2.3 第一课时 直线和圆的位置关系课件(北师大版数学必修2)
- 格式:ppt
- 大小:1.18 MB
- 文档页数:45
2.3.3直线与圆的位置关系学习目标核心素养1.理解直线与圆的三种位置关系.(重点) 2.会用代数法和几何法判断直线与圆的位置关系.(重点)3.能解决直线与圆位置关系的综合问题.(难点)1.通过直线与圆的位置关系的学习,培养直观想象逻辑推理的数学核心素养.2.通过解决直线与圆位置关系的综合问题,培养数学运算的核心素养.早晨的日出非常美丽,如果我们把海平面看成一条直线,而把太阳抽象成一个运动着的圆,观察太阳缓缓升起的这样一个过程.你能想象到什么几何知识呢?没错,日出升起的过程可以体现直线与圆的三种特殊位置关系.你发现了吗?直线与圆的位置关系的判定(直线Ax+By+C=0,AB≠0,圆(x-a)2+(y-b)2=r2,r>0)位置关系相交相切相离公共点个数2个1个0个判定方法几何法:设圆心到直线的距离d=|Aa+Bb+C|A2+B2d<r d=r d>r判定方法代数法:由⎩⎨⎧Ax+By+C=0(x-a)2+(y-b)2=r2消元得到一元二次方程的判别式ΔΔ>0Δ=0Δ<0图形1.思考辨析(正确的打“√”,错误的打“×”)(1)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( ) (2)若直线与圆只有一个公共点,则直线与圆一定相切. ( )[答案] (1)√ (2)√2.(教材P 110练习A ①改编)直线3x +4y -5=0与圆x 2+y 2=1的位置关系是( ) A .相交 B .相切 C .相离D .无法判断B [圆心(0,0)到直线3x +4y -5=0的距离d =|-5|32+42=1,又圆x 2+y 2=1的半径为1,∴d =r ,故直线与圆相切.]3.直线x +y =1与圆x 2+y 2-2ay =0(a >0)没有公共点,则a 的取值范围是 . 0<a <2-1 [由题意得圆心(0,a )到直线x +y -1=0的距离大于半径a ,即|a -1|2>a ,解得-2-1<a <2-1,又a >0,∴0<a <2-1.]4.直线3x +y -23=0,截圆x 2+y 2=4所得的弦长是 . 2 [圆心到直线3x +y -23=0的距离d =|-23|3+1=3.所以弦长l =2R 2-d 2=24-3=2.]直线与圆位置关系的判定【例1】 只有一个公共点?没有公共点?[思路探究] 可联立方程组,由方程组解的个数判断,也可通过圆心到直线的距离与半径的大小关系进行判断.[解] 法一:由⎩⎨⎧x 2+y 2=2 ①y =x +b ②得2x 2+2bx +b 2-2=0,③方程③的根的判别式Δ=(2b )2-4×2(b 2-2)=-4(b +2)(b -2). (1)当-2<b <2时,Δ>0,直线与圆有两个公共点. (2)当b =2或b =-2时,Δ=0,直线与圆只有一个公共点.(3)当b <-2或b >2时,Δ<0方程组没有实数解,直线与圆没有公共点.法二:圆的半径r =2,圆心O (0,0)到直线y =x +b 的距离为d =|b |2. 当d <r ,即-2<b <2时,圆与直线相交,有两个公共点.当d =r ,|b |=2,即b =2或b =-2时,圆与直线相切,直线与圆只有一个公共点. 当d >r ,|b |>2,即b <-2或b >2时,圆与直线相离,圆与直线无公共点.直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线方程与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系.[跟进训练]1.已知圆的方程x 2+(y -1)2=2,直线y =x -b ,当b 为何值时,圆与直线有两个公共点,只有一个公共点,无公共点?[解] 法一:由⎩⎨⎧y =x -b ,x 2+(y -1)2=2得2x 2-2(1+b )x +b 2+2b -1=0,① 其判别式Δ=4(1+b )2-8(b 2+2b -1)=-4(b +3)(b -1),当-3<b <1时,Δ>0,方程①有两个不等实根,直线与圆有两个公共点; 当b =-3或1时,Δ=0,方程①有两个相等实根,直线与圆有一个公共点; 当b <-3或b >1时,Δ<0,方程①无实数根,直线与圆无公共点. 法二:圆心(0,1)到直线y =x -b 距离d =|1+b |2,圆半径r =2. 当d <r ,即-3<b <1时,直线与圆相交,有两个公共点; 当d =r ,即b =-3或1时,直线与圆相切,有一个公共点; 当d >r ,即b <-3或b >1时,直线与圆相离,无公共点.直线与圆相切的有关问题【例2】 [思路探究] 利用圆心到切线的距离等于圆的半径求出切线斜率,进而求出切线方程. [解] 因为(4-3)2+(-3-1)2=17>1, 所以点A 在圆外.(1)若所求切线的斜率存在,设切线斜率为k , 则切线方程为y +3=k (x -4).因为圆心C (3,1)到切线的距离等于半径,半径为1, 所以|3k -1-3-4k |k 2+1=1,即|k +4|=k 2+1,所以k 2+8k +16=k 2+1,解得k =-158. 所以切线方程为y +3=-158(x -4), 即15x +8y -36=0. (2)若直线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4. 综上,所求切线方程为15x +8y -36=0或x =4.过一点的圆的切线方程的求法(1)点在圆上时求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心连线的斜率k ,再由垂直关系得切线的斜率为-1k ,由点斜式可得切线方程.如果斜率为零或不存在,则由图形可直接得切线方程x =x 0或y =y 0.(2)点在圆外时①几何法:设切线方程为y -y 0=k (x -x 0).由圆心到直线的距离等于半径,可求得k ,也就得切线方程.②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程联立,消去y 后得到关于x 的一元二次方程,由Δ=0求出k ,可得切线方程.提醒:切线的斜率不存在的情况,不要漏解.[跟进训练]2.过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,求该直线的方程. [解] 圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0),设过原点的直线方程为y =kx ,即kx -y =0.∵直线与圆相切,∴圆心到直线的距离等于半径. 即|-2k |k 2+1=1,∴3k 2=1, k 2=13,解得k =±33. ∵切点在第三象限,∴k >0, ∴所求直线方程为y =33x .直线截圆所得弦长问题[探究问题]1.已知直线l 与圆相交,如何利用通过求交点坐标的方法求弦长?[提示] 将直线方程与圆的方程联立解出交点坐标,再利用|AB |=(x 2-x 1)2+(y 2-y 1)2求弦长.2.若直线与圆相交、圆的半径为r 、圆心到直线的距离为d ,如何求弦长?[提示] 通过半弦长、弦心距、半径构成的直角三角形,如图所示,求得弦长l =2r 2-d 2.【例3】 直线l 经过点P (5,5)并且与圆C :x 2+y 2=25相交截得的弦长为45,求l 的方程.[思路探究] 设出点斜式方程,利用交点坐标法或利用r 、弦心距及弦长的一半构成直角三角形可求.[解] 据题意知直线l 的斜率存在,设直线l 的方程为y -5=k (x -5),与圆C 相交于A (x 1,y 1),B (x 2,y 2),法一:联立方程组⎩⎨⎧y -5=k (x -5),x 2+y 2=25.消去y ,得(k 2+1)x 2+10k (1-k )x +25k (k -2)=0. 由Δ=[10k (1-k )]2-4(k 2+1)·25k (k -2)>0, 解得k >0.又x 1+x 2=-10k (1-k )k 2+1,x 1x 2=25k (k -2)k 2+1,由斜率公式,得y 1-y 2=k (x 1-x 2).∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+k 2)(x 1-x 2)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤100k 2(1-k )2(k 2+1)2-4·25k (k -2)k 2+1 =45.两边平方,整理得2k 2-5k +2=0,解得k =12或k =2符合题意. 故直线l 的方程为x -2y +5=0或2x -y -5=0.法二:如图所示,|OH |是圆心到直线l 的距离,|OA |是圆的半径,|AH |是弦长|AB |的一半.在Rt △AHO 中,|OA |=5, |AH |=12|AB |=12×45=25, 则|OH |=|OA |2-|AH |2=5. ∴|5(1-k )|k 2+1=5, 解得k =12或k =2.∴直线l 的方程为x -2y +5=0或2x -y -5=0.(变条件)直线l 经过点P (2,-1)且被圆C :x 2+y 2-6x -2y -15=0所截得的弦长最短,求此时直线l 方程.[解] 圆的方程为(x -3)2+(y -1)2=25,圆心C (3,1).因为|CP |=(3-2)2+(1+1)2=5<5,所以点P 在圆内.当CP ⊥l 时,弦长最短.又k CP =1+13-2=2.所以k l =-12,所以直线l 的方程为y +1=-12(x -2),即x +2y =0.直线与圆相交时弦长的两种求法(1)几何法:如图1,直线l 与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB |,则有⎝ ⎛⎭⎪⎫|AB |22+d 2=r 2,则|AB |=2r 2-d 2.图1 图2(2)代数法:如图2所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|(直线l 的斜率k 存在且不为0).1.如何正确选择判断直线与圆的位置关系的方法(1)若两方程已知或圆心到直线的距离易表达,则用几何法;(2)若方程中含有参数,或圆心到直线的距离的表达式较繁琐,则用代数法. 提醒:能用几何法,尽量不用代数法.(3)已知直线与圆相交求有关参数值时,根据弦心距、半弦长、半径的关系或者这三条线段形成的三角形的性质求解,而弦心距可利用点到直线的距离公式列式,进而求解即可.2.利用代数法判断直线与圆的位置关系时的注意点(1)代入消元过程中消x 还是消y 取决于直线方程的特点,尽量减少分类讨论,如若直线方程为x -ay +1=0,则应将其化为x =ay -1,然后代入消x .(2)利用判别式判断方程是否有根时,应注意二次项系数是否为零,若二次项系数为零,则判别式无意义.1.直线y =x +1与圆x 2+y 2=1的位置关系是( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离 B [圆心到直线的距离d =112+(-1)2=22<1. 又∵直线y =x +1不过圆心(0,0).∴直线与圆相交但不过圆心.]2.设直线l 过点P (-2,0),且与圆x 2+y 2=1相切,则l 的斜率是( ) A .±1 B .±12 C .±33 D .±3 C [设l :y =k (x +2), 即kx -y +2k =0. 又l 与圆相切,∴|2k |1+k2=1.∴k =±33.] 3.直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为 .4 [圆的标准方程(x -1)2+(y -2)2=5,圆心(1,2)到直线x +2y -5+5=0的距离d =|1+2×2-5+5|12+22=1,所以弦长为25-1=4.]4.若直线x +y -m =0与圆x 2+y 2=2相离,则m 的取值范围是 . m <-2或m >2 [因为直线x +y -m =0与圆x 2+y 2=2相离,所以|-m |12+12>2,解得m <-2或m >2.]5.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,求直线l 的方程.[解] 由题意,直线与圆要相交,斜率必须存在,设为k .设直线l 的方程为y +2=k (x +1).又圆的方程为(x -1)2+(y -1)2=1,圆心为(1,1),半径为1,所以圆心到直线的距离 d =|2k -1-2|1+k 2=12-⎝ ⎛⎭⎪⎫222=22.解得k =1或k =177.所以直线l 的方程为y +2=x +1或y +2=177(x +1),即x -y -1=0或17x -7y +3=0.。
位置关系第一课时直线与圆的位置关系高效测评北师大版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章解析几何初步2.2.3 直线与圆、圆与圆的位置关系第一课时直线与圆的位置关系高效测评北师大版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章解析几何初步2.2.3 直线与圆、圆与圆的位置关系第一课时直线与圆的位置关系高效测评北师大版必修2的全部内容。
与圆的位置关系第一课时直线与圆的位置关系高效测评北师大版必修2(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.直线2x-y+3=0与圆C:x2+(y-1)2=5的位置关系是( )A.相交B.相切C.相离D.不确定解析: 圆C:x2+(y-1)2=5的圆心C为(0,1),半径为错误!.由圆心(0,1)到直线2x-y+3=0的距离:d=错误!=错误!错误!<错误!.∴直线和圆相交.答案:A2.若圆心在x轴上、半径为错误!的圆C位于y轴左侧,且与直线x+2y=0相切,则圆C 的方程是()A.(x-5)2+y2=5 B.(x+错误!)2+y2=5C.(x-5)2+y2=5 D.(x+5)2+y2=5解析:设圆心为(x0,0),则由题意知圆心到直线x+2y=0的距离为错误!,故有错误!=错误!,∴|x0|=5.又圆心在y轴左侧,故x0=-5.∴圆的方程为(x+5)2+y2=5,选D。
答案: D3.若点P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( ) A.x+y-1=0 B.2x+y-3=0C.2x-y-5=0 D.x-y-3=0解析: 圆心是点C(1,0),由CP⊥AB,得k AB=1,所以直线AB的方程为x-y-3=0,故选D。