ABDE ∶S △ACB =3∶4,∵S 四边形ABDE =S △ABD +S △ADE 12=⨯2×212+⨯2×1=2+1=3,∴S △ACB=4,故选B .10.(2019·绍兴 )如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为 ( ) A.524 B.532C.173412D.173420【答案】A【解析】如图所示:设DM =x ,则CM =8﹣x , 根据题意得:(8﹣x +8)×3×3=3×3×5, 解得:x =4,∴DM =6,∵∠D =90°,由勾股定理得:BM==5, 过点B 作BH ⊥AH ,∵∠HBA+∠ABM =∠ABM+∠ABM =90°, ∴∠HBA+=∠ABM ,所以Rt △ABH ∽△MBD , ∴BH BD AB BM =,即385BH =,解得BH =524,即水面高度为524. 6.(2019·杭州)如图,在△ABC 中,点D ,E 分别在AB 和AC 边上,DE ∥BC ,M 为BC 边上一点(不与点B ,C 重合)连接AM 交DE 干点N ,则 ( ) A.AD AN AN AE = B. BD MN MN CE = C. DN NE BM MC = D. DN NEMC BM=【答案】C【解析】根据DE ∥BC ,可得△ADN ∽△ABM 与△ANE ∽△AMC ,再应用相似三角形的性质可得结论.∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN ANBM AM=,∵NE ∥MC ,∴△ANE ∽△AMC ,∴NE AN MC AM =,∴DN NEBM MC=.故选C . 7.(2019·常德)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形的面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( ) A .20 B .22 C .24 D .26B【答案】D【解析】∵图中所有三角形均相似,其中最小的三角形的面积为1,△ABC 的面积为42,∴最小的三角形与△ABCADE ∽△ABC ,∴ADE ABCSS =2DE BC ⎛⎫⎪⎝⎭,∵DE BC =4ADE ABCSS=1642=821, ∴S △ADE =821×42=16,∴四边形DBCE 的面积=S △ABC -S △ADE =26,故选项D 正确. 5.(2019·陇南)如图,将图形用放大镜放大,应该属于( )A .平移变换B .相似变换C .旋转变换D .对称变换【答案】B【解析】由图可知,放大前与放大后图形是相似的,故选:B .1. (2019·枣庄)如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为16,阴影部分三角形的面积为9,若AA'=1,则A'D 等于A.2B.3C.4D.32【答案】B【解析】由平移可得,△ABC ∽△A'MN,设相似比为k,∵S △ABC =16,S △A'MN =9,∴k 2=16:9,∴k =4:3,因为AD 和A'D 分别为两个三角形的中线,∴AD:A'D =k =4:3,∵AD =AA'+A'D,∴AA':A'D =1:3,∵AA'=1,则A'D =3,故选B.2.(2019·淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B. 若△ADC 的面积为a ,则△ABD 的面积为()A .2aB .52a C .3a D .72a 【答案】C .【解析】在△BAC 和△ADC 中,∵∠C 是公共角,∠CAD =∠B.,∴△BAC ∽△ADC ,∴2BCAC=, ∴2AB DA =()4C CS BC SAC=,又∵△ADC 的面积为a ,∴△ABC 的面积为4a ,∴△ABD 的面积为3a .3. (2019· 巴中)如图,ABCD,F 为BC 中点,延长AD 至E,使DE:AD =1:3,连接EF 交DC 于点G,则S △DEG :S △CFG =( )A.2:3B.3:2C.9:4D.4:9【答案】D【解析】因为DE:AD =1:3,F 为BC 中点,所以DE:CF =2:3,ABCD 中,DE ∥CF,所以△DEG ∽△CFG,相似比为2:3,所以S △DEG :S △CFG =4:9.故选D.4.(2019·乐山)把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为( ) A .61 B .31C .51D .41B【答案】A第8题答图【解析】∵四边形ABCD 与四边形CEFG 都是正方形,∴AD =DC =1,CE =2,AD ∥CE ,∴△ADH∽△ECF ,∴A D D HC E C H=,∴121DH DH =-,解得DH =13,∴阴影部分面积为12×13×1=16,故选A.5.(2019·乐山)如图,在边长为3的菱形ABCD 中,︒=∠30B ,过点A 作BC AE ⊥于点E ,现将△ABE 沿直线AE 翻折至△AFE 的位置,AF 与CD 交于点G .则CG 等于( ) A .13-B .1C .21D .23第9题图【答案】A【解析】∵BC AE ⊥,∴∠AEB=90°,菱形ABCD 的边长为3,︒=∠30B ,∴AE=12AB=12,BF=3,CF=BF -BC=3,∵AD ∥CF ,∴△AGD ∽△FGC ,∴D G A DC G C F=,=,解得CG1-,故选A. 6.(2019·凉山)如图,在△ABC 中,D 在AC 边上,AD ∶DC = 1∶2,O 是BD 的中点,连接A 0并延长交BC 于 E ,则BE ∶EC =( ▲ ) A. 1∶2 B . 1∶3 C . 1∶4 D . 2∶3【答案】B【解析】过点D 作DF ∥AE ,则1==OD BO EF BE ,21==CD AD FC EF ,∴BE ∶EF ∶FC =1∶1∶2,∴BE ∶EC =1∶3.故选B .7.(2019·眉山)如图,一束光线从点A (4,4)出发,经y 轴上的点C 反射后,经过点B (1,0),则点C 的坐标是A .(0,12)B .(0,45)C .(0,1)D .(0,2)【答案】B【解析】解:过点A 作AD ⊥y 轴于点D ,∵∠ADC=∠COB=90°,∠ACD=∠BCO ,∴△OBA∽△DAC ,∴OC DC OB AD =,∴414OC OC -=,解得:OC=45,∴点C (0,45),故选B.8.(2019·眉山)如图,在菱形ABCD 中已知AB =4,∠ABC =60°,∠EAF =60°,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论:①BE =CF ,②∠EAB =∠CEF ;③△ABE ∽△EFC ,④若∠BAE =15°,则点F 到BC 的距离为2,则其中正确结论的个数是A .1个B . 2个C .3个D . 4个【答案】B 【解析】连接AC ,在菱形ABCD 中,AB=BC ,∠ABC=60°,∴△ABC 是等边三角形,∴AB=AC ,∠BAC=60°,∵∠EAF=60°,∴∠EAB+∠BAF=∠CAF+∠BAF=60°,即∠EAB=∠CAF ,∵∠ABE=∠ACF=120°,∴△ABE ≌△ACF ,∴BE=CF ,故①正确;由△ABE ≌△ACF ,可得AE=AF ,∵∠EAF=60°,∴△AEF 是等边三角形,∴∠AEF=60°,∴∠AEB+∠CEF=60°,∵∠AEB+∠EAB=60°,∴∠CEF=∠EAB ,故②正确;在△ABE 中,∠AEB <60°,∠ECF=60°,∴③错误;过点A 作AG ⊥BC 于点G ,过点F 作FH ⊥EC 于点H ,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在Rt △AGB 中,∵∠ABC=60°,AB=4,∴BG=12AB=2,,在Rt △AEG 中,∵∠AEG=∠EAG=45°,∴AG=GE=,∴EB=EG-BG=,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF ,∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°在△AEB 和△AFC 中,⎧⎪⎨⎪⎩∠∠∠∠︒EAB FAC AB AC ABE ACF 120====,∴△AEB ≌△AFC ,∴AE=AF ,EB=CF=,在Rt △CHF 中,∵∠HCF=180°-∠BCD=60°,CF=,∴FH=CF •sin60°=(-2∴点F到BC 的距离为故④错误.故选B.9.(2019·重庆B 卷)下列命题是真命题的是( )A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个全角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9 【答案】B【解析】如果两个三角形相似,那么这两个三角形的周长比等于相似比,面积比是相似比的平方.即如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9;面积比是相似比的平方,即16:81.故选B.10.(2019·重庆A卷)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.5【答案】C.【解析】∵△ABO∽△CDO,∴AB BOCD DO=.∵BO=6,DO=3,CD=2,∴623AB=.∴AB=4.故选C.二、填空题16.(2019·滨州)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(-2,4),B(-4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的12,得到△CDO,则点A的对应点C的坐标是________________________.【答案】(-1,2)或(1,-2)【解析】点A的对应点C的坐标是(-2×12,4×12)或(-2×(-12),4×(-12)),即(-1,2)或(1,-2).2.(2019·滨州)如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的结论有____________.(填写所有正确结论的序号)【答案】①③④【解析】在Y ABCD中,AB∥DC,∠ABC=60°,∴∠BCD=120°.∵CE平分∠BCD,∴∠BCE=60°,∴△BCE是等边三角形,∴BE=BC=CE,∠BEC=60°.∵AB=2BC,∴AE=BE=CE,∴∠EAC=∠ACE=30°,∴∠ACB=90°.在Y ABCD中,AO=CO,BO=DO,∴OE是△ACB的中位线,∴OE ∥BC ,∴OE ⊥AC ,故①正确;∵OE 是△ACB 的中位线,∴OE=12BC ,∵OE ∥BC ,∴△OEF ∽△BCF ,∴OF :BF=OE :BC=1:2,∴S △AOD =S △BOC =3S △OCF ,故②错误;在Rt △ABC 中,∵AB=2BC ,∴,∴OC=2BC .在Rt △BCO 中,2BC ,∴BC ,∴AC ::7,故③正确;∵OF :BF=1:2,∴BF=2OF ,OB=3OF ,∵OD=OB ,∴DF=4OF ,∴BF 2=(2OF )2=4OF 2,OF ·DF=OF ·4OF=4OF 2,∴BF 2=OF ·DF ,故④正确.3.(2019·凉山)在□ABCD 中,E 是AD 上一点,且点E 将AD 分为2∶3的两部分, 连接BE 、AC 相交于F ,则S △AEF ∶S △CBF 是▲. 【答案】4:25或9∶25【解析】在□ABCD 中,∵AD ∥BC ,∴△AEF ∽△CBF .如答图1,当AE ∶DE =2∶3时,AE ∶AD =2∶5,∵AD =BC ,∴AE ∶BC =2∶5,∴S △AEF ∶S △CBF =4∶25;如答图2,当AE ∶DE =3∶2时,AE ∶AD =3∶5,∵AD =BC ,∴AE ∶BC =3∶5,∴S △AEF ∶S △CBF =9∶25.故答案为4∶25或9∶25.(第16题图答图1) (第16题图答图2)4. (2019·自贡)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,DE =.【答案】.【解析】∵BD 平分∠ABC , ∴∠ABD =∠CBD , ∵AB ∥CD , ∴∠D =∠ABD , ∴∠CBD =∠D ,∴CD=BD=6.在Rt△ABC中,AC==8.∵AB∥CD,∴△ABE∽△DCE,∴,∴CE=AE,DE=BE.即CE=AC=×8=3.在Rt△BCE中,BE=.∴DE=BE=×3=.5.(2019·衢州)如图,由两个长为2,宽为1的长方形组成“7”字图形。
2019年中考数学试卷重难题专题【相似三角形】(含答案)知识点睛借助相似整合信息的通常思路:利用相似时,往往可以将_______________等信息组合搭配在一起进行研究,并能实现三类信息之间的转化,进而达到整合信息、解决问题的目的.为了借助相似实现_______________等条件的综合应用,往往会通过___________或作_________的方式来构造相似模型.构造相似模型是我们整合多个比例信息时常用的一种手段.一、单选题1.(2018·浙江初三期中)如图,在中, 是线段上的点,且, 是线段ABC D AB :1:2AD BD F 上的点, , .小亮同学随机在内部区域投针,则针扎到(阴影)BC DE BC FE BA ABC DEF 区域内的概率是( )A .B .C .D .1329518492.(2018·四川中考真题)如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=AC .连接14DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则的值为( )S △ADGS △BGHA .B .C .D .11223343.(2019·湖北沙市中学初二期末)彼此相似的矩形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,按如图所示的方式放置.点A 1,A 2,A 3,…,和点C 1,C 2,C 3,…,分别在直线y=kx+b (k >0)和x 轴上,已知点B 1、B 2的坐标分别为(1,2),(3,4),则Bn的坐标是( )A .(2n ﹣1,2n )B .(2n ﹣,2n )12C .(2n﹣1﹣,2n﹣1)D .(2n﹣1﹣1,2n﹣1)124.(2014·浙江初三期末)如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N .设△BPQ ,△DKM ,△CNH 的面积依次为S 1,S 2,S 3.若S 1+S 3=20,则S 2的值为( )A .6B .8C .10 D .125.(2018·全国初一单元测试)如图,是三个正方形拼成的一个长方形,则∠1+∠2+∠3=( )A .60°B .75°C .90°D .105°6.(2018·广东中考模拟)如图所示,在矩形ABCD 中,AB=6,BC=8,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则DE 的长是( )A .5B .C .D .32741547.(2018·广西中考真题)如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(,1),(3,1),12(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作交y 轴于点B ,当点A 从M 运动AB ⊥AC 到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .B .C .D .−14≤b ≤1−54≤b ≤1−94≤b ≤12−94≤b ≤18.(2018·江西初三期末)如图,△ABC 是一块锐角三角形材料,高线AH 长8 cm ,底边BC 长10 cm ,要把它加工成一个矩形零件,使矩形DEFG 的一边EF 在BC 上,其余两个顶点D ,G 分别在AB ,AC 上,则四边形DEFG 的最大面积为( )A .40 cm 2B .20 cm 2C .25 cm 2D .10 cm 29.(2017·江阴初级中学初三期中)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上,则CE :CF 的值为( )A .B .C .D . 4535566710.(2017·安徽初三期中)如图,在正方形ABCD 中,点E 、F 分别在边BC ,DC 上,AE 、AF 分别交BD于点M 、N ,连接CN 、EN ,且CN =EN .下列结论:①AN =EN ,AN ⊥EN ;②BE+DF=EF ;③∠DFE =2∠AMN ;④;④图中有4对相似三角EF 2=2BM 2+2DN 2形.其中正确结论个数是( )A .5B .4C .3D .211.(2018·全国初三期末)如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下列结论:①△AEF ∽△CAB ;②CF=2AF ;③tan ∠CAD=.其中正确的结论有 ( )2A .3个B .2个C .1个D .0个12.(2017·安徽中考模拟)如图,沿对角线AC 折叠正方形ABCD ,使得B 、D 重合,再折叠△ACD ,点D 恰好落在AC 上的点E 处,测得折痕AF 的长为3,则C 到AF 的距离CG 为:A .B .C .D .32235−113.(2019·全国初二单元测试)如图,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4,点P 为BC 上任意一点,连接PA,以PA ,PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为( )A .B .C .D .2651255314.(2019·广东中考模拟)如图,将边长为3的正方形纸片ABCD 对折,使AB 与DC 重合,折痕为EF ,展平后,再将点B 折到边CD 上,使边AB 经过点E ,折痕为GH,点B 的对应点为M ,点A 的对应点为N ,那么折痕GH 的长为( )AB .C .D1037215.如图,在矩形ABCD 中,对角线AC 、BD 相交于G ,E 为AD 的中点,连接BE 交AC 于F ,连接FD ,若∠BFA=90°,则下列四对三角形:①△BEA 与△ACD ;②△FED 与△DEB ;③△CFD 与△ABG ;④△ADF 与△EFD ,其中相似的为( )A.①④B.①②C.②③④D.①②③④二、填空题16.(2018·天津中考模拟)如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D 的坐标为______.17.(2018·山东中考真题)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=5,∠EAF=45°,则AF的长为_____.218.(2018·湖北中考真题)如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,2连接AP交BC于点E.若BE=,则AP的长为_____.19.(2017·湖北中考模拟)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x轴和y轴,大正方形的顶点B1、C1、C2、C3、…、C n在直线y=- x+ 上,顶点D1、D2、D3、…、D n在x轴上,则第n个阴影小1 27 2正方形的面积为________.20.(2017·全国初三课时练习)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是______.21.(2018·安徽中考真题)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.22.(2018·江苏中考真题)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ =________.23.(2018·贵州中考模拟)如图,在△ABC 中,BC=8,高AD=6,矩形EFGH 的一边EF 在边BC 上,其余两个顶点G 、H 分别在边AC 、AB 上,则矩形EFGH 的面积最大值为_____.24.(2017·湖北中考真题)如图,在△ABC 中,∠ACB =90°,点D ,E 分别在AC ,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,连接CF .若AC =8,AB =10,则CD 的长为__25.(2018·乌拉特前旗第六中学中考模拟)如图,点P 是矩形ABCD 内一点,连接PA 、PB 、PC 、PD,已知AB=3,BC=4,设△PAB, △PBC, △PCD, △PDA,的面积分别为,,, ,以下判断: ① PA+PB+PC+PD 的最小S 1S 2S 3S 4值为10;②若△PAB ≌△PCD,则△PAD ≌△PBC ;③若=,则=;④若△PAB ∽△PDA,则PA=2.4.其中正S 1S 2S 3S 4确的是_____________(把所有正确的结论的序号都填在横线上)26.(2018·广西中考真题)如图,点 C 为 Rt △ACB 与 Rt △DCE 的公共点,∠ACB=∠DCE=90°,连 接 AD 、BE ,过点 C 作 CF ⊥AD 于点 F ,延长 FC 交 BE 于点 G .若 AC=BC=25,CE=15, DC=20,则的值为___________.EG BG参考答案1.B【解析】解:∵, ,∴, .DE BC 12AD BD =ADE ABC ∽13AD AE DE AB AC BC ===又∵,∴,∴, .FE BA CFE CBA ∽23CE CF CA CB ==21CF BF =设的面积,则,∴梯形面积.ADE ADE S S = 9ABC S S = DECB 8DECB S S =梯∵,∴,∴.DE BC 1112EDBF EFC S BF S FC == 平行四边形4EFC EDBF S S S == 平行四边形在平行四边形中,,∴.故BDEF 122BOF DEF BDEF S S S === 平行四边形29DEF ABC S S = 选.B 点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.2.C【解析】分析:首先证明AG :AB=CH :BC=1:3,推出GH ∥AC ,推出△BGH ∽△BAC ,可得,,由此即可解决问题.S △ADCS △BGH =S △BAC S △BGH =(BA BG )2=(32)2=94S △ADG S △ADC =13详解:∵四边形ABCD 是平行四边形∴AD=BC ,DC=AB ,∵AC=CA ,∴△ADC ≌△CBA ,∴S △ADC =S △ABC ,∵AE=CF=AC ,AG ∥CD ,CH ∥AD ,14∴AG :DC=AE :CE=1:3,CH :AD=CF :AF=1:3,∴AG :AB=CH :BC=1:3,∴GH ∥AC ,∴△BGH ∽△BAC ,∴,S △ADCS △BGH=S △BAC S △BGH =(BA BG )2=(32)2=94∵,S △ADG S △ADC =13∴.S △ADG S △BGH =94×13=34故选:C .点睛:本题考查平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.3.A【解析】【分析】根据矩形的性质求出点的坐标,然后利用待定系数法求一次函数解析式求出,12A A 、k b 、从而得到一次函数解析式,再根据一次函数图像上点的坐标特征求出的坐标,然后求出3A 的坐标,...,最后根据点的坐标特征的变化规律写出的坐标即可.3B n B 【详解】,()11,2B 相似矩形的长是宽的倍,∴2点的坐标分别为, 12B B 、()()1,23,4,,∴()()120,21,4A A ,点在直线上,12A A 、y kx b =+,∴24b k b =⎧⎨+=⎩解得,22k b =⎧⎨=⎩,∴22y x =+点在直线上,3A 22y x =+,∴2328y =⨯+=点的坐标为,∴3A ()3,8点的横坐标为,∴3B 13872+⨯=点,∴()37,8B …,的坐标为.n B ()21,2n n -故选:.A 【点睛】本题考查了相似多边形的性质,一次函数图象上点的坐标特征,根据点的系列坐标判断A 出相应矩形的长,再求出宽,然后得到点的系列坐标的变化规律是解题的关键.B 4.B【解析】试题分析:∵矩形AEHC 是由三个全等矩形拼成的,∴AB=BD=CD ,AE ∥BF ∥DG ∥CH ,∴四边形BEFD ,四边形DFGC 是平行四边形,∠BQP=∠DMK=∠CHN ,∴BE ∥DF ∥CG∴∠BPQ=∠DKM=∠CNH ,∵△ABQ ∽△ADM ,△ABQ ∽△ACH ,∴,,AB AD =BQ MD =12BQ CH =AB AC =13∴△BPQ ∽△DKM ∽△CNH∴,BQ MD=12BQ CH =13∴S 1S 2=14,S 1S 3=19∴S 2=4S 1,S 3=9S 1,∵S 1+S 3=20,∴S 1=2,∴S 2=8.故选B .考点:1.矩形的性质,2.三角形的面积,3.相似三角形的判定与性质.5.C【解析】【分析】容易看出∠3=45°,关键求出∠2与∠1的和是45°,根据证AI CI =IJ IA ∆AIJ~∆CIA,得∠2=∠CAI,再由∠1+∠2=∠CAI+∠CAD =45°可推出结果.【详解】如图设三个小正方形的边长为1个单位.在正方形ABCD 中∠3=45°,则∠AIC=135°,且∠1=∠CAD .∵∠AIJ=∠CIA ,,AI CI =22,IJ IA =22即,AI CI =IJ IA 所以∆AIJ~∆CIA,所以∠2=∠CAI,又∠1=∠CAD ,则∠1+∠2=∠CAI+∠CAD =45°,∴∠1+∠2+∠3=90°.故正确选项为:C【点睛】本题考查了相似三角形的判定与性质:如果两个三角形的两条对应边的比相等,且它们所夹的角也相等,那么这两个三角形相似;相似三角形对应角相等,对应边的比相等.也考查了勾股定理以及正方形的性质.6.C【解析】【分析】先利用勾股定理求出AC 的长,然后证明△AEO ∽△ACD ,根据相似三角形对应边成比例列式求解即可.【详解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,12∵EO ⊥AC ,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD ,∴△AEO ∽△ACD ,∴,AE AC=AO AD 即 ,AE 10=58解得,AE=,254∴DE=8﹣=,25474故选:C .【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.7.A【解析】分析:分两种情形:当A 与点N 、M 重合时来确定b 的最大与最小值即可.详解:如图1,当点A 与点N 重合时,CA ⊥AB ,∴MN 是直线AB 的一部分,∵N (3,1)∴OB=1,此时b=1;当点A 与点M 重合时,如图2,延长NM 交y 轴于点D ,易证△MCN ∽△BMD∴BD MN =DM NC ∵MN=3-=,DM=,CN=1125212∴BD=DM·MN CN =54∴OB=BD-OD=-1=,即b=-,541414∴b 的取值范围是.-14≤b ≤1故选A.点睛:此题考查了坐标与图形,灵活运用相似三角形的判定与性质是解此题的关键..8.B【解析】【分析】设矩形DEFG 的宽DE=x ,根据相似三角形对应高的比等于相似比列式求出DG ,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可.【详解】如图所示:设矩形DEFG 的宽DE=x ,则AM=AH-HM=8-x ,∵矩形的对边DG ∥EF ,∴△ADG ∽△ABC ,∴,AM AH =DG BC即,8−x 8=DG 10解得DG=(8-x ),54四边形DEFG 的面积=(8-x )x=-(x 2-8x+16)+20=-(x-4)2+20,545454所以,当x=4,即DE=4时,四边形DEFG 最大面积为20cm 2.故选:B .【点睛】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG 的宽表示出长是解题的关键.9.A【解析】解:由折叠的性质可得,∠EDF =∠C =60º,CE =DE ,CF =DF .∵∠BDF +∠ADE =∠BDF +∠BFD =120º,∴∠ADE =∠BFD ,又∵∠A =∠B =60º,∴△AED ∽△BDF ,∴ ,设DE AD AE DF BF BD==AD =a ,BD =2a ,AB =BC =CA =3a ,再设CE ==DE =x ,CF ==DF =y ,则AE =3a -x ,BF =3a -y ,所以,整理可得ay =3ax -xy ,2ax =3ay -xy ,即xy =3ax -ay ①,xy =3ay -332x a a x y a y a-==-2ax ②;把①代入②可得3ax -ay =3ay -2ax ,所以5ax =4ay ,,即,4455x a y a ==45CE CF =故选A .点睛:主要考查了翻折变换的性质及其应用问题;解题的关键是借助相似三角形的性质分别求出CE 、CF 的长度(用含有k 的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.10.B【解析】【详解】将△ABE 绕点A 逆时针旋转90°,得到△ADH ,因为四边形ABCD 是正方形,所以AB =BC =AD , ∠BAD =∠ABC =90°,∠ABD =∠CBD =45°,在△BNA 和△BNC 中,,{BN =BN∠NBA =∠BA =BC NBC所以△BNA ≌△BNC ,所以AN =CN ,∠NEC =∠NCE =∠BAN ,因为∠NEC +∠BEN =180°,所以∠BAN +∠BEN =180°,所以∠ABC +∠ANE =180°,所以∠ANE =90°,所以AN =NE ,AN ⊥NE ,故①正确,因为∠3=45°, ∠1=∠4,所以∠2+∠4=∠2+∠1=45°,所以∠3=∠FAH =45°,因为AF =AF ,AE =AH ,所以△AFE ≌△AFH ,所以EF =FH =DF +DH =DF +BE , ∠AFH =∠AFE ,故②正确,因为∠MAN =∠NDF =45°, ∠ANM =∠NDF ,所以∠AMN =∠AFD ,又因为∠AFE =∠AFD , ∠DFE=∠AFE +∠AFD所以∠DFE =2∠AMN ,故③正确,因为∠MAN =∠EAF , ∠AMN =∠AFE ,所以△AMN ∽△AFE ,所以,NMEF =AN AE =12所以MN ,EF =2如图2中,将△ABN 绕点A 逆时针旋转90°,得到△ADG ,易证△ANG ≌△ANM , △GDN 是直角三角形,所以MN =GN ,所以,MN 2=DN 2+DG 2=DN 2+BM 2所以,故④正确,EF 2=2DN 2+2BM 2图中相似三角形有△ANE ∽△BAD ∽△BCD , △ANM ∽△AEF , △ABN ∽△FDN ,△BEM ∽△DAM 等,故⑤错误,故选B.11.B【解析】【分析】①正确.只要证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②正确.由AD ∥BC ,推出△AEF ∽△CBF ,推出,由AE=AD=BC ,推出=,即AE BC =AF CF 1212AF CF 12CF=2AF ;④错误,设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有,即b=a ,可得ba =2ab 2tan ∠CAD==即可得.CD AD b 2a 【详解】如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴,AE BC =AF CF ∵AE=AD=BC ,1212∴=,AF CF 12∴CF=2AF ,故②正确;设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有,即b=a ,b a =2a b 2∴tan ∠CAD===,故③错误,CD AD b 2a 22所以正确的有2个,故选B .【点睛】本题考查了相似三角形的判定和性质,矩形的性质以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.12.A【解析】试题分析:设正方形ABCD 的边长=a ,根据勾股定理得到AC =a ,根据折叠的性质得到2AE =AD =a ,∠AEF =∠D =90°,根据等腰直角三角形的性质得到EF =CE =a –a ,根据勾股定2理得到a =AC =,EF =(–1)×32+22322+22232+22到结论.试题解析:设正方形ABCD 的边长=a ,则AC =a ,2∵折叠△ACD ,点D 恰好落在AC 上的点E 处,∴AE =AD =a ,∠AEF =∠D =90°,∴CE =a –a ,2∵∠ECF =45°,∴EF =CE =a –a ,2∵AF 2=AE 2+EF 2,∴32=a 2+(a –a )2,∴a =232+22∴AC =,EF =( –1)×,322+22232+22∵∠EAF =∠CAG ∠AEF =∠G =90°,∴△AEF ∽△AGC ,∴,∴CG =.ACAF =CG EF 32故选A .13.B【解析】【分析】记AC 与PQ 的交点为O ,由平行四边形的性质可知O 是AC 中点,PQ 最短也就是PO 最短;过O 作BC 的垂线P′O ,则PO 最短为P′O ;接下来可证明△P′OC 和△ABC 相似,进而利用相似三角形的性质即可求出PQ 的最小值.【详解】解:记AC 与PQ 的交点为O.∵∠BAC=90°,AB=3,AC=4,∴=5.∵四边形APCQ 是平行四边形,∴PO=QO ,CO=AO ,∴PQ 最短也就是PO 最短.过O 作BC 的垂线OP′.∵∠ACB=∠P′CO ,∠CP′O=∠CAB=90°,∴△CAB ∽△CP′O ,∴,'CO OP BCAB ∴OP′=,65∴则PQ 的最小值为2OP′=,125故答案为:.125【点睛】本题考查了勾股定理的运用、平行四边形的性质、相似三角形的判定和性质以及垂线段最短的性质,解题的关键是作高线,构造相似三角形.14.A【解析】【分析】利用翻折变换的性质结合勾股定理表示出CH 的长,得出△EDM ∽△MCH ,进而求出MC 的长,依据△GPH ≌△BCM ,可得GH=BM ,再利用勾股定理得出BM ,即可得到GH 的长.【详解】设CM =x ,设HC =y ,则BH =HM =3﹣y ,故y 2+x 2=(3﹣y )2,整理得:y =,21362x -+即CH =,21362x -+∵四边形ABCD 为正方形,∴∠B =∠C =∠D =90°,由题意可得:ED =1.5,DM =3﹣x ,∠EMH =∠B =90°,故∠HMC +∠EMD =90°,∵∠HMC +∠MHC =90°,∴∠EMD =∠MHC ,∴△EDM ∽△MCH ,∴ ,ED DM MC CH =即,21.531362x x x -=-+解得:x 1=1,x 2=3(不合题意),∴CM =1,如图,连接BM ,过点G 作GP ⊥BC ,垂足为P ,则BM ⊥GH ,∴∠PGH =∠HBM ,在△GPH 和△B CM 中,HGP CBM GP BC GPH C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GPH ≌△BCM (SAS ),∴GH =BM ,∴GH =BM.=故选:A .【点睛】此题主要考查了翻折变换的性质以及正方形的性质、相似三角形的判定与性质和勾股定理的综合运用,作辅助线构造全等三角形,正确应用相似三角形的判定与性质是解题关键.15.D【解析】【分析】根据判定三角形相似的条件对选项逐一进行判断.【详解】①根据题意得:,∠BAE =∠ADC =∠AFE =90°,∴∠AEF +∠EAF =90°,∠DAC +∠ACD =90°,∴∠AEF =∠ACD ①中两三角形相似;∴②,∵∠AEB =∠FEA,∠AFE =∠EAB =90°,∴△AFE ∽△BAE ,∴AE EF =EB AE 又,∵AE =ED ,∴ED EF =EB ED 而,∠BED =∠BED ,∴△FED ∽△DEB 故②正确;③,∵AB‖CD ,∴∠BAC =∠GCD ,且,∵∠ABE =∠DAF,∠EBD =∠EDF ∠ABG =∠ABE +∠EBD ,∴∠ABG =∠DAF +∠EDF =∠DFC ,∵∠ABG =∠DFC,∠BAG =∠DCF ,∴△CFD ∽△ABG 故③正确;④,∵△FED ∽△DEB ,∴∠EFD =∠EDB,∵AG =DG ,∴∠DAF =∠ADG ,∴∠DAF =∠EFD ,∴△ADF ∽△EFD 故④正确;故选:.D 【点睛】此题考查了相似三角形的判定:(1)有两个对应角相等的三角形相似;(2)有两个对应边的比相等,且其夹角相等,则两个三角形相似;(3)三组对应边的比相等,则两个三角形相似.16.(﹣,)45125【解析】【分析】首先过D 作DF ⊥AF 于F ,根据折叠可以证明△CDE ≌△AOE ,然后利用全等三角形的性质得到OE=DE ,OA=CD=1,设OE=x ,那么CE=3﹣x ,DE=x ,利用勾股定理即可求出OE 的长度,而利用已知条件可以证明△AEO ∽△ADF ,而AD=AB=3,接着利用相似三角形的性质即可求出DF 、AF 的长度,也就求出了D 的坐标.【详解】解:如图,过D 作DF ⊥AO 于F ,∵点B 的坐标为(1,3),∴BC=AO=1,AB=OC=3,根据折叠可知:CD=BC=OA=1,∠CDE=∠B=∠AOE=90°,AD=AB=3,在△CDE 和△AOE 中,,{∠CDE =∠AOE∠CED =∠AEOCD =AO ∴△CDE ≌△AOE ,∴OE=DE ,OA=CD=1,AE=CE ,设OE=x ,那么CE=3﹣x ,DE=x ,∴在Rt △DCE 中,CE 2=DE 2+CD 2,∴(3﹣x )2=x 2+12,∴x=,43∴OE=,AE=CE=OC﹣OE=3﹣=,434353又∵DF ⊥AF ,∴DF ∥EO ,∴△AEO ∽△ADF ,∴AE :AD=EO :DF=AO :AF ,即:3=:DF=1:AF ,5343∴DF=,AF=,12595∴OF=﹣1= ,9545∴D 的坐标为:(﹣,).45125故答案为:(﹣,).45125【点睛】此题主要考查了图形的折叠问题、相似三角形的判定与性质、全等三角形的判定与性质以及坐标与图形的性质.解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.17.4103【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对2应边的比值相等可求出x 的值,在直角三角形ADF 中利用勾股定理即可求出AF 的长.详解:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,∵四边形ABCD 是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x ,AN=4﹣x ,2∵AB=2,∴AM=BM=1,∵AE=,AB=2,5∴BE=1,∴ME=,BM 2+BE 2=2∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF ,∴△AME ∽△FNA ,∴,AMFN=MEAN∴,12x =24-x 解得:x=43∴AF=AD 2+DF 2=4103故答案为:4103点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,18.1632【解析】【分析】设AB=a ,AD=b ,则ab=32,构建方程组求出a 、b 值即可解决问题.2【详解】设AB=a ,AD=b ,则ab=32,2由∽可得:,△ABE △DAB BEAB=ABAD∴,b =22a 2∴,a 3=64∴,,a =4b =82设PA 交BD 于O ,在中,,Rt △ABD BD =AB 2+AD 2=12∴OP =OA =AB ⋅AD BD=823∴,AP =1632故答案为:.1632【点睛】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.19.2223n -⎛⎫ ⎪⎝⎭【解析】由已知可得△ A 1B 1M ≌△DA 1N 1,∴B 1M=A 1N ,A 1M=D 1N ,又A 1D 1//B 1C 1,∴OA 1:OE=OD 1:OF ,由直线y=﹣可得E (0, ),1722x +72F (7,0),∴OD 1=2OA 1,由矩形OA 1ND 1,得A 1N =2D 1N ,∴可设B 1(b,3b ),代入y=﹣得b=1,∴A 1N=2,A 1M=1,∴S 1=1;1722x +由b=1,可得C 1(3,2),同理可知S 2=( )2= ;212-233⨯⨯223⎛⎫ ⎪⎝⎭同理可知C 2( , ),S 3=( )2== ;133434241-3333⨯⨯249⎛⎫ ⎪⎝⎭423⎛⎫ ⎪⎝⎭……∴S n = .2n-223⎛⎫⎪⎝⎭点睛:本题主要考查全等三角形的判定与性质,一次函数、图形的变化规律等,能正确地识图是解题的关键.20.5×()4030【解析】解:如图,∵四边形ABCD 是正方形,∴∠ABC=∠BAD=90°,AB=BC ,∴∠ABA1=90°,∠DAO+∠BAA 1=180°﹣90°=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠ADO=∠BAA 1,在△AOD 和A1BA 中11AOD ABA ADO BAA ∠=∠⎧⎨∠=∠⎩∴△AOD ∽△A 1BA ,∴,∴BC=2A 1B.121OD AB AO A B ==∴A 1C=BC ,则A 2C 1=A 1C ,A 3C 2=A 2C 1,323232即后一个正方形的边长是前一个正方形的边长的倍.32∴第2016个正方形的边长为BC.201532⎛⎫ ⎪⎝⎭∵A 的坐标为(1,0),D 点坐标为(0,2),∴.=∴第2011个正方形的面积为.22015403033522BC ⎡⎤⎛⎫⎛⎫=⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦故答案为.4030352⎛⎫⨯ ⎪⎝⎭21.3或1.2【解析】【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.22.或154307【解析】分析:分两种情形分别求解:①如图1中,当AQ=PQ ,∠QPB=90°时,②当AQ=PQ ,∠PQB=90°时;详解:①如图1中,当AQ=PQ ,∠QPB=90°时,设AQ=PQ=x ,∵PQ ∥AC ,∴△BPQ ∽△BCA ,∴,BQBA=PQAC ∴,10−x 10=x6∴x=,154∴AQ=.154②当AQ=PQ ,∠PQB=90°时,如图2,设AQ=PQ=y .∵△BQP ∽△BCA ,∴,PQAC=BQBC ∴,y 6=10−y 8∴y=.307综上所述,满足条件的AQ 的值为或.154307点睛:本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.23.12【解析】【分析】设HG =x ,根据相似三角形的性质用x 表示出KD ,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可.【详解】设HG =x .∵四边形EFGH 是矩形,∴HG ∥BC ,∴△AHG ∽△ABC ,∴=,即=,解得:HG BC AKAD x 86-KD6KD =6﹣x ,则矩形EFGH 的面积=x (6﹣x )=﹣x 2+6x =(x ﹣4)2+12,则矩形EFGH 的343434﹣34面积最大值为12.故答案为:12.【点睛】本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键.24.238【解析】分析:由对称性可知CF ⊥DE ,可得∠CDE=∠ECF=∠B ,得出CF=BF ,同理可得CF=AF ,由此可得F 是AB 的中点,求得CF=5,再判定△CDF ∽△CFA ,得到CF 2=CD×CA ,进而得出CD 的长.详解:由对称性可知CF ⊥DE ,又∵∠DCE=90°,∴∠CDE=∠ECF=∠B ,∴CF=BF ,同理可得CF=AF ,∴F 是AB 的中点,∴CF=AB=5,12又∵∠DFC=∠ACF=∠A ,∠DCF=∠FCA ,∴△CDF ∽△CFA ,∴CF 2=CD×CA ,即52=CD×8,∴CD=.258故答案是:.258点睛:考查了折叠问题,四点共圆以及相似三角形的判定与性质的运用,解决问题的关键是根据四点共圆以及等量代换得到F 是AB 的中点.25.①②③④【解析】分析:①当点P 是矩形ABCD 两对角线的交点时,PA+PB+PC+PD 的值最小,根据勾股定理可得PA+PB+PC+PD 的最小值,即可判断;②根据全等三角形的性质可得PA=PC ,PB=PD ,那么P 在线段AC 、BD 的垂直平分线上,即P 是矩形ABCD 两对角线的交点,易证△PAD ≌△PBC ,即可判断;③易证S 1+S 3=S 2+S 4,所以若S 1=S 2,则S 3=S 4,即可判断;④根据相似三角形的性质可得∠PAB=∠PDA ,∠PAB+∠PAD=∠PDA+∠PAD=90°,利用三角形内角和定理得出∠APD=180°-(∠PDA+∠PAD )=90°,同理可得∠APB=90°,那么∠BPD=180°,即B 、P 、D 三点共线,根据三角形面积公式可得PA=2.4,即可判断.详解:①当点P 是矩形ABCD 两对角线的交点时,PA +PB +PC +PD 的值最小,根据勾股定理得,AC =BD =5,所以PA +PB +PC +PD 的最小值为10,故①正确;②若△PAB ≌△PCD ,则PA =PC ,PB =PD ,所以P 在线段AC 、BD 的垂直平分线上,即P 是矩形ABCD 两对角线的交点,所以△PAD ≌△PBC ,故②正确;③若=,易证+=+,则=,故③正确;S 1S 2S 1S 3S 2S 4S 3S 4④若△PAB ∼△PDA ,则∠PAB =∠PDA ,∠PAB +∠PAD =∠PDA +∠PAD =90°,∠APD =180°−(∠PDA +∠PAD )=90°,同理可得∠APB =90°,那么∠BPD =180°,B.P 、D 三点共线,P 是直角△BAD 斜边上的高,根据面积公式可得PA =2.4,故④正确.故答案为①②③④.点睛:本题考查了全等三角形的判定与性质,矩形的性质,相似三角形的性质.26.34【解析】【分析】过 E 作 EH ⊥GF 于 H ,过 B 作 BP ⊥GF 于 P ,依据△EHG ∽△BPG ,可得=,再根据EG BG EHBP △DCF ∽△CEH ,△ACF ∽△CBP ,即可得到 EH=CF ,BP=CF ,进 而得出=.34EG BG 34【详解】如图,过 E 作 EH ⊥GF 于 H ,过 B 作 BP ⊥GF 于P ,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP ,∴△EHG ∽△BPG ,∴=,EG BG EHBP ∵CF ⊥AD ,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF ,∠AFC=∠CPB , 又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH ,∠FAC=∠PCB ,∴△DCF ∽△CEH ,△ACF ∽△CBP ,∴,EHCF =CE DC ,BPCF =BCCA =1本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
(2019,北京)如图,在△ABC 中,点D 、E 分AB 、AC 边上,DE //BC ,若AD :AB =3:4, AE =6,则AC 等于( )D (A) 3 (B) 4 (C) 6 (D) 8。
(20192,则FC 等于_____.(2019,甘肃)0.8米,一棵大树的影长为4.8. 9.6 (2019,珠海)线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的峰高为1.65米,由此可推断出树高是_______米. 3.3(2019,梧州)如图(2),在ABCD 中,E 是对角线BD 上的点,且EF ∥AB ,DE :EB=2:3, EF=4,则CD 的长为_____________。
(2019,桂林)如图,已知△ADE 与△ABC 的相似比为1:2,则△ADE 与△ABC 的面积比为( ).A . 1:2B . 1:4C . 2:1D . 4:1 (2019,黔东南)如图,若CD C ABC Rt ,90,0=∠∆为斜边上的高,ACD n AB m AC ∆==则,,的面积与BCD ∆的面积比SsACDBCD ∆∆的值是 ( )A. 22m n B. 221m n -C. 122-m nD. 122+mn(2019,河南)如图,△ABC 中,点DE 分别是ABAC 的中点,则下列结论:①BC =2DE ; ②△ADE ∽△ABC ;③ACABAE AD =.其中正确的有【 】 (A )3个 (B )2个 (C )1个 (D )0个(2019,河南)如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范围是___________________.(2019,沈阳)如图,在□ ABCD 中,点E 在边BC 上,BE :EC =1:2, 连接AE 交BD 于点F ,则△BFE 的面积与△DF A 的面积之 比为 。
第18讲 相似三角形
知识点1 比例线段
知识点2 平行线分线段成比例 知识点3 相似三角形的性质 知识点4 相似三角形的判定 知识点5 相似多边形
知识点1
比例线段
(2018·白银)已知
(0,0)23
a b
a b =≠≠,下列变形错误的是( ) A .23a b = B .23a b = C .3
2
b a = D .32a b =
(2018·成都)已知
,且
,则 的值为___12_____.
知识点2 平行线分线段成比例 (2018·嘉兴)
(2018·哈尔滨)答案:D
知识点3 相似三角形的性质
(2018•内江)已知△ABC 与△A 1B 1C 1相似,且相似比为1:3,则△ABC 与△A 1B 1C 1的面积比为( D )
A .1:1
B .1:3
C .1:6
D .1:9
(2018·重庆A 卷)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为 C
A. 3cm
B. 4cm
C. 4.5cm
D. 5cm
(2018·铜仁)
(2018·重庆B 卷)
(2018·自贡)如图,在⊿ABC 中,点D E 、 分别是AB AC 、的中点,若⊿ADE 的面积为4,则是⊿ABC 的面积为 ( )
A. 8
B. 12
C. 14
D. 16 (2018·玉林)
(2018·广东)7.在△ABC 中,D 、E 分别为边AB 、AC 的中点,则△ADE 与△ABC 的面积之比为( ) A.
21 B.31 C.41 D.61
(2018·乌鲁木齐)答案:D
(2018·河北)
(2018·兰州)
(2018·宜宾)如图,将△ABC 沿BC 边上的中线AD 平移到△A 'B 'C '的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA '=1,则A 'D 等于( )
A. 2
B.3
C. 23
D. 3
2
(2018·随州)答案:C
(2018·荆门)答案:C
(2018·杭州)
(2018·达州)如图,F E ,是平行四边形ABCD 对角线AC 上两点,AC CF AE 4
1
==.连接DF DE ,并延长,分别交BC AB ,于点H G ,,连接GH ,则
BGH
ADC
S S ∆∆的值为( )
A .
21 B .32 C .4
3
D .1 (2018·毕节)如图,在平行四边形ABCD 中,
E 是DC 上的点,DE:EC=3:2,连接AE 交BD 于点F,则△DE
F 与△BAF 的面积之比为( )
A.2:5
B.3:5
C.9:25
D.4:25 (2018·包头)
(2018·连云港)
(2018·赤峰)
(2018·资阳)
知识点4 相似三角形的判定(2018·德阳)
(2018·枣庄)答案:A
(2018·泸州)如图4,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,
则AG
GF
的值是( C )
A.4
3
B.
5
4
C.
6
5
D.
7
6
(2018·恩施)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点,已知2
FG ,则线段AE的长度为( D )
A .6
B .8
C .10
D .12
(2018·黄冈)如图,在Rt ABC △中,90ACB ∠=,CD 为AB 边上的高,CE 为AB 边上的中线,2AD =,
5CE =,则CD =( C )
A .2
B .3 C.4 D .(2018·扬州)
(2018·永州)
(2018·淄博)如图,在Rt ABC ∆中,CM 平分ACB ∠交AB 于点M ,过点M 作//MN BC 交AC 于点N ,且
MN 平分AMC ∠,若1AN =,则BC 的长为( )
A .4
B .6 C. .8
(2018·南通)正方形ABCD 的边长2AB =,E 为AB 的中点,F 为BC 的中点,AF 分别与DE BD 、相交于点M N 、,则MN 的长为( C )
A B 1- C D (2018·威海)矩形ABCD 与CEFG 如图放置,点,,B C E 共线,点,,C D G 共线,连接AF ,取AF 的中点H ,连接GH ,若2BC EF ==,1CD CE ==,则GH =( C )
A.1
B.
23
(2018·巴中)
(2018·南充)
(2018·上海)
(2018·柳州)
(2018·盐城)如图,在直角ABC ∆中,90C ∠=,6AC =,8BC =,P 、Q 分别为边BC 、AB 上的两个动
点,若要使APQ ∆是等腰三角形且BPQ ∆是直角三角形,则AQ =
.
(2018·云南)
(2018·北京)如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4=AB ,3=AD ,则CF 的长为 。
(2018·邵阳)
(2018·岳阳)
知识点5 相似多边形
知识点5 相似三角形的实际应用
(2018·泰安)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”
用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点
在直线上)?请你计算的长为__________步.
(2018·临沂)答案:B
(2018·义务)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB BD
⊥,
⊥,CD BD
垂足分别为B,D,4m
CO=,则栏杆C端应下降的垂直距离CD为( C )
AO=, 1.6m
AB=,1m
A.0.2m
B.0.3m
C.0.4m
D.0.5m
(2018·长春)
(2018·吉林)
(2018·陕西)。