初中数学 图形的旋转与四边形含知识点与经典例题
- 格式:doc
- 大小:2.91 MB
- 文档页数:14
旋转旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
求∠BPC的度数。
旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。
题型多以填空题、计算题呈现。
在解答此类问题时,我们通常将其转换成全等求解。
根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度,这样的图形运动称为旋转,定点O 称为旋转中心,转动的角称为旋转角;如果图形上的点P 经过旋转到点P ',那么这两个点叫做这个旋转的对应点. 如图1,线段AB 绕点O 顺时针转动090得到B A '',这就是旋转,点O 就是旋转中心,A AOB BO '∠'∠,都是旋转角。
说明: 旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略。
决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的。
由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同. ⑵任意一对对应点与旋转中心的连线所成的角都是旋转角。
⑶对应点到旋转中心的距离相等。
⑷对应线段相等,对应角相等。
例1 、如图2,D 是等腰Rt △ABC 内一点,BC 是斜边,如果将△ADB 绕点A 逆时针方向旋转到△C D A '的位置,则ADD '∠的度数是( )DA.25B.30 C.35 D.45知识点3:旋转作图1。
明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2.理解作图的依据:(1)旋转的定义: 在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等.3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.'图1图2例2 如图3,小明将△ABC 绕O 点旋转得到△C B A ''',其中点C B A '''、、分别是A 、B 、C 的对应点.随即又将△ABC 的边AC 、BC 及旋转中心O 擦去(不留痕迹),他说他还能把旋转中心O 及△ABC 的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置;如不可以,请说明理由。
几何图形旋转常见问题一、填空题1.如图1,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,那么它们的公共局部的面积等于.2.如图2,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是cm.3.正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针连续翻转〔如图3所示〕,直至点P第一次回到原来的位置,那么点P运动路径的长为cm.4.如图4,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD 以点D为中心逆时针旋转90°至ED,连结AE,CE,那么△ADE的面积是.二、解答题5.如图5-1,P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD 于点F.(1) 求证:BP=DP;(2) 如图5-2,假设四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?假设是,请给予证明;假设不是,请用反例加以说明;(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .6.如图6-1是一个美丽的风车图案,你知道它是怎样画出来的吗?按以下步骤可画出这个风车图案:在图6-2中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答以下问题:(1)假设点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;(2)请你在图6-2中画出第二个叶片F2;(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少?7.如图7,在直角坐标系中,点P0的坐标为(1,0),将线段OP按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn〔n为正整数〕.〔1〕求点P6的坐标;〔2〕求△P5OP6的面积;〔3〕我们规定:把点Pn (xn,yn)〔n=0,1,2,3,…〕的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn |,|yn|)称之为点Pn的“绝对坐标〞.根据图中点Pn的分布规律,请你猜测点Pn的“绝对坐标〞,并写出来.8.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H 〔如图8〕.试问线段HG与线段HB相等吗?请先观察猜测,然后再证明你的猜测.9.如图9-1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片〔如图9-2〕,量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角形纸片摆成如图9-3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合〔在图9-3至图9-6中统一用F表示〕图9-1 图9-2 图9-3 小明在对这两张三角形纸片进展如下操作时遇到了三个问题,请你帮助解决.〔1〕将图9-3中的△ABF沿BD向右平移到图9-4的位置,使点B与点F 重合,请你求出平移的距离;F交DE于〔2〕将图9-3中的△ABF绕点F顺时针方向旋转30°到图9-5的位置,A1点G,请你求出线段FG的长度;交DE于点H,请证明:〔3〕将图9-3中的△ABF沿直线AF翻折到图9-6的位置,AB1AH﹦DH.图9-4 图9-5 图9-6参考答案一、1. 2. 6-2 3二、5. 解:〔1〕解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.〔2〕不是总成立 .当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP>DC>BP,此时BP=DP 不成立.〔3〕连接BE、DF,那么BE与DF始终相等.在图1-1中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC .从而有 BE=DF .6. 解:〔1〕B〔6,1〕〔2〕图略〔3〕线段OB扫过的图形是一个半圆.过B作BD⊥x轴于D.由〔1〕知B点坐标为〔6,1〕,∴OB2=OD2+BD2=62+12=37.∴线段OB扫过的图形面积是.7. 解:〔1〕根据旋转规律,点P6落在y轴的负半轴,而点Pn到坐标原点的距离始终等于前一个点到原点距离的倍,故其坐标为P6(0,26),即P6(0,64).〔2〕由可得,△P0OP1∽△P1OP2∽…∽△Pn-1OPn,设P1(x1,y1),那么y1=2sin45°=,∴.又∵,∴.〔3〕由题意知,OP0旋转8次之后回到x轴正半轴,在这8次中,点Pn分别落在坐标象限的平分线上或x轴或y轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点Pn的坐标可分三类情况:令旋转次数为n.①当n=8k或n=8k+4时〔其中k为自然数〕,点Pn 落在x轴上,此时,点Pn的绝对坐标为(2n,0);②当n=8k+1或n=8k+3或n=8k+5或n=8k+7时〔其中k为自然数〕,点Pn落在各象限的平分线上,此时,点P n的绝对坐标为,即.③当n=8k+2或n=8k+6时〔其中k为自然数〕,点Pn落在y轴上,此时,点P n的绝对坐标为(0,2n).8. 解:HG=HB.证法1:连结AH〔如图10〕.∵四边形ABCD,AEFG都是正方形,∴∠B=∠G=90°.由题意,知AG=AB,又AH=AH,∴Rt△AGH≌Rt△ABH〔HL〕.∴HG=HB.证法2:连结GB〔如图11〕.∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°.由题意知AB=AG.∴∠AGB=∠ABG.∴∠HGB=∠HBG.∴HG=HB.9. 解:〔1〕图形平移的距离就是线段BC的长.∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,∴BC=5cm.∴平移的距离为5cm.〔2分〕〔2〕∵∠A1FA=30°,∴∠GFD=60°.又∠D=30°,∴∠FGD=90°.在Rt△EFD中,ED=10 cm,∴ .∵FG=cm.〔3〕在△AHE与△DHB1中,∠FAB1=∠EDF=30°.∵FD=FA,EF=FB=FB1,∴FD-FB1=FA-FE,即AE=DB1.又∵∠AHE=∠DHB1,∴△AHE≌△DHB1〔AAS〕.∴AH=DH.。
几何形的旋转方法与例题几何形的旋转是数学中常见的操作方法,通过围绕旋转中心点旋转图形,可以产生一系列有趣的变化和性质。
本文将介绍几何形的旋转方法,并结合例题进行详细论述。
一、平面上的旋转方法在平面几何中,常见的旋转方法有以下两种:1. 以原点为旋转中心点的旋转:对于平面上的点A(x, y),经过以原点O(0, 0)为中心点的逆时针旋转θ度后,新的坐标为A'(x', y')。
根据旋转矩阵的定义,可以得到旋转后的坐标计算公式:```x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ```这种方法适用于旋转点或图形关于原点对称的情况。
2. 以任意点为旋转中心点的旋转:对于平面上的点A(x, y),经过以点P(a, b)为中心点的逆时针旋转θ度后,新的坐标为A'(x', y')。
根据旋转矩阵的定义,可以得到旋转后的坐标计算公式:```x' = (x-a)*cosθ - (y-b)*sinθ + ay' = (x-a)*sinθ + (y-b)*cosθ + b```这种方法适用于旋转点或图形关于任意点对称的情况。
二、几何形的旋转例题1. 旋转矩形:设矩形ABCD的长为a,宽为b,以点O为中心逆时针旋转α度,求旋转后矩形的长和宽。
解析:以O为中心点旋转,将矩形四个顶点A、B、C、D依次进行旋转,记为A'、B'、C'、D'。
由于矩形维持原始形状,我们只需计算A'、B'的横坐标之差即可求出旋转后的长和宽。
假设A点坐标为(x, y),经过逆时针旋转α度后的坐标为(x', y')。
则根据旋转公式可得:```x' = x*cosα - y*sinαy' = x*sinα + y*cosα```对于A点有:x' - x = a代入上述公式可得:a*co sα - b*sinα - a = 0解上述方程可以求得旋转后矩形的长。
专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。
4321DCB A EDA 图1梯形正方形矩形菱形平行四边形四边形等腰梯形两腰相等直角梯形有一个角是直角梯形一组对边不平行一组对边平行四边形在轴对称、平移、旋转这些图形变换中,线段的长度不变,角的大小不变;图形的形状、大小不变中心对称旋转对称对应点与旋转中心的距离不变;每一点都绕旋转中心旋转了同样大小的角度连结对应点的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等旋转平移轴对称图形之间的变换关系中考数学总复习资料6 四边形及平移旋转对称一、知识框图: 1、2、3、二、 例题分析 1、四边形例1(1)凸五边形的内角和等于______度,外角和等于______度,(2)若一凸多边形的内角和等于它的外角和, 则它的边数是_______.2.平行四边形的运用例2 如图,∠1=∠2,则下列结论一定成立的是( )A. AB ∥CDB. AD ∥BCC. ∠B=∠DD. ∠3=∠4若ABCD 是平行四边形,则上述四个结论中那些是 正确?你还可以得到什么结论?3.矩形的运用例3 如图1,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、则阴影部分的面积是矩形ABCD 的 面积的( )A 、51 B 、41 C 、31 D 、1034.菱形的运用例 1.一个菱形的两条对角线的长的比是2:3,面积是12 cm 2,则它的两条对角线的长分别为______2、已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_______.5.等腰梯形的有关计算例5 已知:如图,等腰梯形ABCD 中,AD ∥BC,AD=3,AB=4, BC=7.求∠B 的度数..6.轴对称的应用例6 如图,牧童在A 处放牛,其家在B 处,若牧童从A 处出发牵牛到河岸CD 边饮水后再回家,试问在何E DC B A(第8题)EDCB A 处饮水所走路程最短?7.中心对称的运用例7 如图,作△ABC 关于点O 的中心对称图形△DEF 8.平移作图 例8 .在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( ). (A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格 (C)先向下移动2格,再向左移动1格 (D)先向下移动2格,再向左移动2格 9.旋转的运用例9 如图,△ABC 和△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,点C 在AD 上,如果△ABC 经旋转后能与△ADE 重合,那么哪一点是旋转中心?旋转了多少度?解:_____是旋转中心,_______方向旋转了______.基础达标 一、选择题:1. 一个内角和是外角和的2倍的多边形是 边形.2. 有以下四个命题:(1)两条对角线互相平分的四边形是平行四边形.(2)两条对角线相等的四边形是菱形.(3)两条对角线互相垂直的四边形是正方形.(4)两条对角线相等且互相垂直的四边形是正方形 其中正确的个数为( )A.4 B.3 C.2 D.1 3.下面条件中,能判定四边形是平行四边形的条件是( )A .一组对角相等B .对角线互相平分C .一组对边相等D .对角线互相垂直 4.在一个平面上有不在同一直线上的三点,则以这三点为顶点的平行四边形有( ) A .1个 B .2个 C .3个 D .4个 5. 如图,□ABCD 中,∠C=118°,BE 平分∠ABC,则∠ABE 等于( ) A.18° B.36° C.72° D.118° 6、下列说法中,正确的是( )A 、等腰梯形既是中心对称图形又是轴对称图形.B 、正方形的对角线互相垂直平分且相等C 、矩形是轴对称图形且有四条对称轴D 、菱形的对角线相等 7、如图,在平行四边形ABCD 中,下列各式不一定正确的是( )A .012180∠+∠=B .023180∠+∠= C .034180∠+∠= D .024180∠+∠=8、在平行四边形ABCD 中,︒=∠110B ,延长AD 至F ,延长CD 至E ,连接EF ,则=∠+∠F E ( ) (A )︒110 (B )︒30 (C )︒50(D )︒709、如图7,直线l 是四边形ABCD 的对称轴,若AB=CD ,有下面的结论:①AB ∥CD ;②AC ⊥BD ;③AO=OC ;④AB ⊥BC ,其中正确的结论有_________。
初中旋转试题及答案在初中数学的学习中,旋转是一个重要的几何概念。
它涉及到图形的平移、旋转和缩放等变换。
以下是一份初中旋转试题及答案,旨在帮助学生掌握旋转的基本概念和计算方法。
试题一:一个点A(3,4)绕原点O(0,0)顺时针旋转90度后,点A的新坐标是什么?答案:当一个点绕原点顺时针旋转90度时,它的坐标会互换并改变符号。
因此,点A(3,4)旋转后的新坐标为(4,-3)。
试题二:一个矩形ABCD,其中A(1,2),B(5,2),C(5,6),D(1,6),绕点A顺时针旋转90度后,矩形的新位置是什么?答案:矩形ABCD绕点A顺时针旋转90度后,点B(5,2)变为(2,5),点C(5,6)变为(6,5),点D(1,6)变为(6,1)。
因此,旋转后的矩形顶点坐标为A(1,2),B(2,5),C(6,5),D(6,1)。
试题三:一个等边三角形,顶点分别为E(0,0),F(3,0),G(1.5,3),绕点E逆时针旋转120度后,三角形的新位置是什么?答案:等边三角形EFG绕点E逆时针旋转120度后,点F(3,0)变为(0,3),点G(1.5,3)变为(-1.5,1.5)。
因此,旋转后的等边三角形顶点坐标为E(0,0),F(0,3),G(-1.5,1.5)。
试题四:一个圆心在H(4,4)的圆,半径为5,绕点H逆时针旋转45度后,圆的位置会如何变化?答案:圆心H(4,4)的圆绕圆心逆时针旋转45度后,圆的位置不会改变,因为旋转是围绕圆心进行的。
圆心坐标仍然是H(4,4),半径仍然是5。
试题五:一个正方形IJKL,其中I(2,1),J(3,1),K(3,2),L(2,2),绕点I逆时针旋转45度后,正方形的新位置是什么?答案:正方形IJKL绕点I逆时针旋转45度后,点J(3,1)变为(2.707,0.707),点K(3,2)变为(2,2.414),点L(2,2)变为(1.293,1.707)。
因此,旋转后的正方形顶点坐标为I(2,1),J(2.707,0.707),K(2,2.414),L(1.293,1.707)。
九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习 -九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习图形的旋转这一章节是初中几何内容中非常重要的一个章节,对于图形的运动的形式和规律以及旋转的性质都是我们在对几何的初步认识当中的一个过程,掌握其重要的性质之后,对于几何综合题型当中辅助线的运用起到了非常重要的作用。
并且图形的旋转加上已经学习过的平移和轴对称。
对几何图形的变化有充分地了解,建立几何空间思维的正确认识,对于几何空间能力的提升起到了非常重要的促进作用。
首先,在学习图形的旋转这一章节我们主要围绕以下两个重要的内容来展开:第一,掌握图形的旋转和中心对称的概念;第二,掌握旋转的本质。
这也是我们学习过程中的重点和难点内容。
因为在旋转前后的两个图形中,对应点与旋转中心之间的距离总是相同的,所以对应点必然分别在以旋转中心为圆心,以对应点到旋转中心的距离为半径的一组同心圆上,对应点与旋转中心连线所成的角等于且等于旋转角。
唐老师提醒大家,旋转过程中保持静止的点就是旋转的中心,不变的量就是对应的元素。
其次,旋转的三个要素:旋转中心、旋转的角度和旋转方向.第三,旋转的性质:(1)图形中的每一点都绕着旋转中心旋转了同样大小的连线所成的角度;—整体角度(2)对应点到旋转中心的距离相等;(3)对应线段相等,对应角相等;——局部角度(4)图形的形状和大小都没有发生变化,即旋转不改变图形的形状和大小.—变换结果.第四,简单图形的旋转作图:(1)确定旋转中心;(2)确定图形中的关键点;(3)将关键点沿指定的方向旋转指定的角度;(4)连接这些点,得到原始图形的旋转图形。
(以上四个步骤是我们在制作简单旋转图的过程中应该遵循的步骤。
按照以上步骤画图,可以提高大家的学习效率,保证其在画图过程中的正确率。
)第五,旋转对称图形:平面图形绕某点旋转一定角度(小于圆角)后,可以与自身重叠。
旋转、中心对称.平行四边形【知识点】1、旋转:在平面内,将一个图形绕一个定点转动j定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角.2、★图形旋转的性质.(1)旋转前后的图形全等;(2)对应点到旋转中心的距离相等;(3)•每一对对应点与旋转中心的连线所成的角彼此相等.3、中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点4、★中心对称的性质(1)屮心对称图形有一个对称屮心,将这个图形绕对称屮心旋转180°,旋转后的图形能与原来的图形重合;(2)中心对称图形是对一个图形来说的,是一个图形所具有的性质;(3)中心对称与中心对称图形既有区别又有联系:如果将成中心对称的两个图形看成一个图形,那么这个图形的整体就是中心对称图形;反过来,如果将一个中心对称图形沿过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称.5、中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
6、对比轴对称图形与中心对称图形7、 概念:两组对边分别平行的四边形叫做平行四边形 8、 平行四边形的对边相等、对角相等、对角线互相平分. 9、 定理1: 一组对边平行且相等的四边形是平行四边形. 10、 定理2:两组对边分别,相等的四边形是平行四边形. 11、 定理3:对角线互相平分的四边形是平行四边形【练习】1. 下列说法中,不正确的是()A. 关于某一点中心对称的两个图形全等B. 全等的两个图形一定关于某一点成屮心对称C. 圆是中心对称图形D. 任何一条线段的两个端点关于这条线段的中点成中心对称2、 在上列某品牌T 恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知 识的是()3、如图,在四边形ABCD 中,AB//CD, BC 丄CD,垂足为点C, E 是AD 的屮 点,连接BE 并延长交CD 的延长线于点F ・(1)图中AEFD 可以由△ ____ 绕着点 _______ 旋转 ________ 度后得到;⑵若AB=4, BC = 5, CD=6,则ABCF 的面积为 ________________4、如图,如果正方形CDEF 旋转后能与止方形ABCD重合,那么图形所在平面9ADC AEB上可以作为旋转屮心的点有 ______ 个.5、 如图,AB 丄BC, AB = BC=2cm,弧0A 与弧0C 关于点0成中心对称,则 AB 、BC 、弧OC 、弧OA 所围成的而积是 _________ c n?・7、 如图,DABCD 屮,AB=3, AD=4, ZABC = 60° ,过 BC 的屮点 E 作 EF 丄AB,垂足为点F 与DC 的延长线相交于点H,则ADEF 的面积是 _______ ・8、 根据如图所示的(1), (2), (3)三个图所表示的规律,依次下去第”个图中平行四边形的个数是()9、如图,平行四边形ABCD 中,DE±AB 于E, DF 丄BC 于F,若二辽①)的周长为 48, DE 二5, DF 二10,贝匚且PCD 的面积等于( )A. 87.5B. 80C ・ 75D ・ 72.510、 如图,在四边形ABCD 中,E 是BC 边的中点,连结DE 并延长,交AB 的延长线于F 点,AB=BF ・添加一个条件,使四边形ABCD 是平行四边形.你认为下 面四个条件中可选择的是()A. AD = BC B ・ CD = BF C. Z.4 = ZC D ・ ZF = ZCDE 11、如图,在"BCD 中,对角线AC 、BD 交于点0,下列式子中一定成立的是()A. 3nD. 6n(n+l)6、 如图,在口ABCD 中,对角线AC 、BD 相交于点0・如果AC=14, BD = 8, AB = x,那么x 的取值范围是 _________ .第5题第6题 第7题⑴6nn CA.AC1BDB.OA=OCC.AC=BDD.AO=OD1 J(第10题)12、能判定四边形是平行四边形的条件是( )A. 一组对边平行,另一组对边相等;B. 一组对边相等,一组邻角相等;C. 一组对边平行,一组邻角相等;D. 一组对边平行,一组对角相等。
个性化教学辅导教案学科: 数学任课教师:刘老师授课时间:2013年1月2日(星期三) 14:00---16:00姓名梁啟源年级:初二教学课题图形的旋转与四边形阶段基础()提高()强化()课时计划第()次课共()次课教学目标知识点:考点:方法:讲练法重点难点重难点:教学内容与教学过程课前检查作业完成情况:优□良□中□差□建议__________________________________________第三章图形的平移与旋转【知识精讲】知识点1 平移、旋转和轴对称的区别和联系(1)区别。
①三者概念的区别:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移;在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;在平面内,将一个图形沿着某条直线折叠。
如果它能够与另一个图形重合,那么这两个图形成轴对称。
②三者运动方式不同:平移是将图形沿某个方向移动一定的距离。
旋转是将一个图形绕一个定点沿某个方向转动一个角度;轴对称是将图形沿着某一条直线折叠。
③对应线段、对应角之间的关系不同:平移变换前后图形的对应线段平行(或共线)且相等;对应点所连的线段平行且相等;对应角的两边分别平行且对应角的方向一致。
轴对称的对应线段或延长线相交,交点在对称轴上:对应点的连线被对称轴垂直平分。
旋转变换前后图形的任意一对对应点与旋转中心的距离相等、与旋转中心的连线所成的角是旋转角。
④三者作图所需的条件不同:平移要有平移的方向和平移的距离,旋转要有旋转中心、旋转方向和旋转角:轴对称要有对称轴。
(2)联系。
①它们都在平面内进行图形变换②它们都只改变图形的位置不改变图形的形状和大小,因此变换前后的两个图形全等。
③都要借助尺规作图及全等三角形的知识作图。
知识点2 组合图案的形成(1)确定图案中的“基本图案”。
(2)发现该图案各组成部分之间的内在联系。
(3)探索该图案的形成过程:运用平移、旋转、轴对称分析各个组成部分如何通过“基本图案”演变成“形”的。
要用运动的观点、整体的思想分析“组合图案”的形成过程。
运动的观点就是要求我们不能静止地挖掘“基本图案”与“组合图案”的内在联系,头脑中应想象、再现图案形成的过程,做到心中有数,特别是有的图案含有不同的“基本图案”其形成的方式也多种多样,可以通过平移、旋转、轴对称变换中的一种或两种变换方式来实现,也可以通过同一种变换方式的重复使用来实现。
整体的思想包括整体的构思和“基本图案”的组合。
知识点3 利用平移、旋转和轴对称的知识解决几何问题在几何题或代数几何综合题的解证过程中,经常会使用几何变换的观点来解决问题。
从图形的特点出发,利用几何变换,可将图形的全部或一部分移动到一个新的位置,构成一个新的关系,从而使问题获得解决。
这种几何变换不改变被移动部分图形的形状和大小,而只是它的位置发生了变化,这种移动有利于找出图形之间的关系,从而使解题更为简捷。
移动图形一般有三种方法:(1)平移法。
(2)旋转法:利用旋转变换。
(3)对称:可利用中心对称和轴对称。
知识点4 欣赏现实生活中的一些精美图案通过欣赏现实生活中的一些精美图案,引起学生的兴趣。
通过分析它们的形成过程,为今后进行图案设计提供素材。
知识点5 图案设计的步骤1、整体构思(1)图案的设计要突出“主题”,即设计图案的意图,要求简捷、自然、别致,具有一定的意义,例如,奥运会徽是由五个两两相联的圆环组成的,分别代表世界上五大洲的人民热爱体育运动,携手共创美好的未来。
(2)确定整幅图案的形状(如圆形或正方形)和“基本图案”(不宜太复杂)。
(3)构思图案的形成过程:首先构思该图案由哪几部分构成。
再构思如何运用平移、旋转、轴对称等方法实现由“基本图案”到各部分图案的组合,并作出草图。
2、具体作图根据草图,运用尺规作图的方法准确地作出图案。
有条件的同学可用几何画板画出满意的图案。
【例题讲解】例1. 如图所示,A 、B 两村之间有一条河,河宽为a ,现要在河上修一座垂直于河岸的桥,要使AB 两村路程最近,请确定修桥的地点。
分析:假设桥为MN ,从A →B 要走的路程为AMNB ,要使路程最近,只需AM +NB 最小即可。
例2. 在△ABC 的边BC 上,取两点D 、E ,使BD =CE ,观察AB +AC 与AD +AE 的大小关系。
分析:四条线段AB 、AC 、AD 、AE 比较分散,可利用平移的方法将它们集中到一起,即可求出大小关系。
证明:将△AEC 沿EB 的方向平移到△FBD 位置 ∴FB =AE ,FD =AC 设FD 与AB 的交点为O在△AOD 中,AO +OD >AD 在△FOB 中,FO +OB >FB()()AB FD AO OB FO OD ∴+=+++()()AO OD FO OB AD FB=+++>+AB AC AD AE ∴+>+例3. 已知:AB =CD =1,AB 与CD 交于O 点,∠DOB =60°,比较AC +BD 与1的大小。
分析:利用平移将AC 与BD 集中,再利用三角形三边关系进行比较大小。
解:1AC BD +>证明:过C 作CE ∥AB ,过B 作BE ∥AC ,连结DE ∴四边形ABEC 为平行四边形 ∴AC =BE ,AB =CE∵∠DOB =60°,AB ∥CE ∴∠DCE =60° ∵AB =CD =1 ∴CE =CD =1∴△DCE 为等边三角形 ∴DE =1在△DEB 中,DB +BE >DE 即DB +AC >1例4. 已知:如图,E 是正方形ABCD 的边BC 上一点,AF 平分∠EAD 交CD 于点F ,说明AE =BE +DF 的理由。
分析:由于要证的3条线段AB 、BE 、DF 分散在两个三角形中,可利用旋转变换,将其放到一个三角形中。
解:把△ADF 绕点A 顺时针旋转90°,则点D 转到了点B 的位置,点F 转到了点F'的位置,根据旋转的性质得:∠3=∠1,F'B =FD ,∠AF'B =∠AFD ∵ABCD 为正方形 ∴∠D =∠ABF'=90°∴F'、B 、E 、C 在一条直线上 又∵∠1+∠2+∠EAB =90° ∴∠3+∠2+∠EAB =90°∴∠F'AE +∠2=90° 又∵∠AFD +∠1=90° ∴∠AF'B +∠1=90° ∵∠1=∠2∴∠F'AE =∠AF'B∴AE =F'E =F'B +BE =FD +BE例5. 如图,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针旋转90°,使AB 与CB 重合,BP 到达BP'处,AP 到达CP'处,若AP 的延长线正好经过P',求∠APB 的度数。
分析:此题运用旋转将△ABP 绕点B 顺时针旋转90°,根据旋转性质求出∠BP'C 的度数即可。
而∠BP'C 又是∠BP'P 与∠CP'P 之和,可各个击破,从而得解。
解:由旋转的性质及特征可知: ∠PBP'=90°,AP ⊥P'C ,BP =BP' ∴在△BPP'中,()1n n 18090452BP P BPP ==︒-︒=︒∠∠ 又∵AP 的延长线正好经过P'点 ∴∠AP'C =90°∴∠BP'C =∠AP'C +∠BP'P =135° 从而可得∠APB =135°例6. 已知:如图,E 、F 、G 分别是正方形ABCD 中BC 、AB 、CD 上的点,且AE ⊥FG 。
求证:AE =FG分析:AE、FG所在位置不易证明相等,可将其一改变位置,如可用平移、旋转将其位置改变后再进行证明。
证明:延长AB至F'使BF'=BE,连结CF'∵正方形ABCD∴AB=CB,∠ABC=90°又∵∠CBF'=90°,BE=BF'∴△ABE绕点B顺时针旋转90°可得△CBF'∴AE=CF',AE⊥CF'∵FG⊥AE∴FG∥CF'又∵正方形ABCD,AB∥CD∴四边形GFF'C为平行四边形∴CF'=FG∴AE=FG例7. 如图,P是正方形ABCD中AC上一点,PE⊥AD于E,PF⊥CD于F。
求证:(1)OE⊥OF(2)OE=OF分析:充分利用正方形的中心对称性及旋转变换。
证明:∵正方形ABCD∴∠ADC=90°,∠DAC=45°∵DE⊥AD,∴∠PED=90°∵PF⊥CD,∴∠PFD=90°∴四边形EPFD为矩形∴PE=DF又∵∠PED=90°,∠DAC=45°∴∠APE=45°∴△AEP中,AE=PE∴AE=DF∵正方形ABCD为中心对称图形∴△AOD绕点O顺时针旋转90°与△DOC重合∴A与D为对应点又∵AE=DF∴E与F为对应点由旋转变换的特征知:OE⊥OF,OE=OF例8. △ABC为等边三角形,点D、E、F分别在边AC、AB、BC上,且AE=BF=CD,连结AF、BD、CE,分别交于点G、H、M。
(1)求∠1的度数;(2)判断△GMH的形状。
分析:等边三角形是旋转对称图形,且每个角都是60°,∠1是△BCH的外角,可知∠1=∠2+∠3。
而∠2=∠4∴∠1=∠4+∠3=60°,从而得证。
解:(1)∵等边△ABC是旋转对称图形,且AE=BF=CD所以,△ABC绕旋转中心旋转120°后,△AEC、△BFA、△CDB能够重合∴∠2=∠4由∠1=∠2+∠3∴∠1=∠4+∠3=60°(2)同理可得:∠GMH=∠MGH=60°∴△GMH是等边三角形【同步拓展训练】1. 两个长为12cm的线段AB与CD相交于点O,∠AOD=120°,判断AC+BD的最小值。
2. 如图△ABC中,∠BAC=90°,P是△ABC内一点,将△ABP绕点A逆时针旋转一定角度后能与△ACQ重合,如果AP=3,那么△APQ的面积是多少?3. △ABC是等边三角形,D为BC边上一点,△CDE也为等边三角形,请你画出将△ACD以C 点为旋转中心,逆时针方向旋转60°后的三角形,并说明AD与BE的关系。
S ,求4. 在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若25ABCDDP的长。