水稻对按态氮和硝态氮吸收特性的研究
- 格式:pdf
- 大小:274.92 KB
- 文档页数:4
哪些作物喜欢铵态氮肥,哪些作物喜欢硝态
氮肥
不论是铵态氮肥还是硝态氮肥,它们都是各种作物能吸收利用的氮源,但是,由于氮肥的形态不同,作物对它们的反应并不一样。
水稻是典型喜欢铵态氮的作物,施用铵态氮肥的效果比硝态氮肥好。
这是因为水稻幼苗根内缺少硝酸还原酶,所以硝态氮不能在体内还原成铵态氮,因此就不能很好地被利用。
薯类作物含碳水化合物较多,有利于铵态氮合成有机含氮化合物。
因为,这类作物对铵态氮有较强的忍耐能力,所以也喜欢铵态氮肥。
烟草是典型的喜氧作物,对硝态氮反应较好。
因为硝态氮有利于烟草体内形成大量的有机酸,因而能够增强烟叶的燃烧性。
此外,许多小粒种子(如谷子),因种子中碳水化合物含量少,忍受铵态氮的能力很小,而对硝态氮的反应较好。
应当指出,不能简单地认为哪种形态的氮肥好或是不好。
因为肥效高低与各种影响氮素吸收利用的因素有关,作物营养特性只是其中的一个因素。
土壤无机氮(铵态氮、硝态氮)时空变化研究现状作者:焦亚青来源:《现代盐化工》2022年第01期摘要:为研究无机氮在不同条件下的时空变化情况,以土壤类型、植物群落和土地利用方式为条件,研究了不同情况下的铵态氮、硝态氮时空变化情况。
研究发现,受有机质含量、含水量、温度以及pH的影响,土壤的理化性质和生物活性得到明显改善,使无机氮在土壤中出现明显的时空差异。
近年来,有学者用15N同位素稀释法、室内模拟研究以及冻融模拟实验等方法对无机氮进行研究,但是仍具有局限性。
关键词:土壤;铵态氮;硝态氮;影响因素氮素主要包括有机氮和无机氮,而有机氮素占全氮的90%以上,无机氮素仅占5%以下,但是土壤供给植物的主要物质还是无机氮。
有机氮不能直接被植物吸收,必须在微生物的矿化作用[1]下形成无机氮,才能被植物吸收利用。
之后通过反硝化作用产生温室气体氧化亚氮(N2O)逸散到大气中,对陆地生态系统和全球气候产生影响。
矿化作用是一个极其复杂的过程,土壤中的有机氮素(如蛋白质等)在土壤微生物(如真菌)的作用下,以碳素为能量源,逐渐裂解成简单的氨基化合物,之后土壤中分解的氨转化为铵离子,大部分铵离子在硝化作用下氧化成硝酸盐,这是生态系统氮循环中非常重要的环节[2]。
随着科学研究的深入和技术的进步,铵态氮和硝态氮的研究也成为当前土壤学研究的重点[3]。
就土壤本身而言,由于土壤的物理化学特征不同、有机质以及微生物分布不同,导致氮素转化出现空间变异,使无机氮在土壤中出现空间差异,并且研究发现,铵态氮和硝态氮在一定条件下可以相互转换,在土壤氧气充足的情况下,铵态氮易转化为硝态氮,在土壤厌氧条件下,硝态氮易转化为铵态氮,铵态氮有利于植物生长发育,而硝态氮极易淋失,污染环境[4]。
因此,研究铵态氮和硝态氮在不同条件下的时空变化情况,对农业生产和环境保护都有极其重要的意义。
1 铵态氮、硝态氮在不同条件下的时空变化1.1铵态氮、硝态氮与土壤类型的关系土壤类型是在土壤发生过程的基础上将不同的土壤进行分类以及命名,其概括了不同土壤类型的成土过程及其典型特征。
铵态氮与硝态氮的差异铵态氮肥:氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。
例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。
硝态氮肥:氮肥中氮素的形态是硝酸根(NO3-)。
如硝酸钠、硝酸钾、硝酸钙。
硝、铵态氮肥:氮肥中含有铵离子和硝酸离子两种形态的氮。
如硝酸铵、硝酸铵钙、硫硝酸铵。
酰胺态氮肥:主要有尿素植物可以大量吸收的氮,是铵态氮和硝态氮,也可吸收少量有机态氮,如尿素和结构比较简单的氨基酸。
铵态氮是还原态,为阳离子;硝态氮是氧化态,为阴离子。
它们所带的电荷不用,在土壤中的行为以及对植物的营养特点也不一样。
不能简单地说哪种形态好,哪种形态不好。
它们的好坏与施用条件和作物种类等有关。
铵态氮在带阴离子的土壤胶体中容易被吸附,而硝态氮则不能被吸附,具有更大的移动性。
硝态氮被植物吸收后,要经过硝酸还原酶和亚硝酸还原酶还原成铵态氮后,才能进一步合成氨基酸。
不同作物施用两种形态氮的反应往往不一。
水稻施用铵态氮的效果比硝态氮好。
因为水稻幼苗根中缺少硝酸还原酶,对硝态氮不能很好利用。
除水稻本身原因外,水田中施用硝态氮易于流失,而且在淹水条件下的反硝化作用也是氮素损失的原因。
因此,在水稻田施用硝态氮肥,有资料认为其肥效只有铵态氮肥的60%—70%。
而与此相反的是烟草和蔬菜,它们是喜硝态氮的作物。
硝态氮肥极易溶解,在土壤中活动性大,能迅速提供作物氮素营养,同时,又易于流失,肥效较短。
这种特性符合烟草的要求,叶片要生长快,在适当时候又能落黄“成熟”。
而且硝态氮有利于烟草体内形成柠檬酸、苹果酸等有机酸,烤出的烟叶品质好,燃烧性好。
蔬菜施用硝态氮产量高,如硝态氮低于肥料全氮的50%,产量明显下降。
因此,生产烟草、蔬菜专用肥时,氮肥中要有一定比例的硝态氮。
但由于在土壤水分、温度、通气条件适宜时,铵态氮可经硝化作用,氧化成硝态氮。
所以,烟草、蔬菜也不是绝对不能施用含铵态氮的肥料。
另外,施用硫酸铵等生理酸性肥料作物生长不好,往往不是由于铵态氮肥不宜,而是由于生理酸性造成的。
硝态氮和铵态氮硝态氮和铵态氮是植物生长必需的两种氮素形式。
它们在植物生长过程中发挥着重要的作用,但它们的性质、作用以及在农业生产中的应用方式却有所不同。
一、硝态氮和铵态氮的定义及区别硝态氮,又称硝酸态氮,是指植物可吸收的硝酸盐形态的氮。
它主要来源于土壤中的硝酸盐矿物和有机物的分解。
硝态氮在土壤中移动性强,易被植物吸收,但同时也易流失。
铵态氮,又称氨基态氮,是指植物可吸收的氨基形态的氮。
它主要来源于土壤中的氨基酸和氨态氮。
铵态氮在土壤中移动性较差,但不易流失。
二、硝态氮的性质和作用硝态氮是一种快速作用的氮素形式,能迅速满足植物生长的需求。
硝态氮在土壤中容易被植物吸收,对提高植物的早期生长速度和叶面积有很好的效果。
此外,硝态氮还能促进植物对其他矿质元素的吸收。
三、铵态氮的性质和作用铵态氮是一种慢速作用的氮素形式,对植物的生长具有持久的促进作用。
铵态氮在土壤中不易流失,可以保证植物长期稳定的氮素供应。
此外,铵态氮还能提高植物的抗逆性,促进植物的生长。
四、硝态氮和铵态氮在农业生产中的应用在农业生产中,硝态氮和铵态氮的应用各有侧重。
硝态氮适用于作物生长初期,可以迅速提高作物生长速度,为高产打下基础。
铵态氮适用于作物生长中后期,可以保证作物稳定的氮素供应,提高作物品质。
五、如何合理施用硝态氮和铵态氮要实现硝态氮和铵态氮的合理施用,首先要了解不同作物的氮素需求特点。
对于需氮量大的作物,如水稻、小麦等,可以适当增加硝态氮和铵态氮的施用量。
其次,要掌握硝态氮和铵态氮的施用时机,一般在作物生长初期施用硝态氮,生长中后期施用铵态氮。
最后,要注意硝态氮和铵态氮的施用比例,避免过量施用导致环境污染。
总之,硝态氮和铵态氮在植物生长过程中起着重要作用。
水稻所需营养元素水稻是世界上最重要的粮食作物之一,其生长发育过程中需要吸收大量的营养元素。
合理供给水稻所需的营养元素,能够提高产量和品质,保障粮食安全。
下面将详细介绍水稻所需的主要营养元素。
一、氮素氮素是水稻生长发育过程中最为重要的营养元素之一。
它是构成蛋白质和核酸等生物大分子的基本组成元素,对水稻的生长具有重要影响。
水稻吸收氮素的主要形式是硝态氮和铵态氮。
硝态氮适宜供应能促进水稻的生长和光合作用,而铵态氮则有助于提高水稻的抗逆性。
不同生育期对氮素的需求量有所不同,但整个生育期内都需要适量的氮素供应。
二、磷素磷素是构成核酸、磷脂和ATP等重要生物分子的必需元素,对水稻的生长发育和产量形成具有重要作用。
磷素对水稻的影响主要表现为促进根系生长和发育、提高开花结实率、增加稻谷产量和改善品质。
在水稻生长过程中,磷素主要以磷酸盐的形式吸收和利用。
三、钾素钾素对水稻的生长发育和产量形成起着重要作用。
它参与水稻的光合作用、调节渗透调节物质和离子平衡,提高水稻的抗逆性和抗病虫害能力。
适宜的钾素供应能够增加水稻的产量和品质,提高稻谷的充实度和食味品质。
水稻吸收钾素的主要形式是离子态钾。
四、钙素钙素是水稻生长发育过程中必需的微量元素之一。
它参与细胞壁的形成和维持细胞膜的完整性,对水稻的根系生长和发育、抗逆性和抗病虫害能力具有重要影响。
缺乏钙素会导致水稻倒伏、叶片发生脱绿病等病害,严重影响产量和品质。
五、镁素镁素是水稻生长发育中必需的微量元素之一。
它是叶绿素的中心原子,参与光合作用和能量转化过程。
镁素对水稻的生长发育和产量形成起着重要作用。
缺乏镁素会导致叶片出现黄化斑点,影响光合作用和产量。
六、硅素硅素是水稻生长发育中必需的微量元素之一。
它参与构建水稻细胞壁,增加细胞膜的稳定性和抗病虫害能力。
适量的硅素供应能够提高水稻的抗逆性和抗病虫害能力,促进水稻的生长和发育。
七、微量元素水稻还需要少量的微量元素来维持正常生长发育。
硝态氮和铵态氮的关系
氮是植物生长所需的关键元素之一。
在土壤中,氮可以以不同的形式存在,其中最常见的是硝态氮和铵态氮。
这两种氮形式对植物的吸收和利用有着不同的影响。
硝态氮是一种水溶性的无机氮化合物,它在土壤中很容易被水分带走,因此在雨季和灌溉期间,硝态氮往往会被带走,从而减少了植物可利用的氮的数量。
另外,硝态氮在土壤中容易被微生物分解为氮气,这会导致土壤中氮的丢失。
但是,由于硝态氮可以被植物根系迅速吸收,因此它是一种高效的氮肥。
铵态氮是一种有机氮化合物,它通过微生物的分解作用在土壤中形成。
与硝态氮相比,铵态氮的溶解度较低,因此不会那么容易被带走。
此外,铵态氮还能够在土壤中与矿物质质地和有机质质地结合形成铵型矿物,这样就能够长期留存在土壤中。
由于铵态氮在土壤中稳定性较高,因此不容易被微生物分解,从而减少了氮的损失。
不过,铵态氮在土壤中会容易转化为硝态氮,因此过多的使用铵态氮肥会导致土壤中硝态氮的积累。
综合来看,硝态氮和铵态氮都是植物所需的重要氮源,但它们的表现和使用方式有所不同。
当土壤条件较为干燥或者需要快速增加氮素时,硝态氮是更为适合的选择;而当土壤有较高的有机质含量或者需要长期保持土壤中氮的供应量时,铵态氮则更为适合。
在施肥时,应根据不同土壤和作物的情况来选用适当的氮肥,以达到最佳效果。
硝态氮铵态氮区别The Standardization Office was revised on the afternoon of December 13, 2020硝态氮与铵态氮的区别一、硝态氮与铵态氮的特性(一)硝态氮肥氮肥中氮素的形态是硝酸根(NO3-)。
如硝酸钠、硝酸钾、硝酸钙。
1、易溶于水,溶解度大,为速效氮肥。
2、吸湿性强,易结块,吸水后呈液态,造成使用上的困难。
3、受热易分解放出氧气,是体积聚增,易燃易爆,运输不安全。
4、不易被土壤胶体吸附。
硝态氮极易溶于水,用于水田会造成很大流失(特别是放水后)。
硝态氮更适用于干旱地。
冬天温度低时硝态氮也能发挥作用。
(二)铵态氮肥氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。
例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。
1、易溶于水,肥效快,作物直接吸收。
2、容易吸收,不易在土壤中流失。
3、在碱性土壤中容易挥发。
4、在通气好的土壤中可以转化成硝态氮,易造成氮的淋失和流失。
铵态氮在大棚蔬菜里是禁止使用的,铵态氮挥发时会对作物造成伤害的,硝态氮则不会。
(三)硝、铵态氮肥氮肥中含有铵离子和硝酸离子两种形态的氮。
如硝酸铵、硝酸铵钙、硫硝酸铵。
(四)酰胺态氮氮肥中氮素的形态是酰胺态。
例如尿素。
1、施入土壤中一小部分以分子态溶于土壤溶液中,通过氢键作用被土壤吸附,其他大部分在脲酶的作用下水解成碳酸铵,进而生成炭酸氢和氢氧化铵。
2、NH4+能被植物吸收和土壤胶体吸附,NCO3-也能被植物吸收,因此尿素施入土壤后不残留任何有害成分。
3、尿素中含有的缩二脲也能在脲酶的作用下分解成氨和碳酸,无有害物质残留。
4、尿素在土壤中转化受土壤PH值、温度和水分的影响,在土壤呈中性反应,水分适当时土壤温度越高,转化越快。
当土壤温度10℃时尿素完全转化成铵态氮需7——10天,当20℃需4——5天,当30℃需2——3天即可。
5、尿素水解后生成铵态氮,表施会引起氨的挥发,尤其是碱性或碱性土壤上更为严重,因此在施用尿素时应深施覆土,水田要深施到还原层。
硝态氮肥和铵态氮肥比较展开全文硝态氮和铵态氮能够被植物直接吸收利用,他们施入土壤后的行为以及进入植物体内的代谢是不同的,因此作为植物氮源也各有利弊。
一、农业化学性质肥料施入土壤,与土壤、植物相互作用的性质,常被称为农化性质。
首先,硝酸根带负电荷,不易被以带负电荷为主的土壤胶体吸附;铵离子带正电荷,容易被土壤吸附,不仅吸附在土壤胶体表面,还可进入粘土矿物的晶格中,成为固定态铵离子。
因此,硝态氮主要存在于土壤溶液中,移动性大,容易被植物吸收利用,也容易随水流失。
而铵态氮主要被吸附和固定在土壤胶体表面和胶体晶格中,移动性较小,比较容易被土壤”保存”。
其次,不同形态的氮在土壤中会相互转化。
在适宜的温度、水分和通气条件下,在土壤微生物和酶的作用下,尿素水解为铵态氮,铵态氮氧化为硝态氮。
因此,早春低温季节尿素和铵态氮的转化比较慢,夏季高温季节转化快。
在旱地土壤中硝态氮往往多于铵态氮,而在水田土壤中硝态氮很少。
第三,在土壤湿度过大,通气不良和有新鲜有机物存在的情况下,硝态氮在微生物作用下可还原成氧化亚氮、氧化氮和氮气,这种反硝化作用是硝态氮损失的主要途径之一。
铵态氮从土壤中损失的主要途径是氨挥发。
因此,硝态氮肥适宜于气候比较冷凉的地区和季节,在旱地分次施用,肥效快而明显,但不宜在高温、多雨的水田地区施用;铵态氮肥适宜于水田,也适宜于旱地施用,但施用于土壤表面或撒施于水田,氨挥发的损失较大。
二、植物营养生理性质植物在吸收和代谢这两种形态的氮素上存在不同。
首先,铵态氮进入植物细胞后必须尽快与有机酸结合,形成氨基酸或酰胺,铵在植物体内的积累对植物本身是有毒的。
硝态氮在进入植物体后一部分还原成铵态氮,并在细胞质中进行代谢,其余部分可积累在细胞的液泡中,有时达到较高的浓度也不会对植物产生不良影响。
即硝态氮在植物体内的积累实际上是氮素”贮备”。
这是作物营养生长期间的共性。
第二,植物吸收铵离子时分泌H+,而吸收硝酸根时会释放OH-和HCO3-,因而影响根系环境的pH值,这在溶液培养时更为明显。