函数的单调性练习题含答案)
- 格式:docx
- 大小:80.38 KB
- 文档页数:7
提升训练3.2 函数的单调性一、选择题1.函数y=(2k﹣1)x+b在(﹣∞,+∞)上是减函数,则()A. B. C. D.【答案】A【解析】∵函数y=(2k﹣1)x+b在(﹣∞,+∞)上是减函数,∴2k﹣1<0,解得k.故选:A.2.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有( )A.k1<k3<k2 B.k3<k1<k2 C.k1<k2<k3 D.k3<k2<k1【答案】A【解析】由于直线向左倾斜,故,直线与直线均向右倾斜,且更接近y轴,所以:.故选A.3.已知函数在上单调递增,则实数的取值范围是()A.B.C.D.【答案】B【解析】函数y=4x2﹣kx﹣8的对称轴为:x∵函数在上单调递增∴ 5∴k≤40故选B.4.直线与在同一直角坐标系中的图象可能是()A. B.C. D.【答案】C【解析】直线y=x+a是一次函数,斜率k=1,b=a,可判断从左到右图象上升,B,D不满足题意; 当b=a>0时,y=x+a的图象在y轴上的交点在正半轴,没有选项,所以a<0,则直线y=ax表示直线过原点,且斜率为小于0,所以选项A错误,C正确.故选:C5.下列函数中,在(-∞,0)上为减函数的是()A. B. C. D.【答案】D【解析】A中,函数y=﹣x2+2在(﹣∞,0)上为增函数;B中,函数y=4x﹣1在(﹣∞,0)上为增函数;C中,函数y=x2+4x在(﹣∞,﹣2)上为减函数,在(﹣2,0)上为增函数;D中,函数在(﹣∞,0)上为减函数故选:D.6.已知函数()y f x =在定义域R 上是减函数,则不等式()()2142f x f x +>-的解集为( ) A .()1,3B .()(),31,-∞-⋃-+∞C .()3,1--D .()(),13,-∞⋃+∞【答案】A【解析】 依题意,2142x x +<-,所以()()130x x --<,解得13x <<.故选A7.若函数y =ax +1(a >0)在区间[1,3]上的最大值为4,则a =( ).A .2B .3C .1D .-1【答案】C【解析】因为a >0,所以一次函数y =ax +1在区间[1,3]上单调递增,所以当x=3时,函数y =ax +1取得最大值,故3a +1=4,解得a =1.故选C.8.已知函数f (x )=x 2-kx -6在[2,8]上是单调函数,则k 的取值范围是( )A .B .C .D . 【答案】D【解析】根据题意,函数f (x )=x 2﹣kx ﹣6的对称轴为x, 若f (x )在[2,8]上是单调函数,必有2或8,解可得:k ≤4或k ≥16,即k 的取值范围是(﹣∞,4]∪[16,+∞);故选:D .9.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( )A .()()()211f f f <-<B .()()()121f f f <<-C .()()()112f f f <-<D .()()()211f f f <<-【答案】B【解析】∵当x 1,x 2∈(-∞,1](x 1≠x 2)时有(x 1-x 2)(f (x 1)-f (x 2))<0,∴f(x )在(-∞,1]上单调递减,∵f(x )=f (2-x ),∴函数f (x )的图象关于x=1对称,则f (x )在∈(1,+∞)上单调递增,∴f(-1)=f (3)>f (2)>f (1)即f (-1)>f (2)>f (1)故选:B .10.已知函数在上是减函数,则a 的取值范围为 )A .B .C .D .【答案】B【解析】 函数在上是减函数,, 求得,故选:B .11.已知函数f (x )是R 上的增函数,A (4,2)是其图象上的一点,那么f (x )<2的解集是()A .B .C .D .【答案】B【解析】 因为是函数的图象上的一点,则, 所以, 又因为函数是上的增函数,所以, 即的解集是,故选B .12.函数f (x )=满足:对任意的实数x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]>0成立,则实数a 的取值范围是( )A .B .C .D .【答案】C【解析】因为函数f (x )=满足:对任意的实数x 1≠x 2,都有(x 1-x 2)[f (x 1)-f (x 2)]>0成立,所以函数f (x )在(-∞,+∞)上是增函数,所以f (x )在(-∞,1),(1,+∞)上均单调递增,且-12+2a×1≤(2a-1)×1-3a+6, 故有,解得1≤a≤2.所以实数a 的取值范围是[1,2].故选:C .二、填空题 13.已知函数2f x x b =+()在区间12-(,)上的函数值恒为正,则b 的取值范围为______. 【答案】[2+∞,)【解析】()2f x x b =+Q 为增函数,∴若()2f x x b =+在区间()12-,上的函数值恒为正, 则只需要()120f b -=-+≥即可,即2b ≥,即实数b 的取值范围是[2+∞,),故答案为:[2+∞,)14.已知函数,若在上是减函数,则实数的取值范围为____.【答案】[,0)【解析】若在R上是减函数,因为y=在上单调递减,故只需满足,解得:k∈[,0)故答案为:[,0)15.若,且,则实数的取值范围是______.【答案】【解析】,可得时,递减;时,递减,且,可得在R上递减,,可得,解得,故答案为:.16.能说明“若对任意的都成立,则在上是增函数”为假命题的一个函数=_________________.【答案】答案不唯一,比如或;【解析】根据题意只要举出的例子不符合函数单调增即可,可以在区间端点处违反单调性,即.答案为:答案不唯一,比如或;三、解答题17.已知函数.Ⅰ画出的图象;Ⅱ根据图象写出的值域、单调区间.【答案】(Ⅰ)见解析(Ⅱ)的单调递减区间为,无增区间.【解析】Ⅰ,的图象;Ⅱ由图象知的值域为,的单调递减区间为,无增区间.18.已知函数f(x)=,(Ⅰ)画出f(x)的图象;(Ⅱ)写出f(x)的单调递增区间.【答案】(Ⅰ)详见解析(Ⅱ)[-1,0],[2,5]【解析】(Ⅰ)函数f(x)=的图象如下:(Ⅱ)f(x)的单调递增区间为[-1,0],[2,5].19.已知函数,且.(1)求f(x)的解析式;(2)判断f(x)在区间(0,1)上的单调性,并用定义法证明.【答案】(1)(2)f(x)在(0,1)上单调递减,证明见解析. 【解析】(1)∵;∴;解得a=1,b=1;∴;(2)f(x)在区间(0,1)上单调递减,证明如下:设x1,x2∈(0,1),且x1<x2,则:=;∵x1,x2∈(0,1),且x1<x2;∴x1-x2<0,,;∴;∴f(x1)>f(x2);∴f(x)在(0,1)上单调递减.20.已知函数,且,.(I )求的函数解析式;(II )求证:在上为增函数; (III )求函数的值域. 【答案】(I )(II )见解析(III ) 【解析】(I )函数, 由得a+4b=6,① 由得2a+5b=9,②联立①②解得a=2,b=1, 则函数解析式为(II )任取x 1,x 2∈[3,5]且x 1<x 2, ∴∵3≤x 1<x 2≤5, ∴<0, ∵>0, ∴<0, ∴,即在上为增函数. (III )由(II )知在上为增函数 则. 所以函数的值域为21.已知函数()21x f x x =+是定义在()1,1-上的函数. (1)用定义法证明函数()f x 在()1,1-上是增函数;(2)解不等式()()10f x f x ++<.【答案】(1)详见解析;(2)10,2⎛⎫ ⎪⎝⎭.【解析】(1)证明:对于任意的()12,1,1x x ∈-,且12x x <,则: ()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++, ∵1211x x -<<<,∴120x x -<,121x x <,∴1210x x ->. ∴()()120f x f x -<,即()()12f x f x <.∴函数在()1,1-上是增函数.(2)由函数的分析式及(1)知,()f x 是奇函数且在()1,1-上递增, ()()10f x f x -+<,即:()()()1f x f x f x -<-=-,结合函数的定义域和单调性可得关于实数x 的不等式:111111x x x x -<-<⎧⎪-<<⎨⎪-<-⎩,求解关于实数x 的不等式组可得:102x <<, 则不等式的解集为10,2⎛⎫ ⎪⎝⎭. 22.已知定义在(1,+∞)上的函数f (x )=.(1)当m ≠0时,判断函数f (x )的单调性,并证明你的结论;(2)当m =时,求解关于x 的不等式f (x 2-1)>f (3x -3).【答案】(1)见解析;(2)(,2) 【解析】(1)根据题意,设1<x 1<x 2, 则f (x 1)-f (x 2)=-=m ×,又由1<x 1<x 2,则(x 2-x 1)>0,(x 2-1)>0,(x 1-1)>0, 当m >0时,f (x 1)>f (x 2),f (x )在(1,+∞)上递减;当m<0时,f(x1)<f(x2),f(x)在(1,+∞)上递增;(2)当m=时,f(x)为减函数,则f(x2-1)>f(3x-3)⇒,解可得:<x<2,即不等式的解集为(,2)。
高中数学:函数的单调性练习及答案函数的单调性的概念1.如果函数f(x)在[a,b]上是增函数,那么对于任意的x1,x2∈[a,b](x1≠x2),下列结论中不正确的是()A.>0B.(x1-x2)[f(x1)-f(x2)]>0C.若x1<x2,则f(a)<f(x1)<f(x2)<f(b)D.>02.在下列函数f(x)中,满足对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)的是()A.f(x)=x2B.f(x)=C.f(x)=|x|D.f(x)=2x+13.下列说法中正确的有()①若x1,x2∈I,当x1<x2时,f(x1)<f(x2),则y=f(x)在I上是增函数;②函数y=x2在R上是增函数;③函数y=-在定义域上是增函数;④函数y=的单调减区间是(-∞,0)∪(0,+∞).A.0个B.1个C.2个D.3个4.下列有关函数单调性的说法,不正确的是()A.若f(x)为增函数,g(x)为增函数,则f(x)+g(x)为增函数B.若f(x)为减函数,g(x)为减函数,则f(x)+g(x)为减函数C.若f(x)为增函数,g(x)为减函数,则f(x)+g(x)为增函数D.若f(x)为减函数,g(x)为增函数,则f(x)-g(x)为减函数5.下图中是定义在区间[-5,5]上的函数y=f(x),则下列关于函数f(x)的说法错误的是()A.函数在区间[-5,-3]上单调递增B.函数在区间[1,4]上单调递增C.函数在区间[-3,1]∪[4,5]上单调递减D.函数在区间[-5,5]上没有单调性函数的单调性的判定与证明6.在下面的四个选项所给的区间中,函数f(x)=x2-1不是减函数的是()A.(-∞,-2)B.(-2,-1)C.(-1,1)D.(-∞,0)7.已知函数f(x)在R上是增函数,则下列说法正确的是()A.y=-f(x)在R上是减函数B.y=在R上是减函数C.y=[f(x)]2在R上是增函数D.y=af(x)(a为实数)在R上是增函数8.下列函数中在区间(-∞,0)上单调递增,且在区间(0,+∞)上单调递减的函数为()A.y=B.y=C.y=x2D.y=x39.若函数y=ax与y=-在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上()A.单调递增B.单调递减C.先增后减D.先减后增10.对于函数f(x)=x2+|x-a|+1(a∈R),下列结论中正确的是()A.当a≥0时,f(x)在(-∞,0)上单调递减B.当a≤0时,f(x)在(-∞,0)上单调递减C.当a≥时,f(x)在(0,+∞)上单调递增D.当a≤时,f(x)在(0,+∞)上单调递增11.函数y=f(x)对于任意x,y∈R,有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f (3)=4,则()A.f(x)在R上是减函数,且f(1)=3B.f(x)在R上是增函数,且f(1)=3C.f(x)在R上是减函数,且f(1)=2D.f(x)在R上是增函数,且f(1)=212.已知f(x)是定义在R上的增函数,给出下列结论:①y=[f(x)]2是增函数;②y=是减函数;③y =-f(x)是减函数;④y=|f(x)|是增函数,其中错误的结论是________.13.证明f(x)=在其定义域上是增函数.(1)求m的值;14.已知函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.求证:f(x)在R上是减函数.15.已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)-1,且当x>0时,f(x)>1.求证:函数f(x)在R上是增函数.16.已知函数f(x)的定义域为R,且对m,n∈R,恒有f(m+n)=f(m)+f(n)-1,且f(-)=0,当x>-时,f(x)>0.(1)求证:f(x)是R上的增函数;(2)试举出具有这种性质的一个函数,并加以验证.求函数的单调区间17.函数y=的单调递增区间是()A.(-∞,-3]B.C.(-∞,1)D.18.函数y=x2+x+1(x∈R)的递减区间是()A.[-,+∞)B.[-1,+∞)C.(-∞,-]D.(-∞,+∞)19.如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?20.求下列函数的单调区间.(1)f(x)=(x∈[-2,4]);(2)y=.函数单调性的应用21.若函数f(x)=是定义在R上的减函数,则a的取值范围为()A.[,)B.(0,)C.[,+∞)D.(-∞,]∪[,+∞)22.若函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数,则a的取值范围为()A.0<a≤B.0≤a≤C.0<a<D.a>23.若函数f(x)=4x2-kx-8在[5,8]上是单调函数,则k的取值范围是()A.(-∞,40]B.[40,64]C.(-∞,40]∪[64,+∞)D.[64,+∞)24.函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]25.设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若对所有的x∈[-1,1]及任意的a∈[-1,1]满足f(x)≤t2-2at+1,则t的取值范围是()A.-2≤t≤2B.-≤t≤C.t≥2或t≤-2或t=0D.t≥或t≤-或t=026.已知函数f(x)在(-∞,+∞)上是增函数,若a,b∈R且a+b>0,则有()A.f(a)+f(b)>-f(a)-f(b)B.f(a)+f(b)<-f(a)-f(b)C.f(a)+f(b)>f(-a)+f(-b)D.f(a)+f(b)<f(-a)+f(-b)27.如果f(x)=x2+bx+c对任意实数t都有f(3+t)=f(3-t),那么()A.f(3)<f(1)<f(6)B.f(1)<f(3)<f(6)C.f(3)<f(6)<f(1)D.f(6)<f(3)<f(1)28.设函数f(x)的定义域是(0,+∞),且对任意正实数x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1时,f(x)>0.(1)求f()的值;(2)判断y=f(x)在(0,+∞)上的单调性并给出证明;(3)解不等式f(2x)>f(8x-6)-1.答案1.如果函数f(x)在[a,b]上是增函数,那么对于任意的x1,x2∈[a,b](x1≠x2),下列结论中不正确的是()A.>0B.(x1-x2)[f(x1)-f(x2)]>0C.若x1<x2,则f(a)<f(x1)<f(x2)<f(b)D.>0【答案】C【解析】因为f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),x1-x2与f(x1)-f(x2)的符号相同,故A,B,D都正确,而C中应为若x1<x2,则f(a)≤f(x1)<f(x2)≤f(b).2.在下列函数f(x)中,满足对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)的是()A.f(x)=x2B.f(x)=C.f(x)=|x|D.f(x)=2x+1【答案】B3.下列说法中正确的有()①若x1,x2∈I,当x1<x2时,f(x1)<f(x2),则y=f(x)在I上是增函数;②函数y=x2在R上是增函数;③函数y=-在定义域上是增函数;④函数y=的单调减区间是(-∞,0)∪(0,+∞).A.0个B.1个C.2个D.3个【答案】A【解析】函数的单调性是指定义在区间I上任意两个值x1,x2,强调的是任意,①不对;②y=x2,当x≥0时是增函数,当x<0时是减函数,从而y=x2在其整个定义域上不具有单调性;③y=-在整个定义域内不是单调递增函数,如-3<5,而f(-3)>f(5);④y=的单调递减区间不是(-∞,0)∪(0,+∞),而是(-∞,0)和(0,+∞),注意写法.4.下列有关函数单调性的说法,不正确的是()A.若f(x)为增函数,g(x)为增函数,则f(x)+g(x)为增函数B.若f(x)为减函数,g(x)为减函数,则f(x)+g(x)为减函数C.若f(x)为增函数,g(x)为减函数,则f(x)+g(x)为增函数D.若f(x)为减函数,g(x)为增函数,则f(x)-g(x)为减函数【答案】C【解析】∵若f(x)为增函数,g(x)为减函数,则f(x)+g(x)的增减性不确定.例如:f(x)=x+2为R上的增函数,当g(x)=-x时,则f(x)+g(x)=x+2为增函数;当g(x)=-3x,则f(x)+g(x)=-2x+2在R上为减函数,∴不能确定.5.下图中是定义在区间[-5,5]上的函数y=f(x),则下列关于函数f(x)的说法错误的是()A.函数在区间[-5,-3]上单调递增B.函数在区间[1,4]上单调递增C.函数在区间[-3,1]∪[4,5]上单调递减D.函数在区间[-5,5]上没有单调性【答案】C【解析】若一个函数出现两个或两个以上的单调区间时,不能用“∪”连接,故选C.函数的单调性的判定与证明6.在下面的四个选项所给的区间中,函数f(x)=x2-1不是减函数的是()A.(-∞,-2)B.(-2,-1)C.(-1,1)D.(-∞,0)【答案】C【解析】函数f(x)=x2-1为二次函数,单调减区间为(-∞,0],而(-1,1)不是(-∞,0]的子集,故选C.7.已知函数f(x)在R上是增函数,则下列说法正确的是()A.y=-f(x)在R上是减函数B.y=在R上是减函数C.y=[f(x)]2在R上是增函数D.y=af(x)(a为实数)在R上是增函数【答案】A【解析】设x1<x2,因为函数f(x)在R上是增函数,故必有f(x1)<f(x2).所以-f(x1)>-f(x2),A选项一定成立.其余三项不一定成立,如当f(x)=x时,B、C不成立,当a<0时,D不成立.8.下列函数中在区间(-∞,0)上单调递增,且在区间(0,+∞)上单调递减的函数为()A.y=B.y=C.y=x2D.y=x3【答案】A【解析】对于函数y=,令y=f(x)=,任取x1,x2∈(0,+∞),且x1<x2,则f(x1)-f(x2)=-=>0即f(x1)>f(x2),所以函数y=在区间(0,+∞)上单调递减.同理可得函数y=在区间(-∞,0)上单调递增;易知函数y=在区间(-∞,0)和(0,+∞)上都是单调递减;易知函数y=x2在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增;对于函数y=x3,令y=f(x)=x3,任取x1,x2∈R,且x1<x2,则f(x1)-f(x2)=-=(x1-x2)(+x1x2+)<0,即f(x1)<f(x2),故函数y=x3在(-∞,+∞)上单调递增.9.若函数y=ax与y=-在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上()A.单调递增B.单调递减C.先增后减D.先减后增【答案】B【解析】由于函数y=ax与y=-在(0,+∞)上均为减函数,故a<0,b<0,故二次函数f(x)=ax2+bx的图象开口向下,且对称轴为x=-<0,故函数f(x)=ax2+bx在(0,+∞)上单调递减.10.对于函数f(x)=x2+|x-a|+1(a∈R),下列结论中正确的是()A.当a≥0时,f(x)在(-∞,0)上单调递减B.当a≤0时,f(x)在(-∞,0)上单调递减C.当a≥时,f(x)在(0,+∞)上单调递增D.当a≤时,f(x)在(0,+∞)上单调递增【答案】A【解析】因为f(x)=所以当a≥0时,则0≤a,又0<,所以f(x)在区间(-∞,0)上单调递减.11.函数y=f(x)对于任意x,y∈R,有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f (3)=4,则()A.f(x)在R上是减函数,且f(1)=3B.f(x)在R上是增函数,且f(1)=3C.f(x)在R上是减函数,且f(1)=2D.f(x)在R上是增函数,且f(1)=2【答案】D【解析】设任意x1,x2∈R,x1<x2,f(x2)-f(x1)=f((x2-x1)+x1)-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1.∵x2-x1>0,又已知当x>0时,f(x)>1,∴f(x2-x1)>1.∴f(x2)-f(x1)>0,即f(x1)<f(x2).∴f(x)在R上是增函数.∵f(3)=f(1+2)=f(1)+f(2)-1=f(1)+[f(1)+f(1)-1]-1=3f(1)-2=4,∴f(1)=2.12.已知f(x)是定义在R上的增函数,给出下列结论:①y=[f(x)]2是增函数;②y=是减函数;③y =-f(x)是减函数;④y=|f(x)|是增函数,其中错误的结论是________.【答案】①②④13.证明f(x)=在其定义域上是增函数.【答案】证明f(x)=的定义域为[0,+∞).设x1,x2是定义域[0,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=-==.∵0≤x1<x2,∴x1-x2<0,+>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)=在它的定义域[0,+∞)上是增函数.14.已知函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.求证:f(x)在R上是减函数.【答案】∵对于任意实数m,n,恒有f(m+n)=f(m)·f(n),令m=1,n=0,可得f(1)=f(1)·f (0),∵当x>0时,0<f(x)<1,∴f(1)≠0,∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)·f(x)=1,∴f(x)f(-x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=>1.∴对任意实数x,f(x)恒大于0.设任意x1<x2,则x2-x1>0,∴0<f(x2-x1)<1,∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)f(x1)-f(x1)=f(x1)[f(x2-x1)-1]<0,∴f(x)在R上是减函数.15.已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)-1,且当x>0时,f(x)>1.求证:函数f(x)在R上是增函数.【答案】方法一设x1,x2是实数集上的任意两个实数,且x1>x2.令x+y=x1,y=x2,则x=x1-x2>0.f(x1)-f(x2)=f(x+y)-f(y)=f(x)+f(y)-1-f(y)=f(x)-1.∵x>0,∴f(x)>1,f (x)-1>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2).∴函数f(x)在R上是增函数.方法二设x1>x2,则x1-x2>0,从而f(x1-x2)>1,即f(x1-x2)-1>0.f(x1)=f[x2+(x1-x2)]=f(x2)+f(x1-x2)-1>f(x2),故f(x)在R上是增函数.16.已知函数f(x)的定义域为R,且对m,n∈R,恒有f(m+n)=f(m)+f(n)-1,且f(-)=0,当x>-时,f(x)>0.(1)求证:f(x)是R上的增函数;(2)试举出具有这种性质的一个函数,并加以验证.【答案】(1)任取x1,x2∈R,且设x1<x2,则x2-x1->-.由题意,得f(x2-x1-)>0.∵f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1=f(x2-x1)+f(-)-1=f[(x2-x1)-]=f(x2-x1-)>0,∴f(x2)>f(x1),∴f(x)是R上的增函数.(2)举例为f(x)=2x+1,验证过程如下:f(x)=2x+1,其定义域显然为R,对x1,x2∈R,f(x1+x2)=2(x1+x2)+1,f(x1)+f(x2)-1=2x1+1+2x2+1-1=2(x1+x2)+1,∴f(x1+x2)=f(x1)+f(x2)-1,当x=-时,f=2×+1=-1+1=0.当x>-时,f(x)=2x+1>2×+1=0,即f(x)>0成立.求函数的单调区间17.函数y=的单调递增区间是()A.(-∞,-3]B.C.(-∞,1)D.【答案】B【解析】函数由t=2x-3与y=复合而成,故要利用复合函数单调性的有关规律来求.首先由2x-3≥0,得x≥.又因为t=2x-3在(-∞,+∞)上单调递增,y=在定义域上是增函数,所以y=的单调递增区间是.18.函数y=x2+x+1(x∈R)的递减区间是()A.[-,+∞)B.[-1,+∞)C.(-∞,-]D.(-∞,+∞)【答案】C【解析】y=x2+x+1=(x+)2+,其对称轴为x=-,在对称轴左侧函数单调递减,∴当x≤-时,函数y=x2+x+1单调递减.19.如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【答案】y=f(x)的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y=f(x)在区间[-5,-2],[1,3]上是减函数,在区间[-2,1],[3,5]上是增函数.20.求下列函数的单调区间.(1)f(x)=(x∈[-2,4]);(2)y=.【答案】(1)已知函数的定义域为4-x≥0,即(-∞,4],而[-2,4]为其定义域的子区间,又y=与y=4-x在[-2,4]上的单调性相同,且均为减函数,故[-2,4]为函数的单调递减区间.(2)函数y=的定义域为(-∞,-1)∪(-1,+∞),∵函数y=在(-∞,-1)上是减函数,在(-1,+∞)上是减函数,∴函数y=的单调递减区间是(-∞,-1)(-1,+∞).函数单调性的应用21.若函数f(x)=是定义在R上的减函数,则a的取值范围为()A.[,)B.(0,)C.[,+∞)D.(-∞,]∪[,+∞)【答案】A【解析】要使f(x)在R上是减函数,需满足:解得≤a<.22.若函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数,则a的取值范围为()A.0<a≤B.0≤a≤C.0<a<D.a>【答案】B【解析】当a≠0时,函数f(x)的对称轴为x=-,∵f(x)在(-∞,4]上为减函数,∴图象开口朝上,a>0且-≥4,得0<a≤.当a=0时,f(x)=-2x+2,显然在(-∞,4]上为减函数.综上知,0≤a≤.23.若函数f(x)=4x2-kx-8在[5,8]上是单调函数,则k的取值范围是()A.(-∞,40]B.[40,64]C.(-∞,40]∪[64,+∞)D.[64,+∞)【答案】C【解析】只需f(x)=4x2-kx-8的对称轴x=相对应的值在区间[5,8]外面,即≤5或≥8,∴k≤40或k≥64.24.函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]【答案】D【解析】∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)上单调递减,∴-1≤x-2≤1,∴1≤x≤3,故选D.25.设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若对所有的x∈[-1,1]及任意的a∈[-1,1]满足f(x)≤t2-2at+1,则t的取值范围是()A.-2≤t≤2B.-≤t≤C.t≥2或t≤-2或t=0D.t≥或t≤-或t=0【答案】C【解析】由题意,得f(-1)=-f(1)=-1,f(1)=1.又∵f(x)在[-1,1]上是增函数,∴当a∈[-1,1]时,有f(x)≤f(1)=1,∴t2-2at+1≥1在a∈[-1,1]时恒成立,得t≥2或t≤-2或t=0.26.已知函数f(x)在(-∞,+∞)上是增函数,若a,b∈R且a+b>0,则有()A.f(a)+f(b)>-f(a)-f(b)B.f(a)+f(b)<-f(a)-f(b)C.f(a)+f(b)>f(-a)+f(-b)D.f(a)+f(b)<f(-a)+f(-b)【答案】C【解析】∵a+b>0,∴a>-b,b>-a,∵f(x)在R上是增函数,∴f(a)>f(-b),f(b)>f(-a),∴f(a)+f(b)>f(-a)+f(-b).27.如果f(x)=x2+bx+c对任意实数t都有f(3+t)=f(3-t),那么()A.f(3)<f(1)<f(6)B.f(1)<f(3)<f(6)C.f(3)<f(6)<f(1)D.f(6)<f(3)<f(1)【答案】A【解析】由于f(x)是二次函数,其函数图象为开口向上的抛物线,f(3+t)=f(3-t),∴抛物线的对称轴为x=3,且[3,+∞)为函数的增区间,由f(1)=f(3-2)=f(3+2)=f(5),又∵3<5<6,∴f(3)<f(5)<f(6),故选A.28.设函数f(x)的定义域是(0,+∞),且对任意正实数x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1时,f(x)>0.(1)求f()的值;(2)判断y=f(x)在(0,+∞)上的单调性并给出证明;(3)解不等式f(2x)>f(8x-6)-1.【答案】(1)对于任意正实数x,y都有f(xy)=f(x)+f(y),∴当x=y=1时,有f(1)=f(1)+f(1),∴f(1)=0.当x=2,y=时,有f(2×)=f(2)+f(),即f(2)+f()=0,又f(2)=1,∴f()=-1.(2)y=f(x)在(0,+∞)上为单调增函数,证明如下:设0<x1<x2,则f(x1)+f()=f(x2),即f(x2)-f(x1)=f().因为>1,故f()>0,即f(x2)>f(x1),故f(x)在(0,+∞)上为单调增函数.(3)由(1)知,f()=-1,∴f(8x-6)-1=f(8x-6)+f()=f((8x-6))=f(4x-3),∴f(2x)>f(4x-3),∵f(x)在定义域(0,+∞)上为增函数,∴解得解集为{x|<x<}.。
高中数学函数的单调性练习题及其答案1.在区间(0.+∞)上不是增函数的函数是:A。
y=2x+1 C。
y=1/x B。
y=3x^2+1 D。
y=2x^2+x+12.函数f(x)=4x^2-mx+5在区间[-2.+∞]上是增函数,在区间(-∞。
-2)上是减函数,则f(1)等于:C。
173.函数f(x)在区间(-2.3)上是增函数,则y=f(x+5)的递增区间是:B。
(-7.-2)4.函数f(x)=(ax+1)/(x+2)在区间(-2.+∞)上单调递增,则实数a的取值范围是:B。
(0.+∞)5.已知函数f(x)在区间[a。
b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a。
b]内:A。
至少有一实根6.已知函数f(x)=8+2x-x^2,如果g(x)=f(2-x^2),那么函数g(x):C。
在区间(-2.0)上是增函数7.已知函数f(x)是R上的增函数,A(0.-1)、B(3.1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是:D。
(-∞。
-1)∪[2.+∞)8.已知定义域为R的函数f(x)在区间(-∞。
5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是:B。
f(13)<f(9)<f(-1)9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是:C。
(-∞。
1]。
[1.+∞)10.已知函数f(x)=x^2+2(a-1)x+2在区间(-∞。
4]上是减函数,则实数a的取值范围是:a≤0 或a≥51.对于第一题,正确答案为D,即a≥3.2.第二题中,删除了明显有问题的选项,正确答案为C,即f(a)+f(b)≥-f(a)+f(b)。
3.对于第三题,正确答案为B,即f(0)>f(3)。
4.填空题的答案为:13.(1.+∞),14.(-∞。
3),15.(-∞。
3]。
5.解答题的答案为:17.(1) f(1)=0;(2) f(x+3)-f(x)5,即单调递减区间为(-∞,1)∪(5.+∞)。
完整版)函数的单调性练习题及答案1.函数的单调性练题一选择题:1.函数f(x)=x^2+2x-3的递增区间为(D。
[-1,+∞))2.如果函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是(A。
[-3,+∞))3.函数y=1-(1/(x-1))在(-1,+∞)内是单调递增。
4.如果函数f(x)=kx+b在R上单调递减,则(C。
b>0)5.在区间(-∞,0)上为增函数的是(B。
y=x^2)6.函数f(x)=2x-x^2的最大值是(B。
1)7.函数y=x+x^-2的最小值是(A。
0)2.填空题:8.函数f(x)=2x^2-mx+3,在(-∞,1)上是减函数,在[1,+∞)上是增函数,则m=4.9.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为(-∞,-1/2)U(1/2,+∞)。
3.解答题:10.利用单调函数的定义证明:函数f(x)=x+2/x在区间(0,2)上是减函数。
证明:对于任意的x1,x2∈(0,2),且x1<x2,有:f(x2)-f(x1)=(x2+2/x2)-(x1+2/x1)x2-x1+2/x2-2/x1x2-x1+2(x1-x2)/(x1x2)x2-x1)(1-2/(x1x2))因为x1,x2∈(0,2),所以x1x2>0,而1-2/(x1x2)<1,所以f(x2)-f(x1)<0,即f(x)在区间(0,2)上是减函数。
11.已知定义在区间(1,+∞)上的函数f(x)满足f(x)=f(x/2)-f(x/4),且当x>1时f(x)<0.1)求f(1)的值;因为f(x)=f(x/2)-f(x/4),所以f(2)=f(1)-f(1/2),又因为f(2)=f(1)-f(1/2)=f(1/2)-f(1/4),所以f(1/2)=f(1)-f(1/4),继续类似地推导,得到:f(1)=f(1)-f(1/2)+f(1/2)-f(1/4)+f(1/4)-f(1/8)+。
函数的单调性1.在区间(0,+∞)上不是增函数的函数是( ) A .y =2x +1B .y =3x 2+1C .y =x 2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≥-3C .a ≤5D .a ≥34.函数 的递增区间_ .5、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .6、已知函数是R 上的减函数,那么a 的取值范围是 .7.f (x )是定义在( 0,+∞)上的增函数,且f (y x ) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .8.已知函数f (x )=xa x x ++22,x ∈[1,+∞] (1)当a =21时,求函数f (x )的最小值; (2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.32)(2--=x x x f ⎪⎩⎪⎨⎧>≤+-=1,2,1,5)3()(x xa x x a x f一、选择题: CDA二、填空题:,4.[1,+&)5 ⎥⎦⎤ ⎝⎛-∞-21,6(0,,2】7.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数, 故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x8.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xa x x ++22>0恒成立⇔x 2+2x +a >0恒成立 设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
函数的单调性一、单选题(共10道,每道10分)1.若函数与在区间(0,+∞)上都是减函数,则在区间(0,+∞)上是( )A.增函数B.减函数C.先增后减D.先减后增答案:B解题思路:试题难度:三颗星知识点:函数单调性的判断与证明2.函数( )A.在(-1,+∞)上单调递增B.在(-1,+∞)上单调递减C.在(1,+∞)上单调递增D.在(1,+∞)上单调递减答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间3.函数的单调递减区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间4.函数的一个单增区间是( )A. B.C. D.无单增区间答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间5.函数的单调递增区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数的单调性及单调区间6.函数的单调递减区间是( )A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间7.设函数,则的单调递增区间是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数的单调性及单调区间8.函数的单调递增区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数的单调性及单调区间9.已知函数是定义在上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么不等式组的解集是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间10.已知函数的图象关于直线x=1对称,且在上单调递减,,则的解集为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数单调性的性质。
函数的单调性练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:2- - 3函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞- -4C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.- -520.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为 单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.- - 6参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则- -7f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27.- - 8(2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
函数的单调性〔一〕一、选择题:1.在区间(0,+∞)上不是增函数的函数是〔 〕A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 〔 〕 A .-7 B .1 C .17 D .25 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是〔 〕A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是〔 〕A .a ≤3B .a ≥-3C .a ≤5D .a ≥310.已知函数()()2212f x x a x =+-+的单调递减区间(]4,∞-上是减函数,则实数a 的取值范围是〔 〕 A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) 〔1〕求f (1)的值.〔2〕假设f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞]〔1〕当a =21时,求函数f (x )的最小值;〔2〕假设对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的表达.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2 D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2),那么函数g (x )( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性如果具有单调性,它在R 上是增函数还是减函数试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞)设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xa x x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( ) A .y =2x +1 B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于( ) A .-7 B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是( ) A .(3,8) B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21) B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( )A.至少有一实根B.至多有一实根C.没有实根D.必有唯一的实根6.已知函数f(x)=8+2x-x2,如果g(x)=f( 2-x2 ),那么函数g(x)()A.在区间(-1,0)上是减函数B.在区间(0,1)上是减函数C.在区间(-2,0)上是增函数D.在区间(0,2)上是增函数7.已知函数f(x)是R上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是()A.(-1,2) B.(1,4)C.(-∞,-1)∪[4,+∞)D.(-∞,-1)∪[2,+∞)8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()A.f(-1)<f(9)<f(13) B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13) D.f(13)<f(-1)<f(9)9.函数)gxx=和的递增区间依次是()=f-x(xx2(())||A.]1,,1[],0,(+∞-∞-∞B.)(-∞],(0,C.]1,,0[+∞,1[),+∞(),,0[-∞+∞D)10.已知函数()()2212=+-+在区间(]4,∞-上是减函数,则实数a的取值范围f x x a x是()A.a≤3 B.a≥-3 C.a≤5 D.a≥311.已知f(x)在区间(-∞,+∞)上是增函数,a、b∈R且a+b≤0,则下列不等式中正确的是()A.f(a)+f(b)≤-f(a)+f(b)]B.f(a)+f(b)≤f(-a)+f(-b)C.f(a)+f(b)≥-f(a)+f(b)]D.f(a)+f(b)≥f(-a)+f(-b)12.定义在R上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则()A.f(-1)<f(3) B.f (0)>f(3) C.f(-1)=f (-3) D.f(2)<f(3)二、填空题:13.函数y=(x-1)-2的减区间是___ _.14.函数y=x-2x-1+2的值域为__ ___.15、设()=是R上的减函数,则()3y f x=-的单调递减区间y f x为.16、函数f(x) =ax2+4(a+1)x-3在[2,+∞]上递减,则a的取值范围是__ .三、解答题:x) = f(x)-f(y) 17.f(x)是定义在( 0,+∞)上的增函数,且f(y(1)求f(1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R上是增函数还是减函数?试证明你的结论. 19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为 单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围. 22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下: 设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1. f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1. f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2).当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2). 故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21) 22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x )∵x 2>x 1≥1,x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1)可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27.(2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y=x2+2x+a,x∈1,+∞),由y=(x+1)2+a-1可知其在[1,+∞)上是增函数,当x=1时,y min=3+a,于是当且仅当y min=3+a>0时函数f(x)>0恒成立.故a>-3.。