高压电网不平衡情况分析
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
高压供配电系统不平衡配电的原因及改进方法摘要:高压供配电系统中的不平衡配电问题是影响电网安全和稳定运行的重要因素之一。
本文通过分析不平衡配电的原因,包括不均匀的负载分布、负载偏移、不符合功率因数和不正确的线路连接等因素。
在此基础上,本文提出了改进方法,包括均衡负载分配、运用三相专用装置、优化功率因数和线路接线的正确性。
通过这些改进措施,可以有效地解决高压供配电系统中的不平衡配电问题,提高电网的安全性和可靠性。
关键词:高压供配电系统、不平衡配电、负载分布、功率因数、线路连接引言:高压供配电系统是现代电力系统的重要组成部分,其稳定运行对于保障电力供应的可靠性和安全性至关重要。
然而,不平衡配电问题是高压供配电系统中常见的现象,严重影响了电网的稳定性。
不平衡配电会导致电网过载、电能浪费、设备损坏等问题。
因此,深入研究和解决高压供配电系统中的不平衡配电问题具有重要意义。
一、高压供配电系统不平衡配电的原因首先,不均匀的负载分布是高压供配电系统中不平衡配电的常见原因之一。
在电力系统中,负载通常分布不均,导致不同相之间的负载差异较大。
这可能是由于负载类型不同、负载的接入位置不同以及负载的工作状态不同所导致的。
其次,负载偏移也是高压供配电系统中不平衡配电的一个重要原因。
负载偏移是指在电力系统中,负载在不同相之间的分布不平衡,导致某一相的负载过重,而其他相的负载较轻。
这通常是由于负载的改变或故障引起的。
再次,功率因数不符合也会导致高压供配电系统中的不平衡配电。
功率因数是衡量电力负荷对电网造成影响的一个重要指标。
当负载的功率因数不符合要求时,会导致电压波动,降低电网的稳定性。
最后,不正确的线路连接也是高压供配电系统不平衡配电的一个重要因素。
由于线路的错误连接或接线不规范,会导致负载分布不均,进而影响配电的平衡性。
二、高压供配电系统不平衡配电的改进方法(一)均衡负载分配均衡负载分配是解决高压供配电系统不平衡配电问题的一个重要改进方法。
一起 6kV不接地系统三相电压不平衡故障处理与分析【摘要】某厂6kV变电所6kVⅡ段发生三相对地电压不平衡故障,如果不能得到尽快处理,可能诱发严重电气事故,通过逐个瞬停负荷方式排查故障回路,最终发现故障点在一台中压电机开关C相未断开,导致系统三相容抗严重不平衡,引起中性点电压偏移,继而引发系统三相对地电压不平衡。
本文详细介绍了故障处理过程,分析计算了不同工况下三相电容不平衡对三相电压的影响差异,为排除和分析类似三相电压不平衡故障提供了有益的解决思路和理论支撑,并提出了相应的防范措施。
关键词:不接地系统;三相电压不平衡;电容不平衡1.系统运行方式与带载情况某厂6kV变电所有2段6kV母线,单母分段运行,中性点不接地系统。
6kVⅡ段带有负载有1组3000kVar电容器、3台1600kVA变压器、3台2000kW循环风机、3台900kW磨煤机、1台1600kW溢流型磨煤机、1台1250kW循环风机、1台500kW球磨机、1台400kW球磨机风机、1台280kW胶带输送机等共15个回路。
2.故障现象某日17:10分,该变电所运行人员巡检发现6kVⅡ段母线PT柜微机消谐装置显示电压频率为50Hz,开口电压值14V(正常为0-2V左右),同时检查发现母线三相对地电压不平衡:A相3.945kV,B相3.941kV,C相3.169kV(正常时三相对地电压均为 3.6kV)。
此时电压无波动及谐振现象,三相线电压平衡,均为6.3kV。
3.故障处理过程运行人员立即汇报技术主管,并协助处理故障。
17:30分,运行人员测量PT二次电压,其值分别为:A相65.7V,B相65.7V,C相52.8V,与表计显示一次侧三相对地电压相符。
线电压均为105V。
由此证明PT二次系统正常,系统电压不平衡确实存在于一次系统。
17:45分,运行人员联系工艺将6kVⅡ段负荷切换至6kVⅠ段运行,退出6kVⅡ段PT,此时系统三相对地电压依然不平衡,A相3.7kV,B相3.7kV,C相3.4kV。
浅谈10千伏线路电压不平衡的原因及处理方法作者:陈志强来源:《科学与财富》2016年第04期摘要:我国的配电网建设功能不健全,自动化水平较低。
10千伏线路直接进入用户、服务用户,用电量非常大,其电压不平衡的问题经常出现,且频率较高。
要解决10千伏线路电压不平衡的问题,就要提高配电网的自动化性能及配电设施的服务能力。
随着社会的发展和电力行业的蓬勃发展,对配电设备的服务要求越来越高,因此,解决10千伏线路电压不平衡的问题就显得非常重要。
本文就10千伏线路电压不平衡的原因及处理方法进行论述,希望为我国的电力发展提供一定的帮助。
关键词:10千伏线路;电压不平衡;原因;处理方法配电网的正常运行关系着人民群众的用电安全,对整个社会的生产生活有十分重要的作用,是我国社会发展的重要保证。
但是,配电线路中10千伏线路电压不平衡问题,会对配电网的运行产生极大的影响。
随着社会的发展和电力企业技术的不断更新,配电设备在不同的电压条件下,出现了不同的配电线路,共同组成了我国电力企业的配电网组织。
在高压领域,10千伏线路的优势非常明显,由于其所跨的里程最长, 10千伏线路的故障也最多,电压不平衡就是其中最常见的故障之一。
一、10千伏线路电压不平衡的一般故障10千伏线路电压不平衡的一般故障,主要分为三种:第一,如果配电线路中出现一相电压变成了零,或者是一相电压还没有到零,但是其他两相电压升高,却依然低于线电压,这时就可以判断,故障是单相接地故障。
常见的单相接地故障的产生原因主要有:配电线路与具备电能的无图或者设备距离太近;配电线路由于异物搭接造成的故障;配电设备被雷击。
10千伏线路的用户侧接地故障形成的故障,还有其他一些原因影响,导致出现配电线路电压不平衡的结果[1]。
第二,如果配电线路中出现了一相电压下降,但是还没有变成了零,但是其他的两相电压升高,却高于线电压,这时就可以判断,故障是谐振过电压故障。
如果三相电压出现了有顺序的轮流升高的现象,而且升高范围不在同一个范围内,并且三相电压一直处于摇摆不定的状态,这是应该判定为谐振过电压故障。
电工电气 (20 9 No. )信息与交流110kV母联开关合环引发不平衡电流问题及防范措施柏晶晶,王坤,胥峥(国网江苏省电力有限公司盐城供电分公司, 江苏 盐城 224002)近年来,为了提高供电可靠性,保证用户可靠、不间断地供电,电网调度通常都要求变电站运维人员先执行合环操作,再对目标线路进行停役操作。
然而,在日常操作时,由于合环操作引发的环流偏大、三相不平衡电流等异常,对电网安全运行产生较大影响,因而需着重分析和处理。
本文将以某110kV变电站母联710开关合环操作时引发三相不平衡电流等异常事件为例,剖析其异常发生的原因以及应对防范措施,为变电运维及检修人员在今后在处理该类型异常时提供可靠依据,加快异常处理进程,快速恢复变电站正常运行方式。
1 合环操作引发三相不平衡电流异常经过2018年3月27日,因某110kV变电站110kV 安步Ⅰ线943线路调电,为实现不停电转移负荷,提高供电可靠性,需先将110kV母联710开关合环,再将安步Ⅰ线943开关由运行改为冷备用。
实际操作时,运维人员首先检查了两台主变抽头电压相等,并在变电站现场后台机上将110kV母联710开关遥控合闸,再到现场检查110kV母联710开关确在合闸位置,随即返回后台机准备抄写母联710开关电流时发现,三相电流相差较大,A相电流6.33A,B相电流4.92A,C相电流3.87A,如表1所示。
经测算,此时三相电流不平衡达到38.86%。
现场运维人员随即将该情况上报电力调控中心及变电运维室,同时,开展变电站现场检查,未发现其他明显异常后,继续开展剩余运行方式调整,后续倒闸操作及电网运行方式调整正常。
2 三相不平衡电流异常原因分析变电站正常运行方式如图1所示,110kV部分为扩大内桥接线,主变无独立的高压侧开关。
在图1中,110kVⅠ、Ⅱ段母线经母联710开关分列运行,Ⅱ、Ⅲ段母线经母联730开关并列运行,安步Ⅰ线943开关、1#主变接110kVⅠ段母线运行,安步Ⅱ线944开关运行于Ⅲ段母线,2#主变接110kVⅡ段母线运行,1#、2#主变中性点刀闸分闸。
10kV母线三相电压异常现象分析作者:梁如平来源:《城市建设理论研究》2013年第12期摘要:在小电流接地系统中,当对地参数不对称时容易造成系统中性点对地电压的偏移,严重时还会引起“虚幻接地”,其现象和单相接地现象非常相似;另外,当系统对地电容发生变化时,对地电容的充电电荷需要重新分配,达到一个新的稳态,在此电磁暂态过程中,对地电流将通过压变、消弧线圈形成通路,该电流中的直流分量将引起压变的饱和.造成电压的异常现象。
基于这两个方面的原理对一起10kV线路中绝缘线夹接触不良造成的电压异常现象进行了简要介绍,分析了产生该现象的原因。
关键词:10kV母线相电压异常分析中图分类号:TM714.2 文献标识码:A 文章编号:引言变电站10kV电气一次系统一般为中性点不接地或中性点经消弧线圈接地系统,也即小电流接地系统,在系统运行中,10kV母线电压常出现以下一些异常现象,现对其进行简单浅析,仅供有关工作参考。
1 简要分析1.1 电压不平衡原因分析在10KV及以下中性点不接地系统中,当发生单相接地后,允许维持一定的时间,一般为2h不至于引起用户断电。
但随着中低压电网的扩大,中低压架空导线及电缆出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,当发生单相接地时,接地电弧不能自动熄灭而产生电弧过电压,一般为3~5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,最终发展为相间短路造成设备损坏和停电事故。
1.2 电压剧烈变化原因分析由于架空线路在室外受风力等影响.当出现导线摆动时.可能造成1支线各相的接通或断开。
相当于对一个对地电容充电电荷的重新分配.由于系统阻抗和线路阻抗的存在,将产生一个电磁暂态过程.该暂态过程将进一步造成中性点偏移电压的暂态过程。
另外,该电磁暂态中含有一定的直流分量,该直流分量在系统侧没有通路.只有通过电压互感器和消弧线圈形成通路。
该直流分量容易造成压变的瞬间饱和.因此.初步判断间歇性的电压剧变是由于对地电容电荷重新分配时的电磁暂态及其中的直流分量造成Tv饱和。
三相不平衡电压三相不平衡电压是指三相电源系统的相间电压不相等的情况。
由于许多电气设备的工作原理是基于三相电源系统的,因此三相不平衡电压会严重影响电气设备的正常运行。
本文将从如下方面分析三相不平衡电压的原因、影响以及其防治方法。
一、三相不平衡电压的原因1.配电系统环节故障在三相电源系统中,三相电源由变电站到母线,母线到配电变压器,再通过配电变压器到用电负载等多个环节进行输送。
若其中某个配电系统环节发生故障,如短路、开路,将会导致三相电源的电流不均衡,产生三相不平衡电压。
2.连接线路不均衡如果三相电源系统的连接线路不均衡,比如一些单相负载的接入位置不够均匀,将引起三相电源的缺相、低压甚至高压等现象。
3.非线性负载现代电子设备多采用调制控制技术,采用非线性电路工作,因此其负载为非线性负载,可引起三相电源大量的谐波电流波动,从而导致三相电参数波动,破坏电网的电压和电流的协调。
这同时也可能引起三相不平衡电压的现象。
二、三相不平衡电压的影响1.影响电气设备寿命三相不平衡电压将使电器内部的绕线出现温度不平衡,导致设备的损坏率增加,使其寿命大幅缩短。
2.影响电气设备性能电气设备的性能与电源电压波动大小有关,在短时间内的波动会引起电气设备出现闪变,长时间的波动将会引起电气设备的性能逐渐下降而影响工作。
3.重度不平衡带来的压损和电能损失三相不平衡导致的电能损失和压损,主要表现为三相电压和电流的不匹配和电流的波动。
当三相失衡严重时,会造成变压器的额外损耗,给电气设备带来更大的压力,从而进一步加快了设备的老化。
三、防治三相不平衡电压的方法1.合理的工程设计与选材在设计电源系统时,应该考虑负载类型、负载大小和电线的电压容量,以便充分考虑三相不平衡的问题,减少或尽可能地减小三相不平衡电压。
从而保证电气设备的正常运行。
此外,要选择电阻、电抗器和变压器等配件,以达到不失平衡的状态,防止出现不必要的寄生参数。
2.控制非线性负载在现代电气设备的选型上,要充分考虑非线性负载的影响,减少其对电气设备负载产生不平衡的影响。
线路两端无功电量不平衡的原因分析华立仪表营销中心 周和平摘要:35kV 线路两端所计量的无功电量不相等并相差一定数量,电源侧的无功电量小于负荷侧的无功电量,当负荷侧的受电开关在断开时,线路处在空载状态下,电源侧的电能表仍在进行计量。
经现场测试和分析,产生这种现象的主要原因是导线对地电容所造成的。
1 现场运行状况为了对电能表计量的运行状况进行监测,对连接到同一接点上的电能表,依据电量平衡原理A P Σ= A P 1+A P 2+…+ΣA P i ,来实现这一目的,如果考虑表计误差和互感器的误差等,可能与实际数据略有差异。
下面结合实例针对35kV 平湖线路的有功电量、无功电量分别进行平衡考核。
平湖线路结构见图1所示。
图1平湖线路结构设备参数线路长度 (km ) CT 变比 PT 变比对地电容C O (μf / km ) 电源侧日有无功电量及功率因数 (kWh / kvarh / cos φ) 负荷侧日无功电量及功率因数(kWh / kvarh / cos φ) 5.6 150/5 35000/1000.04815750 / 3600 / 0.9715400/ 4950 / 0.95备注电源侧和负荷侧的CT 变比、PT 变比均相同。
有功电量平衡表达式为:A P 1 = ΔA PX + A P2,电源侧有功电量1P A 减去线路损失电量PX A 基本上与负荷侧电量2P A 相等,而无功电量无法进行平衡,电源侧无功电量小于负荷侧电量,随着时间的推移,无功电量相差的也越来越大。
2 问题的提出与分析运行中发现电源侧的无功电量小于负荷侧的无功电量,在对表计和互感器做实负荷误差试验时,并未发现异常和超差现象。
当运行方式改变时,平湖变电所由赤湖线路供电,PTCTK14.5kmC OI c电源35kVkWh/kvarhK2K3 kWh/kvarhCTPT平湖变电所平湖线路 赤湖线路并断开受电开关K2,平湖线路处在带电空载状态下,电源侧的电能表仍在进行计量。
浅论变电站母线电压不平衡的原因及防范措施摘要:对变电站母线电压不平衡产生的原因展开分析,针对如何避免母线电压不平衡的发生,提出了积极有效的防范措施。
关键词:电压不平衡;原因分析;防范措施变电站在配电网中具有十分重要的地位,它既是变压器侧配电网中的负荷,又是下一级配电网的电源,其自动化程度的高低直接反映了配电自动化的水平。
1995年,国家调度中心要求现有35 kV~110 kV 变电所在条件具备时逐步实现无人值班变电所,新建变电所可根据调度和管理需要以及规划要求,按无人值班设计。
欲实现无人值班变电所,其中变电站的综合自动化程度很重要。
随着电网规模的不断扩大,变电站作为电网的基本单元,其设备运行维护的好坏,直接影响到电网的运行安全与否。
母线是变电站的重要组成部分,一旦发生异常而不能及时消除,将严重危及电网的安全可靠运行,有时甚至会酿成大面积停电事故。
母线电压不平衡是一种较为常见的母线异常,当不平衡度达到一定程度时往往会造成保护装置误动、站内设备损坏等一系列严重后果。
1 不平衡电压产生的原因1.1 三相电压不平衡现象的产生主要有电网本身参数的原因,如架空线三相对地电容不对称,电源电压不对称以及电网谐波含量过大;变压器内部匝间短路,断路器或其所带线路负荷不平衡等原因,也有电压互感器本身特性以及电压互感器接线方式等原因。
1.2 在中性点绝缘的电力系统中,由于各相对地电容不相等(因线路排列方式造成),引起了中性点对地的位移电压。
电压互感器的高压线圈的尾头是直接接地的,这个位移电压引起了三相电压的不对称,并在开口三角形回路产生一个不平衡电压。
中性点绝缘的等效电路如图1所示。
1.3 在中性点绝缘系统中,中性点偏移电压升高主要由不对称度和系统阻尼率决定, 对于正常绝缘的架空电网的阻尼率一般不超过3% ~ 5%,当绝缘普遍采用硅橡胶长期涂料时,阻尼率可降到1%以下,所以通常而言系统阻尼率对于三相电压偏移影响并不是很大。
高压变频器的常见故障原因分析和处理方法1.电力故障:电力质量不稳定是高压变频器故障的常见原因之一、电压波动、过载、电网短路等问题都可能导致高压变频器故障。
处理方法为:检查供电电压是否正常,限制变频器运行于额定电流下,保证电力稳定。
2.过热故障:高压变频器长时间运行后,可能会因为过热而导致故障。
过热的原因可能是电机负载过大、冷却不良等。
处理方法为:确保电机负载在变频器额定范围内,提供良好的通风散热环境。
3.过电流故障:过电流是高压变频器故障的常见原因之一、可能是因为电机短路、控制程序错误等原因引起。
处理方法为:检测电机是否短路,修复电机故障;检查控制程序是否正确,及时纠正错误。
4.震动故障:高压变频器在运行时可能出现震动,可能是因为机械安装不合理、电机不平衡等原因。
处理方法为:重新安装变频器和电机,调整机械结构,确保机械平衡。
5.控制故障:高压变频器控制失败是故障的常见原因之一、可能是因为程序错误、通信故障等原因引起。
处理方法为:检查控制程序是否正确,修复程序错误;检查通信设置和连接状态,确保通信正常。
6.故障代码显示:高压变频器上的故障代码显示是一种常见的故障指示方式。
不同的故障代码对应不同的故障原因,需要根据故障代码手册进行解析和处理。
在处理高压变频器的故障时,应注意以下几点:1.定期进行检测维修:定期对高压变频器进行检测,检查设备的状态和性能,并进行必要的维修和保养,以防止故障的发生。
2.使用合适的工具和材料:在处理高压变频器故障时,应使用合适的工具和材料,确保修复工作的质量和效果。
3.学习操作技术和知识:了解高压变频器的操作技术和知识,提高自身的维修能力,能够熟悉并使用操作手册和维修手册,从而更好地应对各种故障。
总结起来,高压变频器的常见故障原因包括电力故障、过热故障、过电流故障、震动故障、控制故障和故障代码显示。
针对这些故障原因,我们可以采取相应的处理方法,如保证电力稳定、提供良好的散热环境、修复电机故障等。
高压电网不平衡情况分析
摘要:新型高压直流输电系统接入三相电压不平衡电网时,会遇到直流电容电压出现2倍工频纹波的问题,从而导致换流器性能下降,影响整个系统的正常运行。
若只考虑基波电动势,使用对称分量法可以将不平衡电压分解成对称的正序和负序2部分,而这2部分平衡且相互独立。
换流器d、q轴分量是直流正序分量与2次交流谐波的负序分量之和,参考在电压平衡情况下的数学模型,可以得到三相电压不平衡情况下电压源型换流器在两相同步旋转坐标系下的数学模型,这个数学模型包含正序和负序2个部分。
由三相输入的复功率可知,有功功率包含2次余弦和正弦部分,通过正序电流和负序电流分别独立控制的双电流闭环控制方法使其为零,从理论上就可以消除直流电容电压的2次纹波。
利用电力系统仿真软件Matlab/Simulink对系统进行仿真,结果表明,双电流闭环的控制方法可消除直流电压的纹波,保证了新型高压直流输电系统在电压不平衡的情况下仍然具有良好的性能。
关键词:高压电网不平衡
三相不平衡是指三相电源各相的电压不对称。
是各相电源所加的负荷不均衡所致,属于基波负荷配置问题。
发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。
《电能质量三相电压允许不平衡度》(GB/T15543-1995)适用于交流额定频率为50Hz电力系统正常运行方式下由于负序分量而引起的PCC点连接点的电压不平衡,该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为2%,短时间不得超过4%。
而且该标准还解释:不平衡度允许值指的是在电力系统正常运行的最小方式下负荷所引起的电压不平衡度为最大的生产(运行)周期中的实测值,例如炼钢电弧炉应在熔化期测量等。
在确定三相电压允许不平衡指标时,该标准规定用95%概率值作为衡量值。
即正常运行方式下不平衡度允许值,对于波动性较小的场合,应和实际测量的五次接近数值的算术平均值对比;对于波动性较大的场合,应和实际测量的95%概率值对比;以判断是否合格。
其短时允许值是指任何时刻均不能超过的限制值,以保证保护和自动装置的正确动作。
三相不平衡:是指在电力系统中三相电流(或电压)幅值不一致,且幅值差超过规定范围。
1.增加线路的电能损耗。
在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。
当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。
当三相负载不平衡运行时,中性线即有电流通过。
这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。
2.增加配电变压器的电能损耗。
配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。
因为配变的功率损耗是随负载的不平衡度而变化的。
3.配变出力减少。
配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。
配变的最大允许出力要受到每相额定容量的限制。
假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。
其出力减少程度与三相负载的不平衡度有关。
三相负载不平衡越大,配变出力减少越多。
为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。
假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。
4.配变产生零序电流。
配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。
运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。
(高压侧没有零序电流)这迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。
配变的绕组绝缘因过热而加快老化,导致设备寿命降低。
同时,零序电流的存也会增加配变的损耗。
5.影响用电设备的安全运行。
配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。
当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。
假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。
同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。
因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。
负载重的一相电压降低,而负载轻的一相电压升高。
在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。
所以三相负载不平衡运行时,将严重危及用电设备的安全运行。
6.电动机效率降低。
配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。
由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。
但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。
而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。
同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。
所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。
由不对称负荷引起的电网三相电压不平衡可以采取的解决办法:
1、将不对称负荷分散接在不同的供电点,以减少集中连接造成不平衡度严重超标的问题。
2、使用交叉换相等办法使不对称负荷合理分配到各相,尽量使其平衡化。
3、加大负荷接入点的短路容量,如改变网络或提高供电电压级别提高系统承受不平衡负荷的能力。
4、装设平衡装置。
简要列出以上几种解决三相电压或电流不平衡对电网及电能质量危害的技术措施。
具体应该采取哪一种措施更为合理有效,还要根据实际情况,经过技术和经济比较后确定实施。
在低压三相四线制的城市居民和农网供电系统中:由于用电户多为单相负荷或单相和三相负荷混用,并且负荷大小不同和用电时间的不同。
所以,电网中三相间的不平衡电流是客观存在的,并且这种用电不平衡状况无规律性,也无法事先预知。
导致了低压供电系统三相负载的长期性不平衡。
对于三相不平衡电流,电力部门除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。
电网中的不平衡电流会增加线路及变压器的铜损,还会增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,最终会造成三相电压的不平衡。
调整不平衡电流无功补偿装置,有效地解决了这个难题,该装置具有在补偿系统无功的同时调整不平衡有功电流的作用。
其理论结果可使三相功率因数均补偿至1,三相电流调整至平衡。
实际应用表明,可使三相功率因数补偿到0.95以上,使不平衡电流调整到变压器额定电流的10%以内。
根据wangs定理(王氏定理),在相间跨接的电容可以在相间转移有功电流。
调整不平衡电流无功补偿装置就是利用wangs定理来进行设计的,在各相与相之间以及各相与零线之间恰当地接入不同数量的电容器,不但可以使各相都得到良好的补偿,而且可以调整不平衡有功电流。
参考文献:
[1] 余昆,陈星莺,曹一家. 城市电网自愈控制的分层递阶体系结构[J]. 电网技术. 2012(10)
[2]《多能源互补发电微电网》标准编制[J]. 建设科技. 2012(17)
[3] 郑海峰,李红军. 分布式电源接入配电网的技术经济分析[J]. 能源技术经济. 2012(06)。