衡水中学2018届高三上学期一调考试理科数学(含答案)
- 格式:pdf
- 大小:3.33 MB
- 文档页数:7
河北衡水金卷2018届高三理数高考一模试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合 A ={x|−x 2+4x ≥0} , B ={x|181<3x <27} , C ={x|x =2n,n ∈N} ,则 (A ∪B)∩C = ( )A.{2,4}B.{0,2}C.{0,2,4}D.{x|x =2n,n ∈N}2.设 i 是虚数单位,若 i(x +yi)=5i 2−i, x , y ∈R ,则复数 x +yi 的共轭复数是( ) A.2−i B.−2−i C.2+i D.−2+i3.已知等差数列 {a n } 的前 n 项和是 S n ,且 a 4+a 5+a 6+a 7=18 ,则下列命题正确的是( ) A.a 5 是常数 B.S 5 是常数 C.a 10 是常数 D.S 10 是常数4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是( )答案第2页,总19页订…………○…………线…………○内※※答※※题※※订…………○…………线…………○A.316 B.38 C.14 D.185.已知点 F 为双曲线 C : x 2a 2−y 2b 2=1 ( a >0 , b >0 )的右焦点,直线 x =a 与双曲线的渐近线在第一象限的交点为 A ,若 AF 的中点在双曲线上,则双曲线的离心率为( ) A.√5 B.1+√2 C.1+√5 D.−1+√5 6.已知函数 f(x)={sinx,x ∈[−π,0],√1−x 2,x ∈(0,1],则 ∫1−πf(x)dx = ( ) A.2+π B.π2 C.−2+π2D.π4−2………○…………线…………○…__________………○…………线…………○…7.执行如图所示的程序框图,则输出的 S 的值为( )A.√2021B.√2019C.2√505D.2√505−18.已知函数 f(x)=sinωxcosωx −√3cos 2ωx +√32( ω>0 )的相邻两个零点差的绝对值为 π4 ,则函数 f(x) 的图象( )A.可由函数 g(x)=cos4x 的图象向左平移 5π24 个单位而得 B.可由函数 g(x)=cos4x 的图象向右平移 5π24 个单位而得 C.可由函数 g(x)=cos4x 的图象向右平移 7π24 个单位而得 D.可由函数 g(x)=cos4x 的图象向右平移 5π6 个单位而得 9.(2x −3)(1+1x )6 的展开式中剔除常数项后的各项系数和为( )A.−73B.−61C.−55D.−6310.某几何体的三视图如图所示,其中俯视图中六边形 ABCDEF 是边长为1的正六边形,点 G 为 AF 的中点,则该几何体的外接球的表面积是( )答案第4页,总19页…订…………○…………线…………○※※内※※答※※题※※…订…………○…………线…………○A.31π6 B.31π8 C.481π64 D.31√31π4811.已知抛物线 C : y 2=4x 的焦点为 F ,过点 F 分别作两条直线 l 1 , l 2 ,直线 l 1 与抛物线 C 交于 A 、 B 两点,直线 l 2 与抛物线 C 交于 D 、 E 两点,若 l 1 与 l 2 的斜率的平方和为1,则 |AB|+|DE| 的最小值为( ) A.16 B.20 C.24 D.3212.若函数 y =f(x) , x ∈M ,对于给定的非零实数 a ,总存在非零常数 T ,使得定义域 M 内的任意实数 x ,都有 af(x)=f(x +T) 恒成立,此时 T 为 f(x) 的类周期,函数 y =f(x) 是 M 上的 a 级类周期函数.若函数 y =f(x) 是定义在区间 [0,+∞)内的2级类周期函数,且 T =2 ,当 x ∈[0,2) 时, f(x)={12−2x 2,0≤x ≤1,f(2−x),1<x <2,函数 g(x)=−2lnx +12x 2+x +m .若 ∃x 1∈[6,8] , ∃x 2∈(0,+∞) ,使 g(x 2)−f(x 1)≤0 成立,则实数 m 的取值范围是( )A.(−∞,52]B.(−∞,132]…………外……………………装…………○…………订校:___________姓名:___________班级:___________考…………内……………………装…………○…………订 C.(−∞,−32]D.[132,+∞)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.已知向量 a ⇀=(2sinα,cosα) , b ⇀=(1,−1) ,且 a ⇀⊥b ⇀,则 (a ⇀−b ⇀)2= .14.已知 x , y 满足约束条件 {x −2y ≤0,2x −y ≥0,x +4y −18≤0,则目标函数 z =32x8y 的最小值为 .15.在等比数列 {a n } 中, a 2⋅a 3=2a 1 ,且 a 4 与 2a 7 的等差中项为17,设 b n =a 2n−1−a 2n , n ∈N ∗ ,则数列 {b n } 的前 2n 项和为 .16.如图,在直角梯形 ABCD 中, AB ⊥BC , AD//BC , AB =BC =12AD =1 ,点 E 是线段 CD 上异于点 C , D 的动点, EF ⊥AD 于点 F ,将 ΔDEF 沿 EF 折起到 Δ PEF 的位置,并使 PF ⊥AF ,则五棱锥 P −ABCEF 的体积的取值范围为 .三、解答题(题型注释)17.已知 ΔABC 的内角 A , B , C 的对边 a , b , c 分别满足 c =2b =2 ,2bcosA +acosC +ccosA =0 ,又点 D 满足 AD ⇀=13AB ⇀+23AC ⇀.答案第6页,总19页…○…………外…………○…………装…………○…………订…………○…………线…※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…(1)求 a 及角 A 的大小; (2)求 |AD ⇀| 的值.18.在四棱柱 ABCD −A 1B 1C 1D 1 中,底面 ABCD 是正方形,且 BC =BB 1=√2 ,∠A 1AB =∠A 1AD =60° .(1)求证: BD ⊥CC 1 ;(2)若动点 E 在棱 C 1D 1 上,试确定点 E 的位置,使得直线 DE 与平面 BDB 1 所成角的正弦值为 √714 .19.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数 x ¯(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值 Z 服从正态分布 N(μ,σ2) ,利用该正态分布,求 Z 落在 (14.55,38.45) 内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于 (10,30) 内的包数为 X ,求 X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为σ=√142.75≈11.95;②若Z~N(μ,σ2),则P(μ−σ<Z≤μ+σ)=0.6826,P(μ−2σ<Z≤μ+2σ)=0.9544.20.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.已知函数f(x)=e x−2(a−1)x−b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x−(a−1)x2−bx−1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,圆C1的参数方程为{x=−1+acosθ,y=−1+asinθ,(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2√2cos(θ−π4).(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:θ=π12,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.23.选修4-5:不等式选讲已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10−|x−3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(−2n)≥16.答案第8页,总19页…装…………○…………不※※要※※在※※装※※订※※线※※…装…………○…………参数答案1.C【解析】1.集合 A ={x|0≤x ≤4},B ={x|−4<x <3} ,故 A ∪B ={x|−4<x ≤4} ,集合 C 表示非负的偶数,故 (A ∪B)∩C ={0,2,4} ,故答案为:C.先解二次不等式和指数不等式求出集合,再进行交并运算. 2.A【解析】2. i(x +yi)=−y +xi,5i 2−i=5i(2+i)5=−1+2i ,根据两复数相等的充要条件得 x =2,y =1 ,即 x +yi =2+i ,其共轭复数为 x −yi =2−i .故答案为:A.对于复数方程,根据两复数相等的充要条件求出复数,再求共轭复数. 3.D【解析】3. ∵a 4+a 5+a 6+a 7=2(a 5+a 6)=18,∴a 5+a 6=9 , ∴S 10=10(a 2+a 10)2=5(a 5+a 6)=45 为常数,所以答案是:D.【考点精析】利用等差数列的通项公式(及其变式)和等差数列的前n 项和公式对题目进行判断即可得到答案,需要熟知通项公式:或;前n 项和公式:.4.A【解析】4.由七巧板的构造可知, ΔBIC ≅ΔGOH ,故黑色部分的面积与梯形 EFOH 的面积相等,则 S EFOH =34S ΔDOF =34×14S ABDF =316S ABDF ,∴ 所求的概率为 P =S EFOH S ABDF=316.所以答案是:A.【考点精析】根据题目的已知条件,利用几何概型的相关知识可以得到问题的答案,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. 5.D………装…………○……__________姓名:___________班级:__………装…………○……【解析】5.由 {x =a y =b ax ,解得点 A(a,b) ,又 F(c,0) ,则 AF 的中点坐标为 (a+c 2,b2) ,于是 (a+c)24a 2−b 24b2=1,(a +c)2=5a 2 , c 2+2ac −4a 2=0 ,则 e 2+2e −4=0 ,解得 e =−1+√5 或 e =−1−√5 (舍去)。
2017~2018学年度高三分科综合测试卷理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】,则,选A.2. 已知复数的实部为,则复数在复平面上对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】试题分析:,所以实部为,则,因此复数,则,在复平面内对应点的坐标为,位于第三象限。
考点:复数的运算。
3. 若,则()A. B. C. D.【答案】C【解析】,.选C.4. 已知实数满足约束条件,则的最大值为()A. 2B. 3C. 4D. 5【答案】B【解析】绘制目标函数表示的可行域,结合目标函数可得,目标函数在点处取得最大值 .本题选择B选项.5. 一直线与平行四边形中的两边分别交于点,且交其对角线于点,若,,,则()A. B. 1 C. D.【答案】A【解析】由几何关系可得:,则:,即:,则=.本题选择A选项.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.6. 在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为()附:若,则,.A. 906B. 1359C. 2718D. 3413【答案】B【解析】由正态分布的性质可得,图中阴影部分的面积,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为.本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.7. 二分法是求方程近似解的一种方法,其原理是“一分为二、无限逼近”.执行如图所示的程序框图,若输入,则输出的值为()A. 6B. 7C. 8D. 9【答案】B【解析】根据二分法,程序运行中参数值依次为:,,,,,,,,此时满足判断条件,输出,注意是先判断,后计算,因此输出的,故选B.8. 已知函数,其中表示不超过的最大整数,则关于函数的性质表述正确的是()A. 定义域为B. 偶函数C. 周期函数D. 在定义域内为减函数【答案】C【解析】由于表示不超过的最大整数,如,,则,所以定义域为错误;当时,,,,,是偶函数错误,由于,所以函数的的图象是一段一段间断的,所以不能说函数是定义域上的减函数,但函数是周期函数,其周期为1,例如任取,则,,则,则,选C.9. 已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为,则()A. 3B.C.D. 4【答案】B10. 已知函数的图像与坐标轴的所有交点中,距离原点最近的两个点的坐标分别为和,则该函数图像距离轴最近的一条对称轴方程是()A. B. C. D.【答案】B【解析】函数的图像过,则,,则或,又距离原点最近的两个点的坐标分别为和,则,,过,则,,,,取,得,则,其对称轴为,即,当时,该函数图像距离轴最近的一条对称轴方程是,选B.11. 某棱锥的三视图如图所示,则该棱锥的外接球的表面积为()A. B. C. D.【答案】A【解析】根据三视图恢复原几何体为三棱锥P-ABC如图,其中,,平面,计算可得,,放在外接球中,把直角三角形恢复为正方形,恰好在一个球小圆中,AC为球小圆的直径,分别过和做圆的垂面,得出矩形和矩形,两矩形对角线交点分别为,连接并取其中点为,则为球心,从图中可以看出点共面且都在的外接圆上,在中,,,利用正弦定理可以求出的外接圆半径,,,平面,则,则球的半径,外接球的表面积为,选A. 【点睛】如何求多面体的外接球的半径?基本方法有种,第一种:当三棱锥的三条侧棱两两互相垂直时,可还原为长方体,长方体的体对角线就是外接圆的直径;第二种:“套球”当棱锥或棱柱是较特殊的形体时,在球内画出棱锥或棱柱,利用底面的外接圆为球小圆,借助底面三角形或四边形求出小圆的半径,再利用勾股定理求出球的半径,第三种:过两个多面体的外心作两个面的垂线,交点即为外接球的球心,再通过关系求半径.本题使用“套球”的方法,恢复底面为正方形,放在一个球小圆里,这样画图方便一些,最主要是原三视图中的左试图为直角三角形,告诉我们平面平面,和我们做的平面是同一个平面,另外作平面和平面的作用是找球心,因为这两个矩形平面对角线的交点所连线段的中点就是球心,再根据正、余弦进行计算就可解决.12. 已知是方程的实根,则关于实数的判断正确的是()A. B. C. D.【答案】C【解析】令,则,函数在定义域内单调递增,方程即:,即,结合函数的单调性有: .本题选择C选项.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.二、填空题:本题共4小题,每小题5分,共20分.13. 已知边长为的正的三个顶点都在球的表面上,且与平面所成的角为,则球的表面积为__________.【答案】【解析】设正的外接圆圆心为,连接,则,角是与平面所成的角为,由正的边长为可知,所以在中,球的表面积为,故答案为.14. 若的展开式中含有常数项,则的最小值等于__________.【答案】2【解析】的展开式中,,令,展开式中含有常数项,当时,取最小值为;令,展开式中含有常数项,当时,取最小值为2;综上可知:取最小值为2;15. 在中,角的对边分别为,且,若的面积为,则的最小值为__________.【答案】3【解析】,,,,,,,则,又,则,;当且仅当时取等号,则的最小值为3.16. 已知抛物线的焦点为,准线为,过上一点作抛物线的两条切线,切点分别为,若,则__________.【答案】【解析】设,则,将代入可得:,即,由题意直线与抛物线相切,则其判别式,即,所以切线的方程为,即.同理可得: .所以,即.又两切线都经过点可得,则是方程的两根,故,所以,因又因为,同理可得,即共线,而,则,即,故在中,高,应填答案。
726π2抛物线地对称轴地入射光线经抛物线反射后必过抛物线地焦点.已知抛物线24y x =地焦点为F ,一条平行于x 轴地光线从点(3,1)M 射出,经过抛物线上地点A 反射后,再经抛物线上地另一点B 射出,则ABM ∆地周长为( )A .712612+B .926+C .910+D .832612+ 12.已知数列{}n a 与{}n b 地前n 项和分别为n S ,n T ,且0n a >,263n n n S a a =+,*n N ∈,12(21)(21)nnn a n a a b +=--,若*n N ∀∈,n k T >恒成立,则k 地最小值是( )A .17B .149C .49D .8441第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将解析填在答题纸上)13.已知在ABC ∆中,||||BC AB CB =- ,(1,2)AB =,若边AB 地中点D 地坐标为(3,1),点C 地坐标为(,2)t ,则t = .14.已知1()2nx x-(*n N ∈)地展开式中所有项地二项式系数之和、系数之和分别为p 、q ,则64p q +地最小值为 .15.已知x ,y 满足3,,60,x y t x y π+≤⎧⎪⎪≥⎨⎪≥⎪⎩其中2t π>,若sin()x y +地最大值与最小值分别为1,12,则实数t 地取值范围为 .16.在《九章算术》中,将四个面都为直角三角形地三棱锥称之为鳖臑.已知在鳖臑M ABC -中MA ⊥平面ABC ,2MA AB BC ===,则该鳖臑地外接球与内切球地表面积之和为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数21()cos 3sin()cos()2f x x x x ππ=+-+-,x R ∈.(1)求函数()f x 地最小正周期及其图象地对称轴方程;(2)在锐角ABC ∆中,内角A ,B ,C 地对边分别为a ,b ,c ,已知()1f A =-,3a =,sin sin b C a A =,求ABC ∆地面积. 18.如图,在四棱锥E ABCD -中,底面ABCD 为直角梯形,其中//CD AB ,BC AB ⊥,侧面ABE ⊥平面四边形MNPQ 不可能是菱形.21.已知函数()(1)xf x e a x b =-+-(a ,b R ∈),其中e 为自然对数地底数.(1)讨论函数()f x 地单调性及极值;(2)若不等式()0f x ≥在x R ∈内恒成立,求证:(1)324b a +<.请考生在22、23两题中任选一题作答,如果多做,则按所做地第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中xOy 中,已知曲线C 地参数方程为cos ,sin x t y αα=⎧⎨=⎩(0t >,α为参数),以坐标原点O 为极点,x 轴地正半轴为极轴,取相同地长度单位建立极坐标系,直线l 地极坐标方程为2sin()34πρθ+=.(1)当1t =时,求曲线C 上地点到直线l 地距离地最大值;(2)若曲线C 上地所有点都在直线l 地下方,求实数t 地取值范围.23.选修4-5:不等式选讲已知函数()|21||1|f x x x =-++.(1)解不等式()3f x ≤;(2)记函数()()|1|g x f x x =++地值域为M ,若t M ∈,证明:2313t t t+≥+.衡水金卷2018届全国高三大联考理数解析一、选择题1-5:CBCBA 6-10: ACDAD 11、12:BB二、填空题13.1 14.16 15.57,66ππ⎡⎤⎢⎥⎣⎦16.2482ππ-三、解答题17.解:(1)原式可化为21()cos 3sin cos 2f x x x x =--1cos 231sin 2222x x +=--sin(2)6x π=-sin(2)6x π=--,故其最小正周期22T ππ==,令262x k πππ-=+(k Z ∈),解得23k x ππ=+(k Z ∈),即函数()f x 图象地对称轴方程为23k x ππ=+(k Z ∈).(2)由(1)知()sin(2)6f x x π=--,因为02A π<<,所以52666A πππ-<-<,又()sin(2)6f A A π=--1=-,故262A ππ-=,解得3A π=.由正弦定理及sin sin b C a A =,得29bc a ==,故193sin 24ABC S bc A ∆==.18.解:(1)当12λ=时,//CE 平面BDF .证明如下:连接AC 交BD 于点G ,连接GF .∵//CD AB ,2AB CD =,∴12CG CD GA AB ==.∵12EF FA =,∴12EF CG FA GA ==. ∴//GF CE .又∵CE ⊄平面BDF ,GF ⊂平面BDF ,∴//CE 平面BDF .(2)取AB 地中点O ,连接EO ,则EO ⊥AB .∵平面ABE ⊥平面ABCD ,平面ABE 平面ABCD AB =,且EO AB ⊥,∴EO ⊥平面ABCD .∵//BO CD ,且1BO CD ==,∴四边形BODC 为平行四边形,∴//BC DO . 又∵BC AB ⊥,∴AB OD ⊥.由OA ,OD ,OE 两两垂直,建立如下图所示地空间直角坐标系O xyz -.则(0,0,0)O ,(0,1,0)A ,(0,1,0)B -,(1,0,0)D ,(1,1,0)C -,(0,0,3)E .当1λ=时,有EF FA = ,∴可得13(0,,)22F .∴(1,1,0)BD = ,(1,1,3)CE =- ,33(0,,)22BF = .设平面BDF 地一个法向量为(,,)n x y z = ,则有0,0,n BD n BF ⎧⋅=⎪⎨⋅=⎪⎩ 即0,330,22x y y z +=⎧⎪⎨+=⎪⎩令3z =,得1y =-,1x =,即(1,1,3)n =-.设CE 与平面BDF 所成地角为θ,则|113|1sin |cos ,|555CE n θ--+=<>==⨯ ,∴当1λ=时,直线CE 与平面BDF 所成地角地正弦值为51.19.解:(1)由列联表可知2K 地观测值22()200(50405060) 2.020 2.072()()()()11090100100n ad bc k a b c d a c b d -⨯-⨯==≈<++++⨯⨯⨯,所以不能在犯错误地概率不超过0.15地前提下认为A 市使用网络外卖情况与性别有关.(2)①依题意,可知所抽取地5名女网民中,经常使用网络外卖地有6053100⨯=(人),偶尔或不用网络外卖地有4052100⨯=(人). 则选出地3人中至少有2人经常使用网络外卖地概率为2133233355710C C C P C C =+=.②由22⨯列联表,可知抽到经常使用网络外卖地网民地概率为1101120020=,将频率视为概率,即从A 市市民中任意抽取1人,恰好抽到经常使用网络外卖地市民地概率为1120.由题意得11~(10,)20X B ,∴1111()10202E X =⨯=;11999()10202040D X =⨯⨯=.20.解:(1)由已知,得12c a =,3b =,又222c a b =-,故解得24a =,23b =,所以椭圆C 地标准方程为22143x y +=.(2)由(1),知1(1,0)F -,如图,易知直线MN 不能平行于x 轴,所以令直线MN 地方程为1x my =-,设11(,)M x y ,22(,)N x y ,联立方程2234120,1,x y x my ⎧+-=⎨=-⎩得22(34)690m y my +--=,所以122634m y y m +=+,122934y y m -=+.此时221212||(1)()4MN m y y y y ⎡⎤=++-⎣⎦. 同理,令直线PQ 地方程为1x my =+,设33(,)P x y ,44(,)Q x y ,此时342634m y y m -+=+,342934y y m -=+,此时223434||(1)()4PQ m y y y y ⎡⎤=++-⎣⎦. 故||||MN PQ =,所以四边形MNPQ 是平行四边形.若MNPQ 是菱形,则OM ON ⊥,即0OM ON ⋅=,于是有12120x x y y +=.又1212(1)(1)x x my my =--21212()1m y y m y y =-++,所以有21212(1)()10m y y m y y +-++=,整理得22125034m m --=+,即21250m +=,上述关于m 地方程显然没有实数解,故四边形MNPQ 不可能是菱形.令22()ln (0)g x x x x x =->,则'()(12ln )g x x x =-. 令'()0g x >,得0x e <<;令'()0g x <,得x e >,故()g x 在区间(0,)e 内单调递增,在区间(,)e +∞内单调递减,故max ()()ln 2e g x g e e e e ==-=,即当1a e +=,即1a e =-时,max ()2e g x =.所以22(1)(1)(1)ln(1)2e a b a a a +≤+-++≤,所以(1)24b a e+≤.而3e <,所以(1)324b a +<.22.解:(1)易知曲线C :221x y +=,直线l 地直角坐标方程为30x y +-=. 所以圆心到直线l 地距离33222d ==,∴max 3212d =+.(2)∵曲线C 上地所有点均在直线l 地下方,∴a R ∀∈,有cos sin 30t αα+-<恒成立,∴213t +<.又0t >,∴解得022t <<,∴实数t 地取值范围为(0,22).23.解:(1)依题意,得3,1,1()2,1,213,,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩于是得()3f x ≤1,33,x x ≤-⎧⇔⎨-≤⎩或11,223,x x ⎧-<<⎪⎨⎪-≤⎩或1,233,x x ⎧≥⎪⎨⎪≤⎩解得11x -≤≤.即不等式()3f x ≤地解集为{}|11x x -≤≤.(2)()()|1||21||22||2122|3g x f x x x x x x =++=-++≥---=,当且仅当(21)(22)0x x -+≤时,取等号,∴[3,)M =+∞.原不等式等价于2331t t t -+≥,∵[3,)t ∈+∞,∴230t t -≥,∴2311t t -+≥.又∵31t ≤,∴2331t t t -+≥,∴2313t t t +≥+.。
6•设x,y满足约束条件3x y 620,0, 若目标函数z ax by (a,b 0)的最大值是12,则x,y 0,a2 b2的最小值是(6A.—13 36D.36137.已知三棱锥的三视图如图所示,则它的外接球表面积为()A . 16B . 4 &已知函数f x C. 8 D. 22sin( x ) ( 0,的一部分(如图所示),则与的值分别为(11 5_ 10’ 67 _10, 6)图像)4 _5' 3 2B . 1,一双曲线C的左右焦点分别为F1,F2 ,且F2恰为抛物线的焦点,设双曲线C与该抛物线的一个交点为为底边的等腰三角形,则双曲线C的离心率为( )A .10.已知函数f (x)是定义在R上的奇函数,若对于任意给定的不等实数x1,x2,不等式X1f(xj X2f(X2) X1f(X2)X2f(xJ 恒成立,则不等式f(1 x) 0 的解集为(9.y2 4x1 2C. 1 3D. 2A,若ARF2是以河北省衡水中学2018高三第一次模拟理科数学试题12小题,每小题5分,共60分)3 ,则图中阴影部分表示的集合是4. 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )①平均数x 3 :②标准差|S 2 :③平均数x 3且标准差S 2 ;④平均数x 3且极差小于或等于2;⑤众数等于1且极差小于或等于A .①②B .③④C.③④⑤D .④⑤5. 在长方体ABCD —A1B1C1D1中,对角线B1D与平面A1BC1相交于点E,则点E A1BC 1 的()A .垂心B.内心2 x 1 B . X2x21 x2 D . X X 2”是2•设a R,i是虚数单位,则为纯虚数”的(A.充分不必要条件C.充要条件3. 若{a n}是等差数列,首项和S n 0成立的最大正整数A. 2011B. 2012B.必要不充分条件D.既不充分又不必要条件0,31 0, 32011 32012n是( )C. 4022a2011a20120,则使前n项D. 4023一、选择题(本大题共1.设全集为实数集R, xx2 4 , N1。
2017-2018学年度高三上学期一调考试数学(理)第I 卷(选择题 共60分)一、选择题(每小题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上){}1A B =,则D.{A .12-B .0C .12D .23. 执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.2A.3B.C.D.66. 一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱长为( )A.3B.C.A.()1,2,2⎛⎫-∞+∞ ⎪⎝⎭B.[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦C.1,22⎡⎤⎢⎥⎣⎦D.1,22⎛⎫ ⎪⎝⎭11. 已知函数()321f x x ax=++的对称中心的横坐标为x0(x0>0)且f(x)有三个零点,则实数a的取值范围是( )A.(),0-∞B.,⎛-∞⎝⎭C.()0,+∞ D.(),1-∞-第II卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 如图,正方形ABCD中,M,N分别是BC,CD的中点,若AC AM BNλμ=+,则λ+μ=___ .14. 已知定义在实数集R的函数f(x)满足f(1)=4且f(x)导函数f′(x)<3,则不等式f(ln x)>3ln x+1的解集为___.15. 已知数列{a n}的前n项和为S n , S1=6, S2=4, S n>0,且S2n , S2n−1 . S2n+2成等比数列,S2n−1.S2n+2,S2n+1成等差数列,则a2016等于___.5[f(x)]2−(5a+6)f(x)+6a=0(a∈R)有且仅有6个不同实数根,则实数a的取值范围是___.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或验算步骤)17.(本小题满分12分)在ABC∆中,角A,B,C,的对边分别是a,b,c()cos2cosC b A=.(1)求角A的大小;(2)求25cos2sin22CBπ⎛⎫--⎪⎝⎭得取值范围.18. (本小题满分12分)高三某班12月月考语文成绩服从正态分布N(100,17.52),数学成绩的频率分布直方图如图,如果成绩大于135的则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有x人,求x的分布列和数学期望.(附公式及表)若x~N(μ,σ2),则P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.11120. (本小题满分12分)已知曲线f(x)=ax+bx2ln x在点(1,f(1))处的切线是y=2x−1. (Ⅰ)求实数a、b的值。
河北省衡水中学2018届高三数学上学期一调考试试题理(扫描版,无答案) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省衡水中学2018届高三数学上学期一调考试试题理(扫描版,无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省衡水中学2018届高三数学上学期一调考试试题理(扫描版,无答案)的全部内容。
以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
”我希望各位朋友能借助这个阶梯不断进步。
物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。
很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。
用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。
The above is the whole content of this article, Gorky said: "the bookis the ladder of humanprogress."Ihope you can makeprogress with the help of this ladder. Material life is extremelyrich, science and technology are developing rapi dly,all of which gradually change the way ofpeople's stu dy and leisure. Many people are no longer eager to pursue a document, but aslong as you still have such a small persistence, you will continue togrow and progress.When the complex world leads us to chase out, reading an article or doing a problem makes us calm down and return toourselves. With learning, we can activate our imagination and thinking,establish our belief,keep our pure spiritual world and resist theattack of theexternal world.。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】A考点:集合的运算.2.已知错误!未找到引用源。
为虚数单位,复数错误!未找到引用源。
满足错误!未找到引用源。
,则错误!未找到引用源。
为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】C【解析】试题分析:由题意得,错误!未找到引用源。
,故选C.考点:复数的运算.3.如图,网格纸上小正方形的边长为错误!未找到引用源。
,粗线或虚线画出某几何体的三视图,该几何体的体积为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】B【解析】试题分析:由题意得,根据给定的三视图可知,该几何体为如图所示的几何体,是一个三棱锥与三棱柱的组合体,其中三棱锥的体积为错误!未找到引用源。
,三棱柱的体积为错误!未找到引用源。
,所以该几何体的体积为错误!未找到引用源。
,故选B.考点:几何体的三视图及几何体的体积.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,根据给定的三视图,得出该几何体是一个三棱锥与三棱柱的组合体,即可求解该组合体的体积.4.已知命题错误!未找到引用源。
:方程错误!未找到引用源。
有两个实数根;命题错误!未找到引用源。
:函数错误!未找到引用源。
的最小值为错误!未找到引用源。
.给出下列命题:①错误!未找到引用源。
;②错误!未找到引用源。
;③错误!未找到引用源。