数学:4.3.3《余角和补角(2)》学案(人教版七年级上)
- 格式:doc
- 大小:52.50 KB
- 文档页数:4
人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4章第3节的内容,这部分内容是在学生已经掌握了角的分类、垂线的性质等基础知识的基础上进行学习的。
本节课主要让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。
教材通过生动的图片和实际问题引出余角和补角的概念,让学生在解决实际问题的过程中感受数学与生活的联系。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于角的分类和垂线的性质等基础知识有一定的掌握。
但是,对于抽象的数学概念,学生的理解可能还需要通过具体的实例来辅助。
因此,在教学过程中,教师需要结合学生的实际情况,通过生活实例和直观的图形,引导学生理解余角和补角的概念,并能够运用到实际问题中。
三. 教学目标1.知识与技能目标:让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观目标:让学生感受数学与生活的联系,增强学生对数学的兴趣。
四. 教学重难点1.教学重点:余角和补角的概念,判断两个角之间的关系。
2.教学难点:理解余角和补角的概念,能够运用到实际问题中。
五. 教学方法1.情境教学法:通过生活实例和直观的图形,引导学生理解余角和补角的概念。
2.活动教学法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.启发式教学法:引导学生通过自主学习、合作学习,发现和总结余角和补角的概念和性质。
六. 教学准备1.教学素材:准备一些生活实例和图形,用于引导学生理解和运用余角和补角的概念。
2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容。
例如,展示一幅画,画中有两条直线相交,问学生这两条直线之间的角是什么关系。
山东省临沭县第三初级中学2012年秋七年级数学上册《4.3.3 余角和补角》教案新人教版教学内容课本第142页至第144页.教学目标1.知识与技能(1)在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质.(2)了解方位角,能确定具体物体的方位.2.过程与方法进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.情感态度与价值观体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.重、难点与关键1.重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点.2.难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质是难点.3.关键:了解推理的意义和推理过程,是掌握性质的关键.教具准备三角板、量角器、多媒体设备.教学过程一、引入新课1.提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°.2.提出问题.(1)观察方格如右图中的两个角,你能猜想∠1+∠2等于多少度?12(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?教师活动:打开多媒体,让学生观察方格图.学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:操作多媒体,移动∠2,使∠1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、新授1.余角与补角.教师活动:指导学生阅读课本第142页有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2.巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本第143页练习.学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.教师活动:巡视学生完成练习的情况,并给予适当的评价.3.余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?教师活动:操作多媒体,演示方格图.学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.板书:等角的补角相等.师生互动:类比补角的性质,得出余角的性质.板书:等角的余角相等.三、巩固练习1.如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?学生活动:独立完成练习,并进行小组交流和自我评价.教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.2.认识方位角.提出问题:课本第143页例2.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.教师活动:用多媒体演示课本图3.4-10(1),讲解方位角和表示方位的射线,•在学生完成题中的问题后操作多媒体演示画图过程.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3.知识拓展提出问题:小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1.本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.O BA 2.了解方位角,学会确定物体运动的方向五、作业布置1.课本第145页习题4.3:复习巩固8、9,综合运用12、13.2.选用课时作业设计.课时作业设计一、填空题. 1.52°24′的余角是_______,补角是________.2.如右图已知∠AOB ,在图中画出它的余角是_______,补角是_______. 3.射线OA 方向是东北方向,射线OB 方向是北偏西60°,则∠AOB 度数是______.二、选择题.4.一个角比它的余角大25°,那么这个角的补角是( ).A .67.5°B .22.5°C .57.5°D .122.5°5.和北偏西40°的射线OA 组成平角AOB 的射线OB 是( ).A .南偏东40°的射线B .南偏东50°的射线C .南偏东60°的射线D .东南方向的射线三、解答题.6.如右图,E 、D 、F 在同一条直线上,∠CDE=90°,∠1=∠2.(1)哪些角互为余角?哪些角互为补角?(2)∠ADC 与∠BDC 有什么关系?为什么?(3)∠ADF 与∠BDE 有什么关系?为什么?D F21E CBA7.已知:如下图,点A 、O 、B 在同一直线上,∠1与∠2互余,OE 、OF 分别是∠AOC 、∠AOD 的平分线,求∠EOF 的度数.8.如下图,两辆汽车从A 点同时出发,一辆沿西北方向以30千米/时的速度行驶;•另一辆沿南偏东60°的方向以40千米/时的速度行驶,34小时后分别到达B、C两点,•如果图中1cm代表10km,那么试在图中画出B、C两点,并通过测量,说出此时两辆车的距离.答案:一、1.37°36′ 127°36′ 3.105°二、4.D 5.A三、6.(1)∠ADC与∠1,∠BDC与∠1,∠ADC与∠2,∠BDC与∠2都是互为余角,•∠ADF与∠1,∠EDB与∠1,∠ADF与∠2,∠EDB与∠2都是互为补角.(2)∠ADC•与∠BDC相等,因为它们都等于90°-∠1.(3)∠ADF与∠BDE相等,因为都等于180°-∠1. •7.135° 8.略 9.60°.。
余角和补角教课目的 :1.在详细情境中认识余角与补角,懂得等角的余角相等,等角的补角相等,并能运用这些性质解决一些简单的实质问题.2..理解方向角的意义,掌握方向角的鉴别与应用.教课重难点:余角与补角的性质,方向角的鉴别与应用,.教课过程 :一、提出问题用量角度量出图中的两个角的度数,并求出这两个角的和.说出一副三角尺中各个角的度数.二、研究新知1.余角与补角的观点在一副三角尺中,每块都有一个角是90度 ,而其余两个角的和是90 度 .一般状况下 ,假如两个角的和等于 90度 (直角 ), 我们就说这两个角互为余角,即此中每一个角是另一个角的余角.比如 ,∠1与∠2互为余角 ,∠1是∠2的余角 ,∠2也是∠1的余角 .相同 ,假如两个角的和等于180度 (平角 ),就说这两个角互为补角,即此中一个角是另一个角的补角 .2.余角与补角的性质问题 1:假如∠1与∠2互余 ,∠3与∠4互余 ,而且∠1=∠3,那么∠ 2与∠4相等吗 ?为何 ?问题 2:假如∠1与∠2互补 ,∠3与∠4互补 ,而且∠1=∠3,那么∠ 2与∠4相等吗 ?为何 ?学生疏组议论、沟通,说出各自的原因,最后师生共同概括余角与补角的性质:等角 (同角 )的余角相等 ;等角 ( 同角 )的补角相等 .三、稳固新知【例 1】比一比 ,看谁填得快 .角αα的余角α的补角5°30°42°54°62°23'78°23'8″【例 2】已知一个角的补角是这个角的余角的3倍 ,求这个角 .一、提出问题海上 ,缉私艇发现离它500海里处停着一艘可疑船只( 如图 ),立刻赶往检查.现请你确立缉私艇的航线 ,画出表示图 .·A可疑船B·缉私艇先分组议论,再由各组代表登台在黑板上展现并描绘本组议论的路线图.二、研究新知在航行、测绘等工作以及生活中,我们常常会遇到上述近似问题,即怎样描绘一个物体的方向.让学生回想学过的描绘方法,师生共同商讨解决问题的方法.不停挪动可疑船的地点,让学生描绘缉私艇的航线,研究解决问题的规律.方向的表示往常用“北偏东多少度”、“北偏西多少度”或许“南偏东多少度”、“南偏西多少度”来表示 . “北偏东 45度”、“北偏西 45度 " 、“南偏东 45度”、“南偏西 45度”,分别称为“东北方向”、“西北方向”东,“南方向”、“西南方向”.三、稳固新知出示课本 P138例 4,由学生独立达成.说明 :用量角器画射线要注意两点:一是先从正南或正北方向作角的始边,二要分清东南西北,理解偏东、偏西的意义.四、解决问题灯塔 A 在灯塔 B的南偏西 30°,A 、B 两灯塔相距 20 海里 ,现有一艘轮船C在灯塔 B的正北方向、灯塔 A 的北偏东 60°方向.试绘图确立轮船的地点(每 10海里用 1厘米长的线段表示).总结概括 ,指引学生议论本节课所学知识以及需要注意的问题.五、课时小结师生共同概括本节课所学知识.六、讲堂作业1.电视塔在学校的东北方向,那么试确立学校在电视塔的方向.2.已知点 O在点 A的南偏东 30°方向,那么 ,点 A 应在点 O的()A. 南偏东 60°方向B. 北偏东 30°方向C.北偏西 60°方向D.北偏西 30°方向3.学校、公园和商铺在平面图上的表示分别是 A 、B 、C三点 .若公园在学校的南偏西30°,商铺在学校的北偏东45°,请画出图形 ,并求∠ BAC.。
4.3.3 余角和补角教学目标1.知识与技能(1)在具体的现实情境中,认识一个角的余角与补角.(2).掌握余角和补角的性质.2.过程与方法进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.情感态度与价值观体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.教学重点:认识角的互余、互补关系及其性质.教学难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质.关键:了解推理的意义和推理过程,是掌握性质的关键.教具准备:三角板、多媒体设备.教学过程一、引入新课1.(图片引入)比萨斜塔,从数学角度来看比萨斜塔最奇特的地方在于本应于地面垂直的塔身变倾斜了,图中的∠1与∠2有什么关系?二、新授1. 在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?学生活动:独立思考,小组交流,得出结论:都是90°.板书:如果两个角的和等于90°,那么这两个角叫做互为余角,其中一个角是另一个角的余角。
2.观察图形,类比互余,得出互补的概念.如果两个角的和等于180°,那么这两个角叫做互为补角,其中一个角是另一个角的补角。
3.问题讨论问题1:以上定义中的“互为”是什么意思?问题2:若∠1+∠2+∠3 =180°,那么∠1、∠2、∠3互为补角吗?问题3:互为余角、互为补角的两个角是否一定有公共顶点?小结:互余、互补是两角之间的数量关系,只与他们的度数和有关,与位置无关。
互余、互补概念中的角是成对出现的。
三、试炼考验试炼1::余角与补角.试炼2:例1:一个角的补角是它的余角的4倍,求这个角的余角是多少度?教师活动:巡视学生完成练习的情况,并给予适当的评价.四、余角与补角的性质.1. 利用三角尺,只画一条线,画出∠1的余角同角的余角相等∵∠1+∠2=90°,∠1+∠3=90°∴∠2=∠32. 已知∠1与∠2互为余角,∠3与∠4互为余角,若∠1=∠3则∠2与∠4是什么关系?等角的余角相等∵∠1与∠2互余,∠3与∠4互余又∵∠1=∠3∴∠2=∠4 同(等)角的余角相等3. 师生互动:类比余角的性质,得出补角的性质:同(等)角的补角相等五、挑战大挑战1.如图,直线CD经过点O,且OC平分∠AOB。
人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4.3.3节的内容,本节主要介绍余角和补角的概念、性质及其应用。
通过本节的学习,使学生掌握余角和补角的概念,了解它们之间的关系,能运用余角和补角解决一些实际问题。
二. 学情分析七年级的学生已经学习了角的初步知识,对角的概念有一定的了解。
但是,对于余角和补角这样的概念性知识,还需要通过实例来加深理解。
此外,学生的空间想象能力和逻辑思维能力仍在发展阶段,需要通过大量的练习来巩固所学知识。
三. 教学目标1.了解余角和补角的概念,掌握它们的性质。
2.能够运用余角和补角解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.余角和补角的概念。
2.余角和补角的性质。
3.运用余角和补角解决实际问题。
五. 教学方法采用讲授法、实例分析法、小组讨论法、练习法等多种教学方法,引导学生通过观察、思考、讨论、练习,从而掌握余角和补角的知识。
六. 教学准备1.PPT课件。
2.相关练习题。
3.黑板、粉笔。
七. 教学过程导入(5分钟)利用PPT展示一些生活中的图片,如一副画、一座建筑等,让学生观察其中的角,并提出问题:“这些角之间有什么关系?”引导学生思考,引出余角和补角的概念。
呈现(10分钟)1.讲解余角和补角的概念。
2.通过实例展示余角和补角的性质。
操练(10分钟)学生在课堂上完成PPT上的练习题,教师巡回指导。
巩固(10分钟)学生分组讨论,总结余角和补角的性质,并用它们解决实际问题。
拓展(10分钟)引导学生思考:在实际生活中,除了余角和补角,还有哪些角的概念?它们有什么作用?小结(5分钟)教师总结本节课的主要内容,强调余角和补角的概念和性质。
家庭作业(5分钟)布置相关的练习题,让学生课后巩固所学知识。
板书(5分钟)教师在黑板上板书本节课的主要内容,包括余角和补角的概念、性质等。
教学过程总结:本节课通过导入、呈现、操练、巩固、拓展、小结、家庭作业和板书等环节,使学生掌握了余角和补角的知识。
人教版七年级数学上册4.3.3.2《余角和补角(第2课时)》教学设计一. 教材分析人教版七年级数学上册4.3.3.2《余角和补角(第2课时)》这一节内容是在学生已经掌握了角的概念、分类以及度量的基础上进行教学的。
本节课主要介绍余角和补角的概念,以及如何求一个角的余角和补角。
通过本节课的学习,使学生能够理解余角和补角的概念,掌握求一个角的余角和补角的方法,并能够运用到实际问题中。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于角的概念、分类以及度量已经有所了解。
但是,对于余角和补角的概念以及求法可能还比较陌生。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握余角和补角的概念和求法。
三. 教学目标1.知识与技能:使学生理解余角和补角的概念,掌握求一个角的余角和补角的方法。
2.过程与方法:通过观察、操作、交流等活动,培养学生抽象、概括的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学活动的态度。
四. 教学重难点1.教学重点:余角和补角的概念,求一个角的余角和补角的方法。
2.教学难点:余角和补角的概念的理解和应用。
五. 教学方法1.情境教学法:通过具体的问题和实际例子,引导学生理解和掌握余角和补角的概念和求法。
2.互动教学法:通过小组讨论和交流,引导学生主动参与学习,培养学生的合作能力和交流能力。
3.实践操作法:通过实际操作和练习,使学生能够熟练掌握求一个角的余角和补角的方法。
六. 教学准备1.教具:黑板、粉笔、多媒体设备。
2.学具:练习本、尺子、量角器。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节课的内容:在三角形ABC中,已知∠A=30°,求∠B 的补角和余角。
2.呈现(10分钟)讲解余角和补角的概念,以及求一个角的余角和补角的方法。
通过具体的例子和实际问题,使学生理解和掌握余角和补角的概念和求法。
3.操练(10分钟)学生分组进行练习,教师巡回指导。
七年级(人教版)集体备课教案:4.3.3 《余角和补角》一. 教材分析《余角和补角》这一节的内容,主要出现在人教版七年级数学教科书第三章“角”的一部分。
本节内容是在学生已经掌握了角度制、角的分类等基础知识之后进行教授的,旨在让学生了解和掌握余角和补角的概念,并能够运用它们解决一些实际问题。
教材通过例题和练习,帮助学生理解和掌握余角和补角的性质和计算方法,为学生今后的数学学习打下坚实的基础。
二. 学情分析在进入七年级之前,学生已经学习了一定的数学知识,包括基本的算术、几何等。
但是,对于余角和补角这样的概念,他们可能是第一次接触,因此需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式也会影响他们对这一节内容的理解和掌握。
三. 教学目标通过本节课的学习,学生能够理解余角和补角的概念,掌握它们的性质和计算方法,并能够运用它们解决一些实际问题。
同时,通过小组合作和讨论,培养学生的合作意识和解决问题的能力。
四. 教学重难点本节课的重点是让学生理解和掌握余角和补角的概念,以及它们的性质和计算方法。
难点在于如何让学生理解和接受余角和补角这样的抽象概念,并能够灵活运用它们解决实际问题。
五. 教学方法在本节课的教学过程中,我将采用讲授法、例题解析法、小组合作法、问题解决法等教学方法。
通过讲解和示例,让学生理解和掌握余角和补角的概念;通过小组合作和讨论,培养学生的合作意识和解决问题的能力;通过问题解决,激发学生的学习兴趣和思考能力。
六. 教学准备为了保证课堂教学的顺利进行,我需要准备一些教学工具和材料,包括PPT、教科书、黑板、粉笔等。
此外,我还需要准备一些例题和练习题,以便学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出余角和补角的概念。
例如,可以出一个实际问题:在平面直角坐标系中,点A(2,3)和点B(-3,2)之间的线段AB的倾斜角是多少?通过解决这个问题,让学生初步接触和理解余角和补角的概念。
2143西北西南东南东北北西南东数学:4.3.3《余角和补角(2)》学案(人教版七年级上)【学习目标】:1、掌握余角和补角的性质。
2、了解方位角,能确定具体物体的方位。
【重点难点】掌握余角和补角的性质;方位角的应用; 【导学指导】 一、知识链接1.70°的余角是 ,补角是 ;2.∠α(∠α <90°)的它的余角是 ,它的补角是 ; 二、自主学习 1.探究补角的性质:例3、如图, ∠1与∠2互补,∠3与∠4互补, ∠1= ∠3,那么∠2与∠4相等吗?为什么?分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800- ,∠3与∠4互补,∠4等于什么? ∠4=1800 - 。
(2)当∠1= ∠3时,∠2与∠4有什么关系?为什么?∠2=∠4(等量减等量,差相等)上面的结论,用文字怎么叙述?补角的性质:等角的 相等。
2.探究余角的性质:如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?余角性质:等角的 相等 3.方位角:(1)认识方位:正东、正南、正西、正北、东南、 西南、西北、东北。
(2)找方位角:乙地对甲地的方位角 ; 甲地对乙地的方位角1 2 3 4南北西例4:如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线。
(师生共同完成)【课堂练习】:1、α∠和β∠都是AOB ∠的补角,则α∠ β∠;2、如果9031,9021=∠+∠︒=∠+∠,则32∠∠与的关系是 , 理由是 ;3、A 看B 的方向是北偏东21°,那么B 看A 的方向( )A 南偏东69°B 南偏西69°C 南偏东21°D 南偏西21°4、在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( ) A 100° B 70° C 180° D 140° 【要点归纳】:补角的性质:余角的性质:【拓展训练】:1. 如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,两轮船同时从O 点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A ,B 点,则此时两轮船行进路线的夹角∠AOB 的度数是( )A.165°B.155°C.115°D.105°2.锐角4720'的余角是( ) A.4240'B.4280'C.5240'D.13240'3.在海上,灯塔位于一艘船的北偏东40方向,那么这艘船位于这个灯塔的( ) A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°4.下列方程的变形中,正确的是( ) A .由3+x =5,得x =5+3B .由3x ﹣(1+x )=0,得3x ﹣1﹣x =0C .由102y =,得y =2 D .由7x =﹣4,得74x =-5.一个两位数的个位数字是x ,十位数字是y ,这个两位数可表示为( ) A.xyB.C.D.6.如果代数式4y 2-2y +5的值是7,那么代数式2y 2-y +1的值等于( ) A .2 B .3 C .-2 D .4 7.若代数式2x a y 3z c与4212b x y z -是同类项,则( ) A.a=4,b=2,c=3 B.a=4,b=4,c=3C.a=4,b=3,c=2D.a=4,b=3,c=48.下列代数式中:1x ,2x y +,213a b ,x y π-,54y x,0,整式有( ) 个 A.3个B.4个C.5个D.6个9.若一个代数式与代数式2ab 2+3ab 的和为ab 2+4ab-2,那么,这个代数式是( ) A .3ab 2+7ab-2 B .-ab 2+ab-2 C .ab 2-ab+2 D .ab 2+ab-2 10.和数轴上的点一一对应的是( ) A .整数 B .实数 C .有理数 D .无理数11.实数1 ,1- ,0 ,12- 四个数中,最大的数是( ) A.0B.1C.1-D.12-12.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作 A .7℃ B .-7℃ C .2℃ D .-12℃ 二、填空题13.若一个角是34︒,则这个角的余角是_______︒.14.如图,点P 是∠AOB 内任意一点,且∠AOB=40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为_____.15.有甲、乙两桶油,从甲桶到出14到乙桶后,乙桶比甲桶还少6升,乙桶原有油30升,设甲有油x 升,可列方程为_____.16.去括号合并:(3)3(3)a b a b --+=_________.17.计算:()()35---=______;()225323a a b b ---=______.18.若a,b 是整数,且ab =12,|a|<|b|,则a+b=________ .19.一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是____. 20.比较大小:-3__________0.(填“< ”“=”“ > ”) 三、解答题21.如图,点O 在直线AB 上,OM 平分∠AOC ,ON 平分∠BOC ,如果∠1:∠2=1:2,求∠1的度数.22.如图,在四边形ABCD 中, //AD BC ,B D ∠=∠延长BA 至点E ,连接CE ,且CE 交AD 于点F ,EAD ∠和ECD ∠的角平分线相交于点P .(1)求证:①//AB CD ;②2EAD ECD APC ∠+∠=∠; (2)若70B ∠=︒,60E ∠=︒,求APC ∠的度数;(3)若APC m ∠=︒,EFD n ∠=︒请你探究m 和n 之间的数量关系. 23.解方程(1)3x-7(x-1)=3-2(x+3) (2)12x -=413x --1 24.为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?25.先化简,再求值:已知|2a +1|+(4b -2)2=0,求3ab 2-[2221522a b ab ab ⎛⎫+-+ ⎪⎝⎭]+6a 2b 的值. 26.先化简,再求值:2(﹣3xy+52x 2)+5(2xy ﹣x 2),其中x =﹣2,y =12.27.现从小欣作业中摘抄了下面一道题的解题过程:计算:24÷(13-18-16); 解:24÷(13-18-16)=24÷13-24÷18-24÷16=72-192-144 =-264;观察以上解答过程,请问是否正确?若不正确,请写出正确的解答.28.某粮库3天内粮食进出库的吨数如下:(“+”表示进库,“-”表示出库)(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库里还存有480吨粮食,那么3天前库里存粮多少吨? (3)如果进出的装卸费都是每吨5元,那么这3天要付多少元装卸费?【参考答案】*** 一、选择题 1.B 2.A 3.B 4.B 5.C 6.A7.C 8.B 9.A 10.B 11.B 12.B 二、填空题 13.56 14.100°15.(1﹣ SKIPIF 1 < 0 )x ﹣(30+ SKIPIF 1 < 0 x )=6 解析:(1﹣14)x ﹣(30+14x )=6 16.-10 SKIPIF 1 < 0 解析:-10b17.SKIPIF 1 < 0 解析:223a b + 18.7,8,13 19.39 20.< 三、解答题 21.30°22.(1)①见解析,②见解析;(2)65°;(3)12m n =,见解析. 23.(1)x=5;(2)x=1. 24.4425.a 2b +1;98.26.4xy ,-4.27.错误,正确的解法见解析.28.(1)库里的粮食减少了;(2)3天前库里存粮食是525吨;(3)3天要付装卸费825元.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图是某几何体的表面展开图,则该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱2.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于()A.90°B.80°C.70°D.60°3.∠A 的余角与∠A 的补角互为补角,那么 2∠A 是()A.直角B.锐角C.钝角D.以上三种都有可能4.若关于x的一元一次方程1﹣46x a+=54x a+的解是x=2,则a的值是()A.2B.﹣2C.1D.﹣15.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场6.某车间有22名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母20个或螺栓12个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.20x=12(22-x)B.12x=20(22-x)C.2×12x=20(22-x)D.20x=2×12(22-x)7.下列计算正确的是()A.3a+2a=5a2B.3a-a=3 C.2a3+3a2=5a5D.-a2b+2a2b=a2b8.下列算式中,计算结果为a3b3的是()A.ab+ab+ab B.3ab C.ab•ab•ab D.a•b39.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是()A .96B .86C .68D .5210.如果|a ﹣1|+(b+2)2=0,则a ﹣b 的值是( ) A .-1 B .1 C .-3 D .311.计算(﹣8)﹣(﹣5)的结果等于( ) A .-3 B .-13 C .-40 D .312.在下面的四个有理数中,最小的是( ) A .﹣1 B .0 C .1 D .﹣2 二、填空题13.如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作DE//BC ,分别交AB,AC 于点D,E,若AB=4,AC=3,则△ADE 的周长是_______________。
七年级上册(人教版)集体备课教案:4.3.3余角和补角(合集5篇)第一篇:七年级上册(人教版)集体备课教案:4.3.3 余角和补角4.3.3 余角和补角教学目标:1、在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质;了解方位角,能确定具体物体的方位。
2、进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重点:认识角的互余、互补关系及其性质,确定方位难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质教学过程一、引入新课1、提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°.2.提出问题.(1)观察方格如下图中的两个角,你能猜想∠1+∠2等于多少度?(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:操作多媒体,移动∠2,使∠1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、讲授新课1、余角与补角.教师活动:指导学生阅读课本有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2、巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本练习.学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.教师活动:巡视学生完成练习的情况,并给予适当的评价.3、余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.板书:等角的补角相等.师生互动:类比补角的性质,得出余角的性质.板书:等角的余角相等.三、巩固练习1、如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE 有什么关系?为什么?学生活动:独立完成练习,并进行小组交流和自我评价.教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.2、认识方位角.提出问题:课本例2.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3、知识拓展提出问题:、小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1、本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2、了解方位角,学会确定物体运动的方向五、作业布置第二篇:七年级上数学教案:4.3.3余角和补角4.3.3余角和补角教学内容课本第142页至第144页.教学目标1.知识与技能(1)在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质.(2)了解方位角,能确定具体物体的方位. 2.过程与方法进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.情感态度与价值观体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.重、难点与关键1.重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点.2.难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质是难点.3.关键:了解推理的意义和推理过程,是掌握性质的关键.教具准备三角板、量角器教学过程一、引入新课 1.提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°. 2.提出问题.(1)观察方格如右图中的两个角,你能猜想∠1+∠2等于多少度?(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:移动∠2,使∠1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、新授 1.余角与补角.教师活动:指导学生阅读课本第142页有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角). 2.巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本第143页练习.学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.教师活动:巡视学生完成练习的情况,并给予适当的评价. 3.余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.板书:等角的补角相等.师生互动:类比补角的性质,得出余角的性质.板书:等角的余角相等.三、巩固练习1.如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?4(3)∠ADF与∠BDE有什么关系?为什么?学生活动:独立完成练习,并进行小组交流和自我评价.教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.2.认识方位角.提出问题:课本第143页例2.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.图3.4-10(1)教师活动:讲解方位角和表示方位的射线,•在学生完成题中的问题后操作画图过程.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3.知识拓展提出问题:小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1.本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2.了解方位角,学会确定物体运动的方向五、作业布置1.课本第145页习题4.3:复习巩固8、9,综合运用12、13. 2.选用课时作业设计.课时作业设计一、填空题.1.52°24′的余角是_______,补角是________.OAB2.如右图已知∠AOB,在图中画出它的余角是_______,补角是_______.3.射线OA方向是东北方向,射线OB方向是北偏西60°,则∠AOB度数是______.二、选择题.4.一个角比它的余角大25°,那么这个角的补角是().A.67.5° B.22.5° C.57.5° D.122.5° 5.和北偏西40°的射线OA组成平角AOB的射线OB是().A.南偏东40°的射线B.南偏东50°的射线 C.南偏东60°的射线 D.东南方向的射线三、解答题.6.如右图,E、D、F在同一条直线上,∠CDE=90°,∠(1)哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?1=∠2. CAB12EDF第三篇:数学北师大版七年级上册4.3.3 余角和补角4.3.3 余角和补角学习目标:1、在具体的现实情境中,认识一个角的余角和补角。
余角和补角【教学目标】1.掌握余角、补角的定义;2.掌握余角、补角的性质及应用。
【教学重点】余角、补角的性质及应用【教学难点】余角、补角的性质及应用【教学设计】一、课前设计1.预习任务(1)假如两个角的和等于90°(直角),就说这两个角互为余角;假如两个角的和等于180°(平角),就说这两个角互为补角。
(2)同角(或等角)的余角相等;同角(或等角)的补角相等。
2.预习自测(1)已知∠A=65°,则∠A 的补角等于_____度,余角等于_____度知识点:补角和余角数学思想:解题过程:解:∠A 的补角等于18065115︒-︒=︒;余角等于906525︒-︒=︒。
思路点拨:由余角、补角的定义解答。
答案:115,25︒︒(2)α∠的余角与补角之间有何数量关系?知识点:补角和余角数学思想:解题过程:解:α∠的余角+90度=α∠的补角思路点拨:由余角、补角的定义知,它们相差90度答案:α∠的余角+90度=α∠的补角(3)如下图,∠ACB=90°,∠1=∠B ,∠2=∠A .则以下说法错误的选项是( )A .∠A 和∠B 不是互为余角;B .∠1和∠2是互为余角;C .∠2与∠B 是互为余角;D .∠1与∠A 是互为余角知识点:补角和余角数学思想:解题过程:解:因为∠ACB=90°,∠1=∠B ,∠2=∠A .所以∠1+∠2=90°,∠B+∠2=90°∠1+∠A=90°故A 错误思路点拨:两个角的和为90度,这两个角互余答案:A(4)以下语句准确的有:(填序号)①两条射线组成的图形叫做角;②直线是一个平角;③若∠AOB=2∠BOC ,则射线OC 是∠AOB 的平分线;④∠AOB 和∠BOA 是同一个角;⑤若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余知识点:补角和余角数学思想:解题过程:解:具有公共端点的两条射线组成的图形叫做角,故①错误;直线没有顶点,故②错误;若∠AOB=2∠BOC ,没有说射线OC 在∠AOB 的内部,故③错误;④∠AOB 和∠BOA 是同一个角,准确;⑤若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余,错误,因为互余针对两个角来说思路点拨:根据定义解答答案:④二、课堂设计1.知识回顾(1)表达直角、平角的概念(2)画出直角、平角的图形2.问题探究(1)探究一:探究互为余角、互为补角活动①学生自主学习课本内容师问:什么叫互为余角?什么叫互为补角?学生举手抢答师问:若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余,这种说法对吗?为什么?学生举手抢答总结:假如两个角的和等于90°(直角),就说这两个角互为余角;假如两个角的和等于180°(平角),就说这两个角互为补角.互余、互补针对两个角来说,只与数量相关,与位置无关。
实 用 文 档 3
数学:4.3.3《余角和补角(2)》学案(人教版七年级上)
【学习目标】:1、掌握余角和补角的性质。
2、了解方位角,能确定具体物体的方位。
【重点难点】掌握余角和补角的性质;方位角的应用;
【导学指导】
一、知识链接
1.70°的余角是 ,补角是 ;
2.∠α(∠α <90°)的它的余角是 ,它的补角是 ;
二、自主学习
1.探究补角的性质:
例3、如图, ∠1与∠2互补,∠3与∠4互补, ∠1= ∠3,那么∠2与∠4相等吗?为什么?
分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800 - ,
∠3与∠4互补,∠4等于什么? ∠4=1800 - 。
(2)当∠1= ∠3时,∠2与∠4有什么关系?为什么?
1 2 3 4
实 用 文 档 3 21
4
3西北西南
东南
东北
北西南东
A O
60 东西∠2=∠4(等量减等量,差相等)
上面的结论,用文字怎么叙述?
补角的性质:等角的 相等。
2.探究余角的性质:
如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?
余角性质:等角的 相等 3.方位角:
(1)认识方位: 正东、正南、正西、正北、东南、 西南、西北、东北。
(2)找方位角:
乙地对甲地的方位角 ; 甲地对乙地的方位角
例4:如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线。