XX八年级物理上册第三章知识点总结
- 格式:docx
- 大小:16.43 KB
- 文档页数:3
八年级物理上册第三章《物态变化》知识点归纳1、温度:物体的冷热程度叫做温度。
2、温度计:测量温度的仪器结构原理:利用液体的热胀冷缩的规律制成的。
分类:实验室用温度计、体温计、寒暑表3、试验用温度计的使用:(1)观察量程……所测温度不能超过量程使用前认清分度值……每小格代表的数值(2)使用时①温度计的玻璃泡全部浸入液体中,不要碰到容器底或壁②待温度计的示数稳定后再读数③读数时温度计的玻璃泡继续留在被测液体中,视线与温度计液柱的上表面相平(让学生读数,把结果写出来)……单位4、摄氏温度:字母C代表摄氏温度℃是摄氏温度的单位,读做摄氏度;它是这样规定的:把冰水混合物的温度规定为零摄氏度,把沸水的温度规定为100摄氏度,分成100等份,每1份就是1℃.低于0℃用负数表示例:37℃读作-45℃读做0℃读做5、体温计:(1)结构、量程、分度值(2)使用6、物态变化:物质由一种状态变成另一种状态的过程。
熔化:物质由固态变成液态。
固体凝固:物质由液态变成固态。
汽化:物质由液态变成气态。
液化:物质由气态变成液态。
液体气体升华:物质由固态直接变成气态。
凝华:物质由气态直接变成固态。
7、熔化和凝固:8、固体晶体:在熔化时温度不变,晶体熔化的温度叫熔点非晶体:在熔化时温度不断上升,没有熔点.晶体有一定的凝固温度,叫凝固点,非晶体没凝固点,同一晶体的熔点=凝固点。
不同晶体熔点不同……77表,记住冰的熔点。
熔化时吸热,凝固时放热.9、常见的熔化和凝固现象略。
10、沸腾:(1)、在液体内部和表面同时发生的剧烈的汽化现象.(2)、液体要达到一定的温度才沸腾,沸腾时温度不变,液体沸腾的温度叫沸点.(3)、不同液体的沸点不同。
11、蒸发:(1)在任何温度下都能发生的汽化现象。
(2)蒸发只发生在液体的表面。
沸腾与蒸发都是汽化现象,都要吸热,可以使温度下降,是汽化的两种方式。
12、液化:举例说明:降低温度可以使气体液化压缩体积也可以使气体液化(1)、降低温度与压缩体积是气体液化的两种方法。
八年级上册物理第三章一、物态变化的概念。
1. 物质常见的三种状态。
- 固态:有一定的形状和体积,例如冰、铁块等。
固体分子间距离小,分子排列紧密,分子只能在固定的位置附近振动。
- 液态:有一定的体积,但没有固定的形状,例如水、酒精等。
液体分子间距离比固体大,分子没有固定的位置,可以在一定范围内运动。
- 气态:既没有固定的形状,也没有固定的体积,例如空气、水蒸气等。
气体分子间距离很大,分子可以自由运动。
2. 物态变化的定义。
- 物质由一种状态变为另一种状态的过程叫物态变化。
二、熔化和凝固。
1. 熔化。
- 定义:物质从固态变成液态的过程叫熔化,例如冰化成水。
- 晶体熔化。
- 晶体:有固定的熔点,例如海波、冰、各种金属等。
- 晶体熔化的条件:达到熔点,继续吸热。
- 晶体熔化过程中的特点:吸收热量,温度保持不变。
- 非晶体熔化。
- 非晶体:没有固定的熔点,例如石蜡、松香、玻璃等。
- 非晶体熔化的特点:吸收热量,温度不断升高。
2. 凝固。
- 定义:物质从液态变成固态的过程叫凝固,例如水结成冰。
- 晶体凝固。
- 晶体凝固的条件:达到凝固点,继续放热。
- 晶体凝固过程中的特点:放出热量,温度保持不变。
- 非晶体凝固。
- 非晶体凝固的特点:放出热量,温度不断降低。
- 同种晶体的熔点和凝固点相同,例如冰的熔点是0℃,水的凝固点也是0℃。
三、汽化和液化。
1. 汽化。
- 定义:物质从液态变为气态的过程叫汽化。
- 汽化的两种方式。
- 蒸发。
- 定义:在任何温度下,只在液体表面发生的汽化现象。
- 影响蒸发快慢的因素:液体的温度、液体的表面积、液体表面上方空气的流动速度。
- 蒸发吸热,有制冷作用,例如酒精擦在皮肤上感觉凉。
- 沸腾。
- 定义:在一定温度下,在液体内部和表面同时发生的剧烈的汽化现象。
- 液体沸腾的条件:达到沸点,继续吸热。
- 液体沸腾的特点:吸收热量,温度保持不变。
不同液体的沸点不同,例如标准大气压下,水的沸点是100℃。
关于初二物理上册知识点(第三章)整理关于初二物理上册学问点(第三章)物理学问点的整理是特别关键的,它有助于巩固和发觉自己的不足。
那么你知道初二物理上册学问点(第三章)有哪些吗?这次我给大家整理了初二物理上册学问点(第三章),供大家阅读参考。
名目初二物理上册学问点(第三章)第三章物态变化一、温度1.温度:物体的冷热程度叫做温度。
2.温度计制作原理:温度计是依据液体热胀冷缩的性质制成的。
3.摄氏温度的规定:把在标准大气压下冰水混合物的温度定为0摄氏度,沸水的温度定为100摄氏度。
4.温度计使用方法:(1)温度计的玻璃泡全部浸入被测液体中,不要遇到容器的底部或侧壁;(2)待温度计示数稳定后再读数;(3)读数时温度计的玻璃泡要连续留在液体中,视线要与温度计液柱的上表面相平。
二、熔化和凝固1.熔化:物质由固态变成液态的过程叫做熔化。
2.熔化的条件:到达熔点,连续吸热。
3.凝固:物质由液态变成固态的过程叫做凝固。
4.凝固条件:达到凝固点,连续放热。
三、汽化和液化1.汽化:物质由液态变成气态的过程叫做汽化。
2.汽化现象:洒在地上的水变干了;3.汽化的两种方式:沸腾和蒸发是汽化的两种方式。
4.沸腾和蒸发的异同5.影响蒸发的因素:(1)液体的温度(2)液体的表面积(3)液体表面的空气流速6.液化:物质由气态变成液态的过程叫做液化。
7.液化现象:雾的形成;露的形成;夏天冰糕冒白气。
四、升华和凝华1.升华:物质由固态直接变成气态的过程叫做升华。
2.升华现象:衣柜里的樟脑丸过一段时间变小了;冬天,室外冰冻的衣服干了3.凝华:物质由气态直接变成固态的过程叫做凝华。
4.凝华现象:霜的形成;窗玻璃上的“冰花”;树枝上的“雾凇”5.吸热与放热:熔化吸热、凝固放热;汽化吸热、液化放热;升华吸热、凝华放热。
汽化和液化1、汽化:物质由液态变成气态的过程。
汽化有两种方式:蒸发和沸腾(吸热)2、蒸发是只在液体表面发生的一种缓慢的汽化现象。
一切物体都是运动的一、运动与静止1.机械运动:一个物体相对于另一个物体位置的改变,叫做机械运动,简称运动。
判断是否是机械运动的关键在于:(1)物体间距离的改变,如果说两个物体间的距离发生变化,那么这俩个物体间相互发生了机械运动。
(2)物体间的距离没有变,但俩物体间的方位发生了变化。
2、参照物:要描述一个物体是运动的还是静止的,要先选定一个标准物体作参照,这个被选定的标准物体叫做参照物.(1)遵循俩原则:1、任意性:参照物的选择是任意的,不论是静止还是运动的物体都可以选为参照物。
2、方便性:不能以被研究物体本身作为参照物,任何物体以自己为参照物永远是静止的。
(2)参照物是“假定不动”的物体,不管它相对于地面的运动情况如何,都认为参照物是静止的。
3、运动和静止的相对性: 运动是绝对的,静止是相对的。
4、运动的分类:直线运动和曲线运动二、比较物体运动的快慢1、速度:(1)意义:表示物体运动快慢的物理量。
(2) 定义:运动物体在单位时间内通过的路程(也就是路程与时间的比值)(3)公式:(4)单位:国际单位:米/秒(m/s),常用单位:千米/时(km/h )(5)一些物体运动的速度蜗牛的爬行 约1.5mm/s ;自行车 约5m/s ; 人步行 约1.1m/s ; 高速公路上的小车约28m/s ;真空中光速 3×108m/s【注】 1m/s=3.6km/h 36 km/h=10m/s注意:1、解题过程要写出所依据的公式,把数值和单位代入时,单位要统一。
2、计算过程和结果都应带单位。
2、匀速直线运动:物体沿直线,速度(快慢)不变的运动。
(匀速直线运动是最简单的机械运动 )3、 变速运动: 物体运动速度改变的运动。
(日常生活中所见到的运动基本上都是变速运动。
)在变速运动中,用平均速度(总路程除以总时间)表示物体运动快慢。
三、平均速度与瞬时速度1.平均速度:运动物体在某一段路程内(或某一段时间内)的快慢程度。
八年级物理上册知识点归纳总结—第三章物态变化第三章物态变化§3.1 温度一、温度(1)定义:物理学中通常把物体的冷热程度叫做温度。
(2)物理意义:反映物体冷热程度的物理量。
二、温度计——测量温度的工具1.工作原理:依据液体热胀冷缩......的规律制成的。
温度计中的液体有水银、酒精、煤油等.2.常见的温度计:实验室用温度计、体温计、寒暑表。
三、摄氏温度(℃)——温度的单位1. 规定:在标准大气压下冰水混合物的温度定为0摄氏度,沸水的温度定为100摄氏度,分别记作0℃、100℃,平均分为100等份,每一等份代表1℃。
2. 读法:(1)人的正常体温是37℃——37摄氏度;(2)水银的凝固点是-39℃——零下39摄氏度或负39摄氏度.四、温度计的使用方法1. 使用前“两看”——量程和分度值;Ⅰ.实验室用温度计:-20℃~110℃、1℃;(一般)Ⅱ.体温计:35℃~42℃、0.1℃;Ⅲ.寒暑表:-35℃~50℃、1℃.2. 根据实际情况选择量程适当的温度计;如果待测温度高于温度计的最高温度,就会涨破温度计;反之则读不出温度。
3. 温度计使用的几个要点(1)温度计的玻璃泡要全部浸泡在待测液体中,不能碰容器底或容器壁;1020(2)温度计的玻璃泡浸入被测液体后要稍等一会,不能在示数上升时读数,待示数稳定后再读数;(3)读数时温度计的玻璃泡要继续留在液体中;视线要与温度计中液柱的液面相平.五、体温计1. 量程:35℃~42℃;分度值:0.1℃.2. 特殊结构:玻璃泡上方有很细的缩口使用方法:用前须甩一甩。
(否则☆1. 2中的示数为-9℃。
0℃以0℃向下读。
2. ( C )38.2℃;D:小华:36.5℃3. 玻璃管的直径小一些,因此,体温计的分度值更小一些。
(填“大”或“小”)规律总结:温度计的分度值越小,表示其灵敏度越高。
为了增加温度计的灵敏度,只能增大温度计的玻璃泡,减小细管的直径。
固态液态熔化凝固§3.2 熔化与凝固一、定义熔化:物质从固态变为液态的过程。
第三章.光现象一.光的色彩颜色1.光源:自身能物体。
光源可以分为和两种。
天然光源有,,;人造光源有,,。
2.拓展:有些物体本身不发光,但由于它们能反射太阳或其他光源射出的光,就像它们也在发光一样。
比如,,。
3.英国物理学家首先研究的光的色散现象,通过光的色散实验,用可以把太阳光分解成从上到下是七种色光。
同理,被分解的色光也可混合成白光。
色散现象表明:①.白光不是单色光,而是由各种色光复合而成的复色光;②.不同的单色光通过时偏折角度不同,红光偏折小,紫光偏折大;③生活实例:雨后彩虹4.光的三原色:①红,绿,蓝,这三种色光可以合成。
称它们三原色,是因为用它们只要适当调配可以合成绝大多数色光。
②应用:彩色电视机。
③注意:色光的混合不是光的色散的逆过程(例如,红光和绿光能合成黄光,但黄光仍然是单色光,它通过棱镜后不会再分散成红光和绿光。
)④颜料的三原色是:,,。
5.物体为什么呈现不同颜色的颜色?①.透明物体的颜色由决定。
红色玻璃只能透过,其他颜色的光不能通过,在绿光照射下呈现。
无色透明物体能透过,用什么光照射,它就呈现与这种光完全一致的颜色。
②.不透明物体的物体是由决定的。
白色物体能;黑色物体能,若物体不反射光,那看上去就是。
例一:绿光照在穿红色上衣,白色裙子的演员身上,观众看到的是什么颜色?例二:在白纸上用红笔写了字,在白光照射下,透过红色玻璃镜你能看清白纸上的字码?③应用:“夏不穿黑,冬不穿白”;“白纸黑字不容抵赖”二.不可见光红外线:1.太阳光中色散区域的不可见光叫红外线2.红外线能使被照射的物体发热,具有,太阳的热主要以的形式传递到地球上。
3.说明:一切物体都在不停的发射红外线,温度越高,辐射的红外线越;物体在辐射的同时也在。
4.红外线的应用:a.红外线夜视仪;b.红外烤箱;c.红外遥感;d.红外摄影紫外线:1.太阳光中色散区域的不可见光叫紫外线;2.紫外线最显著的性质是:;3.说明:高温物体,如太阳,弧光灯和其他炽热物体发出的光中都有紫外线4.应用:a.化学作用:使照相底片感光;b.生理作用:杀菌消毒;c.荧光效应:验钞机5.适量照射紫外线对人体有益,但不能过量照射。
八年级上册物理第三章知识点一、光的传播1. 光的直线传播- 光在同一均匀介质中沿直线传播。
- 光的直线传播的例子:小孔成像、影子的形成、日食和月食现象。
2. 光的反射- 反射定律:入射光线、反射光线和法线都在同一平面内,且入射角等于反射角。
- 镜面反射:光滑表面反射光线,形成清晰的倒影。
- 漫反射:粗糙表面反射光线,光线分散,形成柔和的光照效果。
3. 光的折射- 折射现象:光从一种介质进入另一种介质时,传播方向发生改变。
- 折射定律:斯涅尔定律,n1*sin(θ1) = n2*sin(θ2),其中n1和n2是两种介质的折射率,θ1和θ2分别是入射角和折射角。
- 光的色散:不同波长的光在通过介质时折射角不同,导致光的分离。
二、透镜1. 透镜的分类- 凸透镜:两侧向外凸起,对光线有会聚作用。
- 凹透镜:两侧向内凹陷,对光线有发散作用。
2. 透镜成像- 凸透镜成像规律:- 当物体位于焦点之内,成正立、放大的虚像。
- 当物体位于焦点之外,成倒立、缩小的实像。
- 凹透镜成像规律:- 物体在透镜两侧都能成正立、缩小的虚像。
3. 透镜的应用- 放大镜:利用凸透镜的放大作用。
- 照相机、望远镜、显微镜等光学仪器。
三、光的三原色1. 光的三原色- 红、绿、蓝被称为光的三原色。
- 这三种颜色的光可以按不同比例混合,产生各种颜色的光。
2. 色光的混合- 加色混合:不同颜色的光混合在一起,光的强度增加,可以产生新的颜色。
- 减色混合:从白光中减去某些颜色的光,可以得到新的颜色。
四、光的反射定律和折射定律的应用1. 平面镜成像- 原理:光的反射定律。
- 特点:成正立、等大的虚像。
2. 眼镜- 近视眼镜:使用凹透镜,使光线发散,帮助近视眼聚焦在视网膜上。
- 远视眼镜:使用凸透镜,使光线会聚,帮助远视眼聚焦在视网膜上。
五、光的色散和应用1. 彩虹的形成- 原理:阳光通过空气中的小水滴,发生折射和反射,导致光的色散。
- 特点:彩虹呈现红、橙、黄、绿、蓝、靛、紫七种颜色。
八年级物理第三章知识点一、物态变化。
1. 物质的三态。
- 固态:有固定的形状和体积,分子排列紧密,分子间作用力强。
例如冰、铁块等。
- 液态:没有固定的形状,但有固定的体积,分子间距离比固态大,分子间作用力较弱。
如水、酒精等。
- 气态:没有固定的形状和体积,分子间距离很大,分子间作用力很弱。
如空气、水蒸气等。
2. 温度。
- 定义:表示物体的冷热程度。
- 单位:- 摄氏度(℃):在标准大气压下,冰水混合物的温度为0℃,沸水的温度为100℃,在0℃和100℃之间分成100等份,每一等份就是1℃。
- 热力学温度(T):单位是开尔文(K),它与摄氏温度的关系是T =t+273.15K(一般计算时取T = t + 273K)。
- 测量工具:温度计。
- 原理:根据液体热胀冷缩的性质制成的(体温计是根据水银的热胀冷缩制成的)。
- 种类:实验室温度计(-20℃ - 110℃)、体温计(35℃ - 42℃)、寒暑表(- 30℃ - 50℃)。
- 使用方法:- 使用前:观察温度计的量程和分度值;体温计使用前要用力甩几下,将水银甩回玻璃泡。
- 使用时:温度计的玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;温度计玻璃泡浸入被测液体后要稍候一会儿,待温度计的示数稳定后再读数;读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。
二、熔化和凝固。
1. 熔化。
- 定义:物质从固态变成液态的过程。
- 晶体熔化:- 晶体:有固定的熔化温度(熔点)的固体,如冰、海波、萘、各种金属等。
- 条件:达到熔点,继续吸热。
- 特点:在熔化过程中不断吸热,但温度保持不变。
- 晶体熔化图象:以冰为例,图象中温度随时间变化有一段水平线段,该水平线段对应的温度就是冰的熔点(0℃)。
- 非晶体熔化:- 非晶体:没有固定熔化温度的固体,如松香、玻璃、沥青等。
- 特点:在熔化过程中不断吸热,温度不断上升。
- 非晶体熔化图象:温度随时间一直上升,没有水平线段。
物理第三章知识点总结初二第三章热学一、温度和热量1. 温度:物体冷热的程度。
通常用摄氏度(℃)或华氏度(℉)来表示。
2. 热量:物体所具有的热量大小。
通常用焦耳(J)来表示。
3. 测量温度的仪器:温度计。
常用的温度计有水银温度计和电子温度计。
4. 热传递的方式:传导、对流、辐射。
其中,传导是固体、液体、气体之间的热传递方式;对流是液体和气体之间的热传递方式;辐射是不需要介质的热传递方式。
5. 物质的热膨胀:随着温度的升高,物质的体积会增大,这种现象叫做热膨胀。
常见的热膨胀现象有热胀冷缩和热膨胀缝隙。
6. 热力学第一定律:能量守恒定律,表明热量不会自发流向温度较低的物体,而是会随着热力学第一定律从高温热源向低温热源传递能量。
二、热量的传递1. 传热:热量从高温物体传递到低温物体的过程。
2. 传热方式及特点:(1)传导:物体内部的热传递方式,是固体、液体、气体中热量传递的主要方式。
(2)对流:是液体和气体中的热量传递方式,通过液体或气体的流动使热量传递到另一个地方。
(3)辐射:是通过电磁波传递热量的方式,不需要介质传递热量。
三、热功当量1. 定义:1焦耳的热量,相当于1焦的功。
2. 热功当量实验:通过实验测定热功当量的大小,可以得出1J热量相当于1J功的结论。
四、物质的热力学性质1. 熔化和凝固:物质从固态转变成液态的过程叫做熔化,从液态转变成固态的过程叫做凝固。
2. 水和冰的熔化:水的熔点为0℃,当水的温度降到0℃时,水会发生熔化。
而冰的熔点也是0℃,所以在0℃时,冰的熔化和水的熔化同时发生。
3. 沸腾和凝结:物质从液态转变成气态的过程叫做沸腾,从气态转变成液态的过程叫做凝结。
4. 水和水蒸气的沸腾:水的沸点为100℃,当水的温度升到100℃时,水会发生沸腾,同时产生水蒸气。
五、热力学第二定律1. 热力学第二定律的表述:热量不能自发地从低温物体转移到高温物体,热永远只能从热源向冷源传递。
2. 热力学第二定律的内容:热永远只能从高温物体向低温物体传递,而不能自发地从低温物体转移到高温物体。
八年级物理上册第三章《物态变化》知识点汇总一、温度1.温度:物体的冷热程度叫做温度。
2.温度计制作原理:温度计是根据液体热胀冷缩的性质制成的。
3.摄氏温度的规定:把在标准大气压下冰水混合物的温度定为0摄氏度,沸水的温度定为100摄氏度。
4.温度计使用方法:(1)温度计的玻璃泡全部浸入被测液体中,不要碰到容器的底部或侧壁;(2)待温度计示数稳定后再读数;(3)读数时温度计的玻璃泡要继续留在液体中,视线要与温度计液柱的上表面相平。
二、熔化和凝固1.熔化:物质由固态变成液态的过程叫做熔化。
2.熔化的条件:到达熔点,继续吸热。
3.凝固:物质由液态变成固态的过程叫做凝固。
4.凝固条件:达到凝固点,继续放热。
三、汽化和液化1.汽化:物质由液态变成气态的过程叫做汽化。
2.汽化现象:洒在地上的水变干了;3.汽化的两种方式:沸腾和蒸发是汽化的两种方式。
4.沸腾和蒸发的异同5.影响蒸发的因素:(1)液体的温度(2)液体的表面积(3)液体表面的空气流速6.液化:物质由气态变成液态的过程叫做液化。
7.液化现象:雾的形成;露的形成;夏天冰糕冒白气。
四、升华和凝华1.升华:物质由固态直接变成气态的过程叫做升华。
2.升华现象:衣柜里的樟脑丸过一段时间变小了;冬天,室外冰冻的衣服干了3.凝华:物质由气态直接变成固态的过程叫做凝华。
4.凝华现象:霜的形成;窗玻璃上的“冰花”;树枝上的“雾凇”5.吸热与放热:熔化吸热、凝固放热;汽化吸热、液化放热;升华吸热、凝华放热。
XX八年级物理上册第三章知识点总结
第三章物质的简单运动
一、运动与静止
参照物:要描述一个物体是运动的还是静止的,要选定一个标准物体做参照,这个被选定的标准物体叫做参照物。
相对于参照物,某物体的位置改变了,我们就说它是运动的;位置没有改变,我们就说它是静止的。
机械运动:一个物体相对于另一个物体位置的改变叫做机械运动,简称为运动。
运动的描述是相对的:判断一个物体是静止的,还是运动的,与所选的参照物有关。
选不同的参照物,对物体运动的描述有可能不同。
参照物的选择:参照物的选择是可以任意的,在具体研究问题时,要根据问题的需要和研究的方便而选取。
研究地面上的物体时,通常选地面为参照物。
运动的分类:
直线运动:经过的路线是直线的运动。
曲线运动:经过的路线是曲线的运动。
二、比较物体运动的快慢
探究比较物体运动快慢的方法:比较物体在相同时间内通过的路程的大小;比较物体通过相同的路程所用时间的大
小。
速度:物体在单位时间内通过的路程叫做速度。
速度是描述物体运动快慢的物理量。
速度的公式:v=s/t
其中:v—速度—米/秒
s—路程—米
t—时间—秒
速度的单位
国际单位主单位:米/秒,常用单位:千米/小时。
匀速直线运动
如果物体沿直线运动,并且速度的大小保持不变,这种运动称不匀速直线运动。
三、平均速度与瞬时速度
平均速度
平均速度描述变速运动的快慢。
它表示运动物体在某一段路程内的快慢程度。
瞬时速度
运动物体在某一瞬间的速度叫做瞬时速度。
平均速度反映的是物体在整个运动过程中的运动快慢,瞬时速度反映的是物体在运动过程中的某一时刻或者某一位置时的运动快慢。
物体做匀速直线运动时,在任何时刻的瞬时速度都相
同,并且任何时刻的瞬时速度和整个运动过程中的平均速度相同。
四、平均速度的测量
求平均速度需要路程和时间两个物理量。
时间用钟表测量。