北师大版 八年级(上)期中考试数学试卷1
- 格式:doc
- 大小:132.50 KB
- 文档页数:4
2024-2025学年八年级数学上学期期中模拟卷(四川成都专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版八年级上册第1章~第4章。
5.难度系数:0.65。
A 卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).1.下列计算结果正确的是( )A .3+=B ´=C =D .22=2.下列说法不正确的是( )A .y 轴上的点的横坐标为0B .点()2,5P -到x 轴的距离是5C .若点()2,3A a ---在第四象限,那么2a <-D .若0xy >,那么点(),Q x y 在第一象限【答案】D【解析】解:A .y 轴上的点的横坐标为0,说法正确,不合题意;B .点()2,5P -到x 轴的距离是5,说法正确,不合题意;C .若点()2,3A a ---在第四象限,则20a -->,解得2a <-,说法正确,不合题意;D .若0xy >,则0x >,0y >,或0x <,0y <,因此点(),Q x y 在第一象限或第三象限,该选项说法不正确,符合题意;故选D .3.如图,以Rt ABC △的两直角边为边向外分别作两个正方形,以Rt ABC △的斜边为直径向外作半圆,若半圆的面积为8π,则两个正方形的面积的和为( )A .32πB .64C .8πD .164.关于函数21y x =-+,下列结论错误的是( )A .图象必经过点()0,1B .图象经过第一、三、四象限5操作:{}{}{}727288221®=®=®=第一次第二次第三次,即对72进行3次操作后变为1,对整数m 进行3次操作后变为2,则m 的最大值为( )A .80B .6400C .6561D .6560【答案】D6.数学中有许多优美、寓意美好的曲线.在平面直角坐标系中,绘制如图所示的曲线,给出下列四个结论:①曲线经过的整点即横、纵坐标均为整数的点中,横纵坐标互为相反数的点有2个;②曲线在第一、二象限中的任意一点到原点的距离都大于1;③曲线所围成的“心形”区域的面积大于3,其中正确的有()A.①②B.①②③C.①③D.②③)1,1,(―1,1),∴①1,0,()在第一、二象限中的任意一点都在以O为圆心,以1为半径的圆外,在第一、二象限中的任意一点到原点的距离大于1,∴②,∴曲线C 所围成的“心形”区域的面积大于3,∴③正确;故选∶D .7.如图,长方形纸片ABCD ,6cm 8cm AB BC =,=,现将其沿EF 对折,使得点C 与点A 重合,则AEF△的面积为( )A .754B .18C .214D .6948.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O ,正方形2221A B C C ,¼,正方形,使得点1A 、2A 、3A 、¼,在直线l 上,点1C ,2C ,3C ,¼,在y 轴正半轴上,则点251B 的坐标为( )A .()2502512,21-B .()2512512,2C .()2522512,21-D .()2502512,21+【答案】A【解析】解:在1y x =-中,令0x =,得1y =-,令0y =,得1x =,所以直线1y x =-与x 轴交于点1(1,0)A ,与y 轴的交点坐标为(0,1)-,因此有1111111OA A B B C OC ====,112A B A △、223A B A △、334A B A △,L 都是等腰直角三角形,所以点1B 的横坐标为012=,纵坐标为1121=-,点2B 的横坐标为122=,纵坐标为212321+==-,点3B 的横坐标为242=,纵坐标为3124721++==-,点4B 的横坐标为382=,纵坐标为412481521+++==-,LL 点251B 的横坐标为2502,纵坐标为25121-,即点()2502512,21-.故选A .第Ⅱ卷(共68分)二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)9.已知某个点在第二象限,且它的横坐标与纵坐标的和为3,请写出一个符合这样条件的点的坐标 .11.我们知道,以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为()3,4,5,可以看作()2221,22,21-´+;同时8,6,10也为勾股数组,记为()8,6,10,可以看作()2231,32,31-´+.类似的,依次可以得到第三个勾股数组()15,8,17.请根据上述勾股数组规律,写出第5个勾股数组: .【答案】()35,12,37【解析】上述四组勾股数组的规律是:222222222345,6810,81517+=+=+=,即()()()22222121n n n -+=+,∴()()()22222612661-+´=+所以第5个勾股数组为()35,12,37,故答案为:()35,12,37.12.y 与x 之间的函数关系可记为()y f x =.例如:函数2y x =可记为()2f x x =.若对于自变量取值范围内的任意一个x ,都有()()f x f x -=,则()f x 是偶函数;若对于自变量取值范围内的任意一个x ,都有()()f x f x -=-,则()f x 是奇函数.例如:2()f x x =是偶函数,()f x x =是奇函数.已知函数()f x 是奇函数,当0x >时,2()51f x x =+,那么(4)f -= .【答案】81-【解析】∵()f x 是奇函数,∴()()44f f -=-,∵()2454181f =´+=,∴()()4481f f -=-=-.故答案为:81-.13.如图,在ABC V 中,2,,AB BC AO BO P ===是射线CO 上的动点,60AOC Ð=°,则当PAB V 是直角三角形时,AP 的长为当90APB Ð=°,情况1:AO BO =Q ,PO BO \,60AOC Ð=°Q ,BOP \Ð=°,BOP \V 为等边三角形,1BP OB \==,2AB BC ==Q ,23AP AB BP \=-=;情况2:,90AO BO APB =аQ ,PO AO \=,60AOC Ð=°Q ,AOP \△为等边三角形,三、解答题 (本大题共5小题,其中14题12分,15-16题,每题8分,17-18题,每题10分,共48分.解答应写出文字说明、证明过程或演算步骤.)14.(满分12分)计算:(1)(3))21-;(4)64ææ-ççççèè.15.(满分8分)在平面直角坐标系中,已知点(63P m -,1)m +.(1)若P 到y 轴的距离为2,求m 的值;(2)若点P 的横纵坐标相等,求点P 的坐标;(3)在(2)的条件下,在第二象限内有一点Q ,使PQ //x 轴,且3PQ =,求点Q 的坐标.16.(满分8分)如图,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离 2.5m BD =.小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离 1.5m AC =,点A 到地面的距离 1.5m AE =,将他从A 处摆动后的坐板记为A ¢.(1)当A B AB ¢^时,求A ¢到BD 的距离;(2)当A ¢距地面最近时,求A ¢到地面的距离(结果精确到0.1 3.606=).90°;在RtA FB ¢V 中,1390Ð+Ð=23\Ð=Ð;(2分)A FBТ,(AAS)ACB BFA ¢\V V ≌;\17.(满分10分)阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,221×=-=;223×=-=,它们的积是有理数,7==+==,像这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫作分母有理化.解决问题:(1)3的有理化因式是____________;(2)“<”“>”或“=”填空);(3)×××一、填空题(每题4分,满分20分,将答案填在答题纸上)19290,5,C BC D Ð=°=在BC 上且2BD AC ==“>”或“<”或“=”).20.已知实数a 满足|2023|a a -=,那么22024a -的值是。
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。
3 3 9 ,- 3 0.125 , 0.1010010001…相(邻两个 1 之间 5八年级数学上册期中测试卷一.选择题(每小题 2 分,共 24 分)1、 9 的算术平方根是 ( ) A 、3 B 、±3C 、± 3D 、 32、和数轴上的点一一对应的是()A 、整数B 、无理数C 、实数D 、有理数3、在实数:0.9 , - π , - 3 , 1,16 , 3.14,依次增加一个 0)中,无理数的个数是( )A 、3 个B 、4 个C 、5 个D 、6 个4、以下各组数据中是勾股数的是()A 、1,1, 2B 、12,16,20C 、1, 4 ,D 、1,2, 33 35、当 x=2 时,函数 y = 2 x - 1 的值是()A .0B .-3C .3D .46、如图,边长为 1 的正方体中,一只蚂蚁从 A 顶点出发沿着 正方体的外表面爬到 B 顶点的最短路程是( ).BA 、3B 、 5C 、2D 、17、一次函数 y = 2 x - 1 的图象大致是() A6 题图yy y yOxOxO x O xA B C D8、若点 P 在 x 轴的下方, y 轴的左方, 到每条坐标轴的距离都是 3,则点 P 的坐标为()A.(3,3)B.(-3,3)C.(-3,-3)D.(3,-3). 9、 16 的平方根是() A 、±4 B 、-4C 、4D 、±210、若点 A ( x ,3) 与点 B (2, y ) 关于 x 轴对称,则()[来 Xk B 1 . c o m 源:学§科§网]A. x = -2, y =-3B. x =2, y =3C. x =-2, y =3D. x =2, y =-311、点 P 1(x 1,y 1),点 P 2(x 2,y 2)是一次函数 y =-4x + 3 图象上的两个点,且 x 1<x 2,则 y 1 与 y 2 的大 小关系是().A 、y 1>y 2B 、y 1>y 2 >0C 、y 1<y 2D 、y 1=y 212、一次函数 y =kx +b 的图象如下图所示,则 k 、b 的值为()(A ) k >0, b >0 (B ) k >0, b <0 (C ) k <0, b >0 (D ) k <0, b <0yo x3(8)(2+3)2(9)3-二.填空(每题2分,共16分)13、如果将电影票上“6排3号”简记为错误!未找到引用源。
北师大版2024—2025学年八年级上册数学期中考试模拟试卷(测试范围:第一章~第四章)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、学号、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,将答案填写在答题卡上对应题目的序号上,答案写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第四章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列四个数中,是无理数的是()A.3.14B.C.D.2、在平面直角坐标系中,点(3,﹣4)在()A.第一象限B.第二象限C.第三象限D.第四象限3、下列表示的图象,y不是x的函数的是()A.B.C.D.4、估算的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间5、已知3m=a,3n=b,那么32m+n等于()A.2ab B.a2+b C.a2b D.a﹣b6、以下列各组数为边长的三角形中,是直角三角形的是()A.0.3,0.4,0.5B.5,6,11C.2,,D.4,5,67、一次函数y=7x﹣3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8、在Rt△ABC中,∠C=90°,AC=2,BC=4,则点C到斜边AB的距离是()A.B.2C.D.9、在同一坐标系中,函数y=kx与y=2x﹣k的大致图象是()A.B.C.D.10、已知点和点是直线y=(k﹣2)x+b(0<k<2)上的两个点,则m,n的大小关系是()A.m<n B.m>n C.m=n D.不能确定二、填空题(每小题3分,满分18分)11、在平面直角坐标系内,点M(﹣9,12)到y轴的距离是.12、若二次根式有意义,则a的取值范围是.13、一个直角三角形的两边长是3和4,那么第三边的长是.14、比较大小:(填“>、<、或=”).15、已知函数y=(k﹣3)x|k|﹣2+6是一次函数,则k=.16、如图,正方形ABCD的边长是12,E,F,G分别是BC,CD,BD上的点,已知BE=8,DF=9,求三角形EFG周长的最小值.第II卷北师大版2024—2025学年八年级上册数学期中考试模拟试卷(答题卡)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:﹣+(﹣1)+2.18、已知:x﹣6和3x+14是a的两个不同的平方根,2y+2是a的立方根.(1)求x,y,a的值;(2)求1﹣4x的算术平方根.19、已知y+1与x﹣1成正比,且当x=3时y=﹣5,请求出y关于x的函数表达式.20、已知.(1)求a的值;(2)若a、b分别为一直角三角形的斜边长和一直角边长,求另一条直角边的长度.21、平面直角坐标系中,已知点M(m+2,m﹣5).(1)若点M在x轴上,求点M坐标;(2)若点M在第二、四象限的角平分线上,求点M坐标;(3)在同一平面直角坐标系中,点A(4,6),且AM∥y轴,求点M坐标.22、如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,D与G重合,若长方形的长BC为8,宽AB为4,求:(1)DE的长;(2)求阴影部分△GED的面积.23、某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式(不需要写出自变量取值范围);(2)根据市场调研发现,甲产品需求量吨数范围是1000≤x≤1200.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.24、如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC、AD于E、F.(1)如图1,AB=12,BC=8,求AF的长度;(2)如图2,取BF中点G,若BF2+EF2=CG2,求证:AF=BC;(3)如图3,在(2)的条件下,过点D作DN⊥AC于点N,并延长ND交AB延长线于点M,请直接写出的值.25、如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(2,0).(1)求线段AB的长;(2)点M是坐标轴上的一个点,若以AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD交y轴的负半轴于点D,当∠CAD绕点A旋转时,OC﹣OD 的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要求写解题过程).。
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,最小的数是()A .-3B .3C .13D .-π2.在下列各数0,13,3.14,π,0.731)A .1B .2C .3D .43.与数轴上的点一一对应的是()A .有理数B .无理数C .实数D .正数和负数4.在平面直角坐标系中,点(5,-7)在()A .第一象限B .第二象限C .第三象限D .第四象限5.点A(-3,4)关于y 轴对称的点的坐标是()A .(3,-4)B .(-3,-4)C .(3,4)D .(-4,-3)6.如图:在△ABC 中,∠C =90°,AB =13,BC =5,则以AC 为直径的半圆面积为()A .6πB .12πC .36πD .18π7.已知△ABC 为直角三角形,在下列四组数中,不可能是它的三边长的一组是()A .3,4,5B .6,8,10C .5,12,13D .3,3,58.下列说法正确的是()A .-4没有立方根B .1的立方根为±1C .5的立方根为D .136的立方根是169.下列函数:①y=8x ;②y=-8x;③y=2x 2;④y=-2x+1.其中是一次函数的个数为A .0B .1C .2D .310.已知一次函数y kx b =+的图象如图示,则k ,b 的取值范围是()A .0,0k b <>B .0,0k b <<C .0,0k b >>D .0,0k b ><二、填空题11.计算:328.12.比较大小(填“>、<或=”)55-121213.若函数y=(a-1)x+2a -1是正比例函数,则a=_____________.14.在坐标系中,已知两点A (3,-2)、B (-3,-2),则直线AB 与x 轴的位置关系是__________.15.如图,在△ABC 中,AB =10,AC =13,AD ⊥BC ,垂足为D ,M 为AD 上任一点,则MC 2﹣MB 2等于_____.16.若实数a ,b 10a a b ++,则代数式20212022a b +=________.17.已知点A(a ,0)和点B(0,4),且直线AB 与坐标轴围成的三角形的面积10,则a 的值是______.三、解答题18.计算:12793(2)(1312364324-⎛⎫----+- ⎪⎝⎭;57)572+;21220482333⎛÷ ⎝19.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上,如果用(0,0)表示A点的位置,用(4,-1)表示B点的位置.(1)画出直角坐标系;(2)画出与△ABC关于x轴对称的图形△DEF;(3)分别写出点D、E、F的坐标.20.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.21.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.;①求证:EC BD②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.x+3与x轴相交于点A,与y轴相交于点B22.如图,直线y=12(1)直接写出△AOB的面积;(2)若C为y轴上一点,且△ABC的面积是12,求点C的坐标;(3)若P是x轴上一点,且AB=AP,求P的坐标.23.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合.(1)分别求AB、EB的长;(2)求CD的长.24.某教育网站对下载资源规定如下:若注册VIP用户,则下载每份资源收0.2元,另外每年收500元的VIP会员费,若注册普通用户,则下载每份资源收0.4元,不收其它费用()1分别写出注册VIP用户的收费1(y元)和注册普通用户2(y元)与下载数量(x份)之间的函数关系式()2某学校每年要下载1500份资源,那么注册哪种用户比较合算?()3一年内下载多少份资源是两种用户收费一样?25.如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,求EF的长参考答案1.D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∵-π<−3<13<3,∴最小的数是-π,故选:D.【点睛】此题考查了实数的大小比较,解题的关键是掌握实数的大小比较法则.2.B【解析】【分析】根据无理数的定义即可求解.【详解】解:在下列各数0,13,3.14,π,0.7312π2两个.故选:B【点睛】本题考查了无理数的定义,无理数是指无限不循环小数,熟知无理数的定义是解题的关键.3.C【解析】【详解】∵实数与数轴上的各点是一一对应关系,∴与数轴上的点一一对应的是实数.故选C.4.D【解析】【分析】根据各象限的点的坐标的符号特点判断即可.【详解】解:在平面直角坐标系中,点(5,-7)所在的象限为第四象限.故选:D.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.C【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点A(-3,4)关于y轴对称的点坐标(3,4).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.6.D 【解析】【详解】∵∠C=90°,AB=13,BC=5,∴=12,∴以AC 为直径的半圆的面积=211822AC ππ=(故选D .7.D 【解析】【详解】A 选项:∵32+42=52,∴三条线段能组成直角三角形,故A 选项不符题意;B 选项:∵62+82=102,∴三条线段能组成直角三角形,故B 选项不符题意;C 选项:∵52+122=132,∴三条线段能组成直角三角形,故C 选项不符题意;D 选项:∵32+32≠52,∴三条线段不能组成直角三角形,故D 选项符合题意;故选D .8.C 【解析】【分析】根据正数的立方根是正数,负数的立方根是负数,可以求出题目中各式子的结果,然后分析即可.【详解】解:∵正数的立方根是正数,负数的立方根是负数,∴A .-4有立方根,故选项错误,不符合题意;B .1的立方根是1,故选项错误,不符合题意;C .5的立方根,故选项正确,符合题意;D .136的立方根是故选:C .【点睛】此题考查了立方根,解题的关键是明确正数的立方根是正数,负数的立方根是负数.9.D【解析】【详解】根据一次函数定义可知:③由于的自变量x的指数是2,故不是一次函数,其它都是一次函数,共计有3个.故选D.10.D【解析】【分析】观察图象,找到一次函数y=kx+b的图象过的象限,进而分析k、b的取值范围,即可得答案.【详解】观察图象可得,一次函数y=kx+b的图象过一、三、四象限;故k>0,b<0;故选:D.【点睛】本题要求学生根据图象分析出k、b参数的取值范围,考查学生对一次函数中k、b参数的意义的了解与运用.11【解析】【分析】【详解】解:-=【点睛】本题考查了二次根式的加减,熟知二次根式的加减运算法则是解题关键,注意将二次根式化简后被开方数相同的二次根式才能进行加减运算.12.>>【解析】【分析】根据二次根式比较大小的方法:作差法及平方法进行求解即可.【详解】解:∵25=,22=4,∴5>4,;12=,∴1122->0,∴1122,故答案为:>;>.【点睛】本题考查了二次根式的大小比较,解题的关键是熟练掌握二次根式的大小比较的方法.13.-1【详解】解: 函数y=(a-1)x+2a -1是正比例函数,解得:1,a =-故答案为:1-【点睛】本题考查的是正比例函数的定义,掌握“正比例函数的定义”是解本题的关键.14.平行【解析】【详解】∵A (3,-2)、B (-3,-2),∴点A 、点B 到x 轴的距离相等,∴AB∥x轴,故答案是:平行.15.69【解析】【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2),=132−102,=69.故答案为:69.【点睛】此题考查了勾股定理的知识,解题的关键是熟练掌握勾股定理,分别两次运用勾股定理求出MC2和MB2.16.0【解析】【分析】首先根据二次根式的非负性,即可求得a,b的值,再把a,b的值代入代数式,即可求得其值.【详解】解: 0+=,0≥0≥100a ab +=⎧∴⎨+=⎩解得11a b =-⎧⎨=⎩20212022∴+a b ()2021202211=-+11=-+0=故答案为:0【点睛】本题考查了利用算术平方根的非负性求参数及代数式的值,熟练掌握和运用利用二次根式的非负性求参数的方法是解决本题的关键.17.±5【解析】【分析】根据坐标先表示,4,OA a OB ==再利用三角形的面积公式列方程即可.【详解】解: 点A(a ,0)和点B(0,4),直线AB 与坐标轴围成的三角形的面积10,故答案为:5±【点睛】本题考查的是坐标与图形,直线与坐标轴围成的图形面积,掌握“表示坐标系内线段的长度”是解本题的关键.18.(1)3;(2)3;(3)0;(4)3-.【解析】(1)333=+33=+2833=;(2)解:(101224-⎛⎫-- ⎪⎝⎭()()(1442=---+-1442=+-+3=(3)解:2+=5-7+2=0;(4)⎛÷ ⎝3⎛÷ ⎝==.【点睛】本题考查了二次根式的混合运算,零指数幂,负整数指数幂,立方根的定义,绝对值的化简等知识,综合性较强,熟练掌握二次根式的运算法则和相关定义是解题关键.19.(1)见解析;(2)见解析;(3)D(0,0),E(4,1),F(1,2)【解析】【分析】(1)根据平面直角坐标系的定义以点A为坐标原点建立即可;(2)根据网格结构找出点A、B、C关于x轴对称的点D、E、F的位置,然后顺次连接即可;(3)根据平面直角坐标系写出各点的坐标即可.【详解】解:(1)如图所示;(2)△DEF如图所示;(3)由图可知:D(0,0),E(4,1),F(1,2).【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.12米【解析】【分析】设旗杆的高度为x米,根据勾股定理列方程求解即可.【详解】解:设旗杆的高度为x米,则绳长为(x+1)米,根据题意得:(x+1)2=x2+52,即2x-24=0,解得:x=12.答:旗杆的高度是12米.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.21.①证明见解析;②见解析.【分析】①通过AAS 证得CAE BCD ∆≅∆,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【详解】①证明:∵90ACB ︒∠=,∴90ACE BCD ︒∠+∠=.∵90ACE CAE ︒∠+∠=,∴CAE BCD ∠=∠.在△AEC 与△BCD 中,CEA BDCCAE BCD AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CAE BCD AAS ∆∆≌.∴EC BD =;②解:由①知:BD CE a==CD AE b==∴1()()2AEDB S a b a b =++梯形221122a ab b =++.又∵AEC BCD ABCAEDB S S S S =++ 梯形2111222ab ab c =++212ab c =+.∴222111222a ab b abc ++=+.整理,得222+=a b c .【点睛】主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.22.(1)9;(2)(0,-1)或(0,7);0)或0).【解析】【分析】(1)先求出点A 、B 的坐标,即可求出△AOB 的面积;(2)设点C(0,y),根据△ABC 的面积是12,得到12×6×∣3-y ∣=12,求出y ,问题得解;(3)根据勾股定理求出P 坐标.(1)解:∵直线y=12x+3与x 轴相交于点A ,与y 轴相交于点B ,∴点A(-6,0),点B(0,3),∴AO=6,BO=3,∴△AOB 的面积=12×AO×BO=12×6×3=9;(2)解:设点C(0,y),∵△ABC 的面积是12,∴12×6×∣3-y ∣=12∴y=-1或y=7∴点C 的坐标为(0,-1)或(0,7);(3)解:∵AO=6,BO=3,∠AOB=90°,∴∴∴点0)或0).【点睛】本题为一次函数综合题,考查了一次函数与坐标轴交点问题,面积问题,勾股定理等知识,综合性较强,理解题意,学会用点的坐标表示线段的长是解题关键.23.(1)10cm,4cm AB BE ==(2)3cm CD =【解析】【分析】(1)根据勾股定理求得AB 的长,根据折叠的性质可得AE AC =,根据BE AB AE =-即可求解(2)由勾股定理求得AB=10cm ,然后由翻折的性质求得BE=4cm ,设DC=xcm ,则BD=(8-x )cm ,DE=xcm ,在△BDE 中,利用勾股定理列方程求解即可.【详解】解:(1)∵在Rt △ABC 中,两直角边AC=6cm ,BC=8cm ,10cm AB ∴===.由折叠的性质可知:DC=DE ,AC=AE=6cm ,1064cmBE AB AE ∴=-=-=(2)由折叠的性质可知:DC=DE ,AC=AE=6cm ,∠DEA=∠C=90°,∴∠DEB=90°,设DC=xcm ,则BD=(8-x )cm ,DE=xcm ,在Rt △BED 中,由勾股定理得:BE 2+DE 2=BD 2,即42+x 2=(8-x )2,解得:x=3,3CD ∴=cm【点睛】本题主要考查的是翻折变换以及勾股定理的应用;熟练掌握翻折的性质和勾股定理是解题的关键.24.(1)VIP 用户:10.2500y x =+,普通用户:20.4y x =.(2)当1500x =时,注册普通用户比较合算;(3)当下载量为2500份时,注册两种用户的收费相等.【解析】【分析】(1)依据若注册VIP 用户,则下载每份资源收0.2元,另外每年收500元的VIP 会员费,若注册普通用户,则下载每份资源收0.4元,不收其它费用,即可得到VIP 用户的收费(y 1元)和注册普通用户y 2(元)与下载数量x (份)之间的函数关系式;(2)依据x=1500,分别求得y 1和y 2的值,即可得到结论;(3)由y 1=y 2得:0.2x+500=0.4x ,进而得出当下载量为2500份时,注册两种用户的收费相等.【详解】解:()1VIP 用户:10.2500y x =+,普通用户:20.4y x =.()2 当1500x =时,10.25000.21500500800(y x =+=⨯+=元)20.40.41500600(y x ==⨯=元)12y y ∴>∴当1500x =时,注册普通用户比较合算;()3由1y =2y 得:0.25000.4x x +=,解得:2500x =,所以当下载量为2500份时,注册两种用户的收费相等.【点睛】这道题主要考查了一次函数的定义和综合应用的知识点,只要掌握这个知识点进行计算即可.25.5【解析】【分析】根据折叠的性质得到AF=AD ,DE=EF ,根据勾股定理计算即可.【详解】解:∵四边形ABCD 是长方形,BC=10cm ,AB=8cm ∴AD=BC=10cm ,AB=CD=8cm又∵AF 为AD 折叠所得∴AF=AD=10cm ,,DE EF ∴BF 2=AF 2-AB 2=36∴BF=6cm∴FC=BC-BF=4设CE 长为x cm ,则DE 长为(8-x )cm ,则EF 长为(8-x )cm .在RT △CEF 中,x 2+42=(8-x)2解得:x=3∴CE=3cm∴EF=8-3=5cm故EF 的长为5cm .。
2022-2023学年初中八年级上数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:100 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 函数自变量的取值范围是( )A.B.C.D.2. 如图,已知棋子“车”的坐标为,棋子“马”的坐标为,则棋子“炮”的坐标为( )A.B.C.D.3. 下列四个图形都是轴对称图形,其中对称轴一共有三条的是( )A.y =13x +2−−−−−√x x >−23x ≤−23x ≥−23x <−23(−2,3)(1,3)(3,2)(3,1)(2,2)(−2,2)B. C. D.4. 下列等式成立的是( )A.B.C.D.5. 已知点,且,则点在( )A.第一象限B.第二象限C.第三象限D.第四象限6. 下列说法正确的是( )A.的平方根等于的立方根B.,和的立方根都等于它本身C.的平方根等于D.的平方根是7. 将直线=沿轴向上平移个单位的到,则与的距离为( )3+4=72–√2–√×=3–√2–√5–√÷=23–√16–√3–√2=618−−√2–√P(x,y)|x −2|+|y +4|=0P 11−11016−−√±4(−)142−14:y L 12x −2y 4L 2L 1L 2–√A.B.C.D.8. 一次函数的图象经过( )A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限9. 如图,有一张矩形纸片,,,点是上一点,将纸片沿折叠,点,分别落在点,处,点在上,则线段的长为( )A.B.C.D.10. 某同学网购一种图书,每册定价元,另加书价的作为快递运费.若购书册,则需付款(元)与的函数解析式为( )A.B.C.D.5–√525–√535–√545–√5y =3x +6ABCD AB =8cm BC =10cm E CD AE B C B ′C ′D B ′C ′DE 3cm4cm5cm6cm205%x y x y =20x +1y =21xy =19xy =20x −1卷II (非选择题)二、 填空题 (本题共计 1 小题 ,共计5分 )11. (5分) 如图,钝角三角形的面积是,最长边=,平分,点,分别是,上的动点,则的最小值为________三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )12. 计算:;;;. 13. 已知当,都是实数.且满足时,称为“开心点”.判断点,是否为“开心点”,并说明理由;若点是“开心点”,请判断点在第几象限?并说明理由.14. 如图,在的正方形网格中,已知四边形是轴对称图形.画出四边形的对称轴;画出四边形关于直线成轴对称的四边形.15. 如图是一块地,已知 ,,,且.△ABC 15AB 10BD ∠ABC M N BD BC CM +MN (1)−(2+3)(3−2)−×2(−1)2–√22–√2–√34−−√6–√(2)−+−|1−|()13–√−1(π−3.14)00.75−−−−√3–√(3)(+−)÷13−−√12−−√27−−√3–√(4)−+3a −1327a 3−−−−√a 23a −−√a 3−−√a 4108a −−−−√m n 2m =8+n P (m −1,)n +22(1)A(5,3)B(4,10)(2)M(a,2a −1)M 8×12ABCD (1)ABCD EF (2)ABCD HG A 1B 1C 1D 1AD =4m CD =3m,AB =13m BC =12m CD ⊥AD求的长(连接).证明:是直角三角形.求这块地四边形的面积.16. 已知直线,当为何值时(1)与轴相交于(2)与轴相交于(3)图象经过一、三、四象限? 17. 周末小丽从家出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,请结合图形完成下列问题:小丽从家到公园共用________分钟;公园离小丽家的距离为________米;小丽在便利店时间为________分钟;便利店离小丽家的距离为________米.18.如图,点,,且,满足.求,两点的坐标;如图,点在线段上,,满足,点在轴负半轴上,连接交轴负半轴于点,且 ,求点的坐标;(1)AC AC (2)△ABC (3)ABCD y =(3m −1)x +m −1m y (0,3)x (2,0)(1)(2)(3)(4)1A (0,a)B (b,0)a b |a −4|+=0b +6−−−−√(1)A B (2)1C (m ,n)AB m n n −m =5D y CD x M =S △MBC S △MOD D (3)AB用备用图平移直线,交轴正半轴于点,交轴于点,为直线上的第三象限内的一点,过点作轴于点,若,且,求点的坐标. 19. 已知:是的小数部分,是的小数部分.求,的值;求的平方根.20. 某边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防局迅速派出快艇追赶(如图).图中、分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.(1)求、的函数解析式;(2)当逃到离海岸海里的公海时,将无法对其进行检查.照此速度,能否在逃入公海前将其拦截?若能,请求出此时离海岸的距离:若不能,请说明理由.(3)AB x E y F P EF P PG ⊥x G =20S △PAB GE =12P a 9+13−−√b 9−13−−√(1)a b (2)4a +4b +5A B 12l 1l 2s t l 1l 2A 12B B A B参考答案与试题解析2022-2023学年初中八年级上数学期中试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】函数自变量的取值范围二次根式有意义的条件【解析】根据被开方数是非负数,分母不能为零,可得不等式,根据解不等式,可得答案.【解答】解:由题意得,解得.故选.2.【答案】A【考点】位置的确定【解析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.【解答】由棋子“车”的坐标为、棋子“马”的坐标为可知,平面直角坐标系的原点为底边正中间的点,以底边为轴,向右为正方向,以左右正中间的线为轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为.3.【答案】3x +2>0x >−23A (−2,3)(1,3)x y (3,2)C【考点】轴对称的性质轴对称图形【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】二次根式的除法二次根式的乘法二次根式的加法二次根式的性质与化简【解析】根据二次根式的加、乘、除法法则及二次根式的性质逐一判断即可得.【解答】解:,与不是同类二次根式,不能合并,此选项计算错误;,,此选项计算错误;,,此选项计算错误;,,此选项计算正确.故选.5.【答案】D【考点】象限中点的坐标【解析】A 342–√B ×=3–√2–√6–√C ÷=×3–√16–√3–√6–√==318−−√2–√D 2=618−−√2–√D此题暂无解析【解答】解:由题意得,,,解得,,所以,点在第四象限.故选.6.【答案】B【考点】平方根立方根的性质【解析】根据平方根和立方根的运算定义逐项判断即可.【解答】解:,的平方根是,的立方根是,故该项错误;,的立方根是,的立方根是,的立方根是,故该项正确;,,的平方根是,故该项错误;,,的平方根是,故该项错误.故选.7.【答案】D【考点】一次函数图象与几何变换【解析】根据平移的规律得到的解析式为:=,求得=与轴交于,根据全等三角形的性质和勾股定理即可得到结论.【解答】∵将直线=沿轴向上平移个单位的到,∴的解析式为:=,∴=与轴交于,如图,∵=与轴交于,与轴交于,x −2=0y +4=0x =2y =−4P(2,−4)D A 1±111B −1−11100C =416−−√4±2D =(−)142116116±14B L 2y 2x +2:y L 22x +2y (0,2):y L 12x −2y 4L 2L 2y 2x +2:y L 22x +2y (0,2)y 2x +2x B(−1,0)y A(0,2)F(1,0)E(0,−2)=与轴交于,与轴交于,∴=,过作于,反向延长交于,∵,∴,∴==,∵=,∴,∴=,∵=,=,∴,∴,∴,∴与的距离为,8.【答案】A【考点】一次函数图象与系数的关系一次函数的性质【解析】根据一次函数解析式中、,结合一次函数图象与系数的关系即可得出结论.【解答】解:∵在一次函数中:,,∴一次函数的图象经过第一、二、三象限.故选.9.【答案】C【考点】翻折变换(折叠问题)勾股定理【解析】由折叠的性质可得, ,,由勾股定理可求的长,由勾股定理可求解.y 2x −2x F(1,0)y E(0,−2)OB OF O OC ⊥AB C OC EF D AB //EF CD ⊥EF ∠OCB ∠ODF 90∘∠BOC ∠DOF △OBC ≅△OFD OC OD OA 2OB 1AB =5–√OC ==1×25–√25–√5CD =45–√5L 1L 245–√5k =3>0b =6>0y =3x +6k =3>0b =6>0y =3x +6A AB =A =8cm B ′BC ==10cm B ′C ′CE =E C ′D B ′解:∵将纸片沿折叠,的对应边恰好经过点,∴, ,,∴,∴,∵,∴∴.故选.10.【答案】B【考点】根据实际问题列一次函数关系式【解析】根据题意可得购买一册书需要花费元,根据此关系式可得出购书册与需付款(元)与的函数解析式.【解答】解:由题意得:购买一册书需要花费元,故购买册数需花费元.即.故选.二、 填空题 (本题共计 1 小题 ,共计5分 )11.【答案】【考点】轴对称——最短路线问题三角形的面积角平分线的性质【解析】过点作于点,交于点,过点作于,则即为的最小值,再根据三角形的面积公式求出的长,即为的最小值.AE BC B ′C ′D AB =A =8cm B ′BC ==10cm B ′C ′CE =E C ′D ===6(cm)B ′A −D 2B ′A 2−−−−−−−−−−√100−64−−−−−−−√D =−D =4(cm)C ′B ′C ′B ′D =+E 2C ′D 2C ′E 2D =16+E 2(8−DE)2DE =5cm C (20+20×5%)x y x (20+20×5%)x x(20+20×5%)y =x(20+20×5%)=21x B 3C CE ⊥AB E BD M M IMN ⊥BC N CE CM +MN CE CM +MN过点作于点,交于点,过点作于,,:平分于点,于,∴∴根据垂线段最短可知,的长即为的最小值,三角形的面积为,即的最小值为.故答案为.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )12.【答案】解:原式.原式.原式.原式.【考点】零指数幂、负整数指数幂二次根式的混合运算【解析】首先根据二次根式混合运算法则,先进行乘法运算,再进行加减运算即可;根据实数运算法则,首先利用负整数指数幂,零指数幂,二次根式的性质,绝对值化简各数,再进行加减运算即可.C CE ⊥AB E BD M M IMN ⊥BC N ABD ∠ABCME ⊥AB E MN ⊥BC N MN =MECE =CM +ME =CM +MNCE CM +MN ABC 15AB =10×10⋅CE =1512,CE =3CM +MN 33(1)=2−2+1−(9−8)−22–√92−−√=2−2+1−1−32–√2–√=2−52–√(2)=−1+−(−1)3–√3–√23–√=−1+−+13–√3–√23–√=3–√2(3)=(+2−3)÷3–√33–√3–√3–√=−÷233–√3–√=−23(4)=×3a −⋅+3a ×−×6133a −−√a 21a 3a −−√133a −−√a 43a −−√=a −a +a −a 3a −−√3a −−√3a −−√323a −−√=−a 23a −−√(1)(2)(3)先把括号内每一项化简再合并同类二次根式,最后进行除法运算即可;根据二次式加减运算法则,首先化简各二次根式,再合并同类二次根式即可;【解答】解:原式.原式.原式.原式.13.【答案】解:点为“开心点”,理由如下,当时,,得,则,所以,所以是“开心点”;点不是“开心点”,理由如下,当时,,得,则,所以,所以点不是“开心点”.点在第三象限,理由如下:点是“开心点”,所以,,代入有,,所以,故点在第三象限.【考点】(3)(4)(1)=2−2+1−(9−8)−22–√92−−√=2−2+1−1−32–√2–√=2−52–√(2)=−1+−(−1)3–√3–√23–√=−1+−+13–√3–√23–√=3–√2(3)=(+2−3)÷3–√33–√3–√3–√=−÷233–√3–√=−23(4)=×3a −⋅+3a ×−×6133a −−√a 21a 3a −−√133a −−√a 43a −−√=a −a +a −a 3a −−√3a −−√3a −−√323a −−√=−a 23a −−√(1)A (5,3)A (5,3)m −1=5,=3n +22m =6,n =42m =12,8+n =122m =8+n A (5,3)B (4,10)B (4,10)m −1=4,=10n +22m =5,n =182m =10,8+18=262m ≠8+n B (4,10)(2)M M (a,2a −1)m −1=a,=2a −1n +22m =a +1,n =4a −42m =8+n 2a +2=8+4a −4a =−1,2a −1=−3M (−1,−3)M点的坐标象限中点的坐标【解析】(1)根据、点坐标,代入中,求出和的值,然后代入检验等号是否成立即可;(2)直接利用“开心点”的定义得出的值进而得出答案.【解答】解:点为“开心点”,理由如下,当时,,得,则,所以,所以是“开心点”;点不是“开心点”,理由如下,当时,,得,则,所以,所以点不是“开心点”.点在第三象限,理由如下:点是“开心点”,所以,,代入有,,所以,故点在第三象限.14.【答案】解:如图所示,直线即为所求.如图所示,四边形即为所求.【考点】作图-轴对称变换【解析】A B (m −1,)n +22m n 2m =8+n a (1)A (5,3)A (5,3)m −1=5,=3n +22m =6,n =42m =12,8+n =122m =8+n A (5,3)B (4,10)B (4,10)m −1=4,=10n +22m =5,n =182m =10,8+18=262m ≠8+n B (4,10)(2)M M (a,2a −1)m −1=a,=2a −1n +22m =a +1,n =4a −42m =8+n 2a +2=8+4a −4a =−1,2a −1=−3M (−1,−3)M (1)EF (2)A 1B 1C 1D 1此题暂无解析【解答】解:如图所示,直线即为所求.如图所示,四边形即为所求.15.【答案】解:如图所示,连接.∵∴.证明:已知,,,∵,∴是直角三角形.解:,,.【考点】三角形的面积勾股定理的逆定理勾股定理【解析】此题暂无解析【解答】解:如图所示,连接.(1)EF (2)A 1B 1C 1D 1(1)AC CD ⊥AD,AC ===5A +C D 2D 2−−−−−−−−−−√+4232−−−−−−√m (2)AB =13m BC =12m AC =5m +=52122132△ABC (3)S △ACD =4×3×=6()12m 2S △ABC =5×12×=30()12m 2=30−6=24S 四边形ABCD ()m 2(1)AC∵∴.证明:已知,,,∵,∴是直角三角形.解:,,.16.【答案】解:(1)∵直线与轴相交于点,∴,解得;(2)∵直线轴相交于点,∴,解得;(3)∵直线图象经过一、三、四象限,∴,解得:.【考点】一次函数图象与系数的关系【解析】(1)把代入直线解析式,求出的值即可;代入直线解析式,求出的值即可;(3)根据函数的图象的位置列出关于的不等式,求出的取值范围即可.【解答】解:(1)∵直线与轴相交于点,∴,解得;(2)∵直线轴相交于点,∴,解得;(3)∵直线图象经过一、三、四象限,∴,CD ⊥AD,AC ===5A +C D 2D 2−−−−−−−−−−√+4232−−−−−−√m (2)AB =13m BC =12m AC =5m +=52122132△ABC (3)S △ACD =4×3×=6()12m 2S △ABC =5×12×=30()12m 2=30−6=24S 四边形ABCD ()m 2y (0,3)m −1=3m =4x (2,0)2(3m −1)+m −1=0m =37y =(3m −1)x +m −1{3m −1>0m −1<0<m <113(0,3)m (2)(2,0)m m m y (0,3)m −1=3m =4x (2,0)2(3m −1)+m −1=0m =37y =(3m −1)x +m −1{3m −1>0m −1<0m <11解得:.17.【答案】【考点】函数的图象【解析】此题考查了函数图像,观察函数图像,逐一分析四个问题.【解答】解:由题中图象可知,小丽从家到公园共用分钟.故答案为:.由题中图象可知,公园离小丽家的距离为米.故答案为:.由题中图象可知,小丽在便利店时间为(分钟).故答案为:.由题中图象可知,便利店离小丽家的距离为米.故答案为:.18.【答案】解:,,,,,,,,.∵,,,如图,连接,过点作轴于点,轴于点,,<m <11320200051000(1)2020(2)20002000(3)15−10=55(4)10001000(1)∵|a −4|≥0≥0b +6−−−−√|a −4|+=0b +6−−−−√∴|a −4|=0=0b +6−−−−√∴a =4b =−6∴A (0,4)B (−6,0)(2)=S △BCM S △MOD ∴=S △ABO S △ACD ∵=⋅AO ⋅BO =12S △ABO 121CO C CE ⊥y E CF ⊥x F =+S △ABO S △ACO S △BCO 6×n +×4×(−m)=1211即,,而,,.如图,连接,,∵,∴,即,,,,,,∵轴,∴,,,,,,,,.【考点】坐标与图形性质非负数的性质:算术平方根非负数的性质:绝对值三角形的面积×6×n +×4×(−m)=121212∴{n −m =5,3n −2m =12,∴{m =−3,n =2,∴C (−3,2)=⋅CE ⋅AD S △ACD 12=×3×(4+OD)=1212∴OD =4∴D (0,−4)(3)2AE BF ==20S△PAB S △EAB AO ⋅BE =20124×(6+OE)=40∴OE =4∴E (4,0)∵GE =12∴GO =8∴G (−8,0)PG ⊥x ==−8x p x G ∵==20S △ABF S△PBA ∴=⋅BO ⋅AF =×6×(4+OF)=20S ΔABF 1212∴OF =83∴F (0,−)83∵=+S △PGE S 梯形GPFO S △OEF ∴×12×PG =×(+PG)×8+×4×1212831283∴PG =8∴P (−8,−8)【解析】()利用非负数的性质即可解决问题;(2)利用三角形面积求法,由列方程组,求出点坐标,进而由面积求出点坐标;由平行线间距离相等得到,继而求出点坐标,同理求出点坐标,再由求出点坐标,根据求出的长即可求点坐标.【解答】解:,,,,,,,,.∵,,,如图,连接,过点作轴于点,轴于点,,即,,而,,.如图,连接,,∵,1=+S 加加BO S △ACO S 加加C C 4ACD D (3)==20S △PAB S △EAB E F 1GE =12G =+S PPG S 梯形GPFO S △OEF PG P (1)∵|a −4|≥0≥0b +6−−−−√|a −4|+=0b +6−−−−√∴|a −4|=0=0b +6−−−−√∴a =4b =−6∴A (0,4)B (−6,0)(2)=S △BCM S △MOD ∴=S △ABO S △ACD ∵=⋅AO ⋅BO =12S △ABO 121CO C CE ⊥y E CF ⊥x F =+S △ABO S △ACO S △BCO ×6×n +×4×(−m)=121212∴{n −m =5,3n −2m =12,∴{m =−3,n =2,∴C (−3,2)=⋅CE ⋅AD S △ACD 12=×3×(4+OD)=1212∴OD =4∴D (0,−4)(3)2AE BF ==20S △PAB S △EAB O ⋅BE =201∴,即,,,,,,∵轴,∴,,,,,,,,.19.【答案】解:由题意可知:的整数部分为,的整数部分为,∴, .∴ , .原式,,∴的平方根为: .【考点】估算无理数的大小平方根列代数式求值【解析】暂无暂无【解答】解:由题意可知:的整数部分为,的整数部分为,∴, .∴ , .原式,,AO ⋅BE =20124×(6+OE)=40∴OE =4∴E (4,0)∵GE =12∴GO =8∴G (−8,0)PG ⊥x ==−8x p x G ∵==20S △ABF S △PBA ∴=⋅BO ⋅AF =×6×(4+OF)=20S ΔABF 1212∴OF =83∴F (0,−)83∵=+S △PGE S 梯形GPFO S △OEF ∴×12×PG =×(+PG)×8+×4×1212831283∴PG =8∴P (−8,−8)(1)9+13−−√129−13−−√59+=12+a 13−−√9−=5+b 13−−√a =−313−−√b =4−13−−√(2)=4(a +b)+5=4×1+5=99±3(1)9+13−−√129−13−−√59+=12+a 13−−√9−=5+b 13−−√a =−313−−√b =4−13−−√(2)=4(a +b)+5=4×1+5=9∴的平方根为: .20.【答案】设的函数解析式是=,=,得=,即的函数解析式是=,设的函数解析式时=,,得,即的函数解析式是=;,得,∵,∴能追上,答:能在逃入公海前将其拦截,此时离海岸的距离是.【考点】一次函数的应用【解析】此题暂无解析【解答】此题暂无解答9±3l 1s kt 10k 5k 2.5l 1s 8.5t l 2s at +b l 2s 5.2t +5<12B A B A B。
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是( )A .﹣53B .|﹣2|CD .2.下列语句中正确的是( )A ±4B .任何数都有两个平方根C .∵a 的平方是a 2,∵a 2的平方根是aD .﹣1是1的平方根3.下列各组数中互为相反数的是( )A .5B .5-和15C .D .--(- 4.下列一次函数y 随x 的增大而增大是( )A .y =-2xB .y =x -3C .y =-5xD .y =-x +3 5.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A 点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(1,5),白(5,5)B .黑(3,2),白(3,3)C .黑(3,3),白(3,1)D .黑(3,1),白(3,3)6是( )A .在2和3之间B .在3和4之间C .在5和6之间D .在8和9之间7.已知一次函数y =kx +b (k≠0)的图象如图所示,则y =-bx -k 的图象可能是()A .B .C .D .8.下列计算正确的是( )A B =C .3+D 2÷=9.在平面直角坐标系中,第四象限内有一点M ,它到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标为( )A .()3,4-B .()4,3-C .()3,4-D .()4,3-10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到An .则∵OA 2A 2018的面积是( )A .504m 2B .10092m 2 C .10112m 2 D .1009m 2 二、填空题11.比较大小:“>”,“<”或“=”).12.若点P(2,3)与点Q 关于原点对称,则点Q 的坐标是__________.13.化简11=________.14.请写出两组勾股数:________.15.P 点在平面直角坐标系的第三象限,P 到x 轴的距离为1,到y 轴的距离为3,则P 点的坐标是________.16.有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(1,3)、(1,3),(4,2),请你把这个英文单词写出来或者翻译中文为_________.17.已知a 的平方根为±3,b 的立方根是-1,c 是36的算术平方根,求a b c +-的值_________. 18.如图,已知BA =BC .写出数轴上点A 所表示的数是____________.三、解答题19.计算:(1(2)(3) ⎛ ⎝(4) 2(11)1)-20.阅读下列计算过程:==1==2==试求:(1(2⋅⋅⋅(321.在∵ABC中,∵C=90°,AC>BC,D是AB的中点.E在线段CA的延长线上,连接DE,过点D作DF∵DE,交直线BC的延长线于点F,连接EF.求证:AE2+BF2=EF2.22.生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表.设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造成这片林的总费用需多少元?23.如图,在平面直角坐标系中,直线y=−2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当∵POC是等腰三角形时P的坐标.(3)在直线AB上是否存在点M,使得∵MOC的面积是∵AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.24.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?25.如图,将两个大小、形状完全相同的∵ABC和∵A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C,若∵ACB=∵A′C′B′=90°,AC=BC=6,求B′C的长.参考答案1.C2.D3.D4.B5.D6.A7.C8.B9.D10.A11.>.【分析】根据根式的性质把根号外的因式移入根号内,再比较即可.【详解】解:∵47=283=272827∵33故答案为:>.【点睛】本题考查了平方根的大小比较的应用,能选择适当的方法比较两个数的大小是解此题的关键.12.(-2,-3).【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点P(2,3)与点Q关于原点对称,则点Q的坐标(-2,-3),故答案是:(-2,-3).【点睛】本题考查了关于原点的对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.13【解析】【分析】化简绝对值,再进行实数的计算.【详解】11=11-+=故答案为:【点睛】本题考查了实数的运算,化简绝对值,掌握化简绝对值是解题的关键.14.3,4,5;6,8,10(答案不唯一)【解析】【分析】勾股数:构成一个直角三角形三边的一组正整数,称之为勾股数,根据勾股数的定义可得答案.【详解】解:勾股数是构成一个直角三角形三边的一组正整数,2222222223+4=5,6810,51213,+=+=∴;6,8,10;5,12,13都是勾股数.3,4,5故答案为:3,4,5;6,8,10【点睛】本题考查的是勾股数的含义,勾股定理的逆定理的理解,掌握勾股数的定义是解题的关键. 15.(-3,-1)【解析】【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【详解】解:∵点P在第三象限,且点P到x轴的距离是1,∵点P的纵坐标为-1,∵点P到y轴的距离是3,∵点P的横坐标为-3,所以,点P的坐标为(-3,-1).故答案为:(-3,-1).【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.16.book【解析】【分析】根据每一个点的坐标确定其对应的位置,最后写出答案.【详解】解:(2,1)对应的字母是B,(1,3)对应的字母是O,(1,3)对应的字母是O,(4,2)对应的字母是K.故答案为:book.【点睛】本题考查了坐标位置的确定,熟记有序数对的规定,找出各点的对应字母是解题的关键.17.2【解析】【分析】根据平方根的含义求解,a立方根的含义求解,b算术平方根的含义求解,c再代入代数式求值即可.【详解】解:a的平方根为±3,b的立方根是-1,c是36的算术平方根,∴==-=a b c9,1,6,()∴+-=+--=a b c916 2.故答案为:2.【点睛】本题考查的是平方根,立方根,算术平方根的含义,熟悉“平方根,立方根,算术平方根的含义”是解题的关键.18.1-【分析】先利用勾股定理求解BC的长,可得BA的长,从而可得A到原点的距离,从而可得答案.【详解】解:由勾股定理得:BC===BA BC,∴=BA则A1,∴点A 1.1.【点睛】本题考查的是利用数轴表示无理数,勾股定理的应用,掌握利用勾股定理求解直角三角形的某条边长是解题的关键.19.(1)(2)-6;(3;(4)-【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先把二次根式化为最简二次根式,然后合并即可;(4)根据完全平方公式和平方差公式计算即可.【详解】解:(11=⨯2==(2)==6=-;(3) ⎛ ⎝434⎛= ⎝⎭=(4)2(11)1)-15(51)=---1551=--+10=-+【点睛】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(1(2(3)-【解析】【分析】(1(2 (3)利用(2)的规律,把每个二次根式化简,再合并同类二次根式即可得到答案.【详解】解:(1=(2=== (3⋅⋅⋅1199+1 1.=21.见解析【解析】过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,证明()EAD GBD AAS ≅,推出ED GD =,AE BG =,得到EF FG =,再由勾股定理得到结论.【详解】证明:过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,∵//BG AC ,∵EAD GBD ∠=∠,DEA DGB ∠=∠,∵D 是AB 的中点,∵AD BD =,∵()EAD GBD AAS ≅,∵ED GD =,AE BG =,又∵DF DE ⊥,∵DF 是线段EG 的垂直平分线,∵EF FG =,∵90C ∠=︒,//BG AC ,∵90GBF C ∠=∠=︒,在Rt BGF 中,由勾股定理得:222FG BG BF =+, ∵222EF AE BF =+.【点睛】此题考查全等三角形的判定及性质,勾股定理的应用,线段垂直平分线的判定及性质,熟记全等三角形的判定定理及正确引出辅助线解决问题是解题的关键.22.y=-6x+48000;45000.【解析】【分析】(1)A 种树苗x 棵,则B 种树苗(2000-x )棵,然后根据总费用=A 种的总价+B 种的总价得出函数关系式;(2)根据成活率求出x 的值,然后进行计算.【详解】解:(1)根据题意得∵y =(15+3)x +(20+4)(2000-x )=-6x +48000(2)由题意得:0.95x +0.99(2000-x )=1960,∵x =500当x =500时,y =-6×500+48000=45000∵造这片林的总费用需45000元.23.(1)(4,4);(2)(4,0)或(8,0) 或(0) 或(-0) ;(3)存在,理由见解析,M (8,−4)或(0,12)【解析】【分析】(1)联立两直线解析式成方程组,解方程组即可得出点C 的坐标;(2)分OC=PC ,OC=OP ,PC=OP 三种情况进行讨论;(3)分两种情况讨论:当M 在x 轴下方时;当M 在x 轴上方时.把∵MOC 的面积是∵AOC面积的2倍的数量关系转化为∵MOA 的面积与∵AOC 面积的数量关系即可求解.【详解】解: (1)联立两直线解析式成方程组,得:212y x y x =-+⎧⎨=⎩,解得:44x y =⎧⎨=⎩,∵点C 的坐标为(4,4).(2) 如图, 分三种情况讨论:OC 为腰,当OC=P 1C 时,∵C (4,4),∵P 1(8,0);OC 为腰,当OC=OP 2= OP 3时,∵C (4,4), 22442,2P ∴,3(P -;当P 4C=OP 4时,设P (x ,0),则x= =解得x=4,∵P 4(4,0).综上所述,P 点坐标为P 1(8,0),P 2(0),3(P -,P 4(4,0).(3)当y=0时,有0=−2x+12,解得:x=6,∵点A 的坐标为(6,0),∵OA=6,∵S ∵OAC=12× 6× 4=12.设M (x ,y ),当M 在x 轴下方时∵MOC 的面积是∵AOC 面积的2倍, ∵∵MOA 的面积等于∵AOC 的面积,1166422y ⨯⨯=⨯⨯, ∵4y =,∵y=−4,∵4212x -=-+,∵x=8,∵M (8,−4)当M 在x 轴上方时∵MOC 的面积是∵AOC 面积的2倍,∵∵MOA 的面积等于∵AOC 的面积的3倍,11664322y ⨯⨯=⨯⨯⨯ ∵12y =∵y=12时,∵12212x =-+,∵x=0,∵M (0,12)综上所述,M (8,−4)或(0,12).【点睛】本题考查的是一次函数综合题,涉及到一次函数图象上点的坐标问题及等腰三角形的性质和判定等知识,在解答(2)、(3)时要注意进行分类讨论,不要漏解.24.(1)当0≤x≤20时,y 与x 的函数表达式是y=2x ;当x >20时,y 与x 的函数表达式是y=2.8x ﹣16;(2)小颖家五月份比四月份节约用水3吨.【解析】【分析】(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y 与x 的函数表达式是y=2x ;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x >20时,y 与x 的函数表达式是y=2×20+2.8(x -20),即y=2.6x -12; (2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x 计算用水量;四月份缴费金额超过40元,所以用y=2.8x -16计算用水量,进一步得出结果即可.【详解】解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x-20)=2.8x-16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x-16中,得x=22.所以22-19=3吨.答:小颖家五月份比四月份节约用水3吨.【点睛】一次函数的应用.25.B'C的长为【解析】【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∵CAB′=90°,根据勾股定理计算.【详解】解:∵∵ACB=∵AC′B′=90°,AC=BC=6,∵CAB=45°,∵∵ABC和∵A′B′C′全等,∵∵C′AB′=∵CAB=45°,∵∵CAB′=90°,答:B'C的长为。
2024-2025学年八年级数学上学期期中模拟卷(深圳专用)(考试时间:90分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大八上第一章勾股定理+第二章实数+第三章位置与坐标+第四章一次函数。
5.难度系数:0.70。
第一部分(选择题 共24分)一、选择题(本大题共8小题,每小题3分,满分24分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.在实数 3.14,0,2p ,227,0.1616616661¼(两个1之间依次多一个6)中,无理数的个数是( )A .5B .4C .3D .22.下列二次根式中,是最简二次根式的是( )A B C D 3.如图,根据尺规作图痕迹,图中标注在点A 处所表示的数为( )A .B .1C .1-+D .1-4.三角形ABC 中,A Ð,B Ð,C Ð的对边分别记为a ,b ,c ,由下列条件不能判定三角形ABC 为直角三角形的是( )A .AB C=+∠∠∠B .::1:1:2A B C ÐÐÐ=C .222b a c =+D .::1:1:2a b c =5.已知点P 的坐标为()2,36a a -+,且点P 到两坐标轴的距离相等,则点P 的坐标是( )A .()3,3B .()3,3-C .()6,6-D .()3,3或()6,6-6.在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( )A .B .C .D .7.某数学兴趣小组开展了笔记本电脑的张角大小的实践探究活动.如图,当张角为BAF Ð时,顶部边缘B 处离桌面的高度BC 为7cm ,此时底部边缘A 处与C 处间的距离AC 为24cm ,小组成员调整张角的大小继续探究,最后发现当张角为DAF Ð时(D 是B 的对应点),顶部边缘D 处到桌面的距离DE 为20cm ,则底部边缘A 处与E 之间的距离AE 为( )A .15cmB .18cmC .21cmD .24cm8.如图,直线483y x =-+分别与x ,y 轴交于点A ,B ,点C 在线段OA 上,将BOC V 沿BC 翻折,点O 恰好落在AB 边上的点D 处.则点C 的坐标为( )A .8,03æöç÷èøB .5,03æöç÷èøC .()20,D .()30,第二部分(非选择题 共76分)二、填空题(本大题共5小题,每小题3分,满分15分)9的算术平方根为 .10.已知x 的整数部分,y xy 的值 .11.如图是勾股树衍生图案,它由若干个正方形和直角三角形构成,1S ,2S ,3S ,S ₄分别表示其对应正方形的面积,若已知上方左右两端的两个正方形的面积分别是64,9,则1234S S S S -+-的值为12.如图,已知等边AOC △的边长为1,作OD AC ^于点D ,在x 轴上取点1C ,使1CC DC =,以1CC 为边作等边11A CC △;作111CD A C ^于点1D ,在x 轴上取点2C ,使1211C C D C =,以12C C 为边作等边212A C C V ;作1222C D A C ^于点2D ,在x 轴上取点3C ,使2322C C D C =,以23C C 为边作等边323A C C △;…,且点123,,,A A A A ,…都在第一象限,如此下去,则点2023D 的坐标为 .13.数形结合是数学的重要思想和解题方法,如:“当012x <<值”可看作两直角边分别为x 和2的Rt ACP V 12x -和3的Rt BDP V 的斜边长.于是将问题转化为求AP BP +的最小值,如图所示,当AP 与BP 共线时,AP BP +为最小.请你解决问题:当04x <<的最小值是 .三、解答题(本大题共7小题,满分61分.解答应写出文字说明,证明过程或演算步骤)14.(8分)计算:(1)0(2023)1|p -+-(2)+-.15.(7分)已知2x +的一个平方根是2-,21x y +-的立方根是3;(1)求x y 、的值;(2)的算术平方根.16.(7分)如图,在平面直角坐标系中,△ABC 顶点分别是()0,2A ,()2,2B -,()4,1C -.(1)在图中作出△ABC 关于y 轴对称的111A B C △;(2)直接写出对称点坐标1B ________,1C ________;(3)在图中第一象限格点中找出点D ,使AD =且同时CD (无需计算过程,请把点画清楚一些)17.(8分)如图,在三角形ABC 中,90ABC Ð=°,20AC =,12BC =.(1)设点P 在线段AB 上,连接PC ,若PAC PCA Ð=Ð,求AP 的长;(2)设点M 在线段AC 上,若MBC △是等腰三角形,求AM 的长.18.(10分)综合与实践【问题情境】在平面直角坐标系中,有不重合的两点()11,A x y 和点()22,B x y ,若12x x =,则AB y ∥轴,且线段AB 的长度为12y y -:若12y y =,则AB x ∥轴,且线段AB 的长度为12x x -.【知识应用】(1)若点()1,1A -,()2,1B ,则AB x ∥轴,AB 的长度为________;【拓展延伸】我们规定:平面直角坐标系中,任意不重合的两点()11,M x y ,()22,N x y 之间的折线距离为()1212,d M N x x y y =-+-.例如:图1中,点()1,1M -与点()1,2N -之间的折线距离为()(),1112235d M N =--+--=+=.【问题解决】(2)如图2,已知()2,0E ,若()1,1F --,则(),d E F =________;(3)如图2,已知()2,0E ,()1,G t ,若(),3d E G =,则t 的值为________;(4)如图3,已知()2,0E ,()0,2H ,点P 是EOH △的边上一点,若(),d E P =P 的坐标.19.(10分)问题情境:在学习了《勾股定理》和《实数》后,某班同学们以“已知三角形三边的长度,求三角形面积”为主题开展了数学活动,同学们想到借助曾经阅读的数学资料进行探究:材料1.古希腊的几何学家海伦(Heron ,约公元50年),在他的著作《度量》一书中,给出了求其面积的海伦公式S =(其中a b c ,,为三角形的三边长,2a b c p ++=,S 为三角形的面积).S a b c ,,,三角形的面积为S .(1)利用材料1解决下面的问题:当3a b c ===,(2)利用材料2解决下面的问题:已知ABC V 24-,记ABC V 的周长为ABC C V .①当2x =时,请直接写出ABC V 中最长边的长度;②若x 为整数,当ABC C V 取得最大值时,请用秦九韶公式求出△ABC 的面积.20.(11分)如图,点(0,)A a ,点(,0)B b 分别为y 轴正半轴、x 轴负半轴上的点,以点B 为直角顶点在第二象限作等腰Rt ABC △.(1)如图1,若a 、b 满足()230a -=,求点C 的坐标;(2)在x 轴上是否存在点P ,使PAB V 是以AB 为腰的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(3)如图2,点M 在AC 上,点N 在CA 的延长线上,45MBN Ð=°,探究线段CM 、AN 和MN 之间的关系,并加以证明.。
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.在227、3π、0.010010001)A.227B.3πC.0.010010001D2.下列各组线段中,不能够组成直角三角形的是()A.6,8,10B.3,4,5C.4,5,6D.5,12,133)A.3B.3-C.3±D.94.下列说法正确的是()A.4的平方根是2B.无限小数就是无理数C.是无理数D.实数可分为有理数和无理数5.对于函数y3x1=-,下列说法正确的是()A.它与y轴的交点是()0,1B.y值随着x值增大而减小C.它的图象经过第二象限D.当1x3>时,y0>6+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间7.已知点P(0,a)在y轴的负半轴上,则点M(a,﹣a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限8.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A.(3,2)B.(-2,-3)C.(-2,3)D.(2,-3)9.已知点P位于y轴的右侧且位于x轴下方,到x轴、y轴距离分别是4个单位、3个单位,则点P的坐标()A.(3,﹣4)B.(﹣3,4)C.(4,﹣3)D.(﹣4,3)10.下列各点中,一定不在正比例函数y=3x的图象上的是()A.(1,3)B.11(,)23C.(﹣2,﹣6)D.(﹣3,﹣9)11.两条直线y1=kx﹣k与y2=﹣x在同一平面坐标系中的图象可能是()A.B.C.D.12.甲、乙两车从A地匀速驶向B地,甲车比乙车早出发2h,并且甲车在途中休息了0.5h 后仍以原速度驶向B地,如图是甲、乙两车行驶的路程y(km)与行驶的时间x(h)之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40km/h,乙车的速度是80km/h;③当甲车距离A地260km时,甲车所用的时间为7h;④当两车相距20km时,则乙车行驶了3h或4h,其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题13.如图所示,在平面直角坐标系中,有A(1,1)、B(3,2)两点,点P是x轴上一动点,则PA+PB最小值为_____.14.如图,将长方形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E,若AB=4,BC=8,则△ACE的面积为_____.15.如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A 1B 1对称;过点A 2(2,0)作x 轴的垂线,交直线y =2x 于点B 2;点A 3与点O 关于直线A 2B 2对称;过点A 3(4,0)作x 轴的垂线,交直线y =2x 于点B 3;…,按此规律作下去,则点B n 的坐标为_____.16.如图,点A 的坐标为()3,0-,点B 在直线y x =-上运动,连接AB ,则线段AB 的长的最小值为______.17.如图,将长方形ABCD 的长AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,若AB 6=,AD 10=,则CE =______.三、解答题18.计算下列各题:(12(2))(2017201822-19.函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.20.已知,如图在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35,求△ACB的面积.21.探究过程:观察下列各式及其验证过程.(1)=2)=验证:==1)按照上面两个等式及其验证过程的基本思路,猜想:=;=;(2)通过上述探究你能猜测出:(n>0),并验证你的结论.22.已知直线AB的函数表达式为y=43x+4,交x轴于点A,交y轴于点B,动点C从点A出发,以每秒2个单位长度的速度沿x轴正方向运动,设运动时间为t秒.(1)求点A、B两点的坐标;(2)当t为何值时,经过B、C两点的直线与直线AB关于y轴对称?并求出直线BC的函数关系式;(3)在第(2)问的前提下,在直线AB 上是否存在一点P ,使得S △BCP =2S △ABC ?如果存在,请求出此时点P 的坐标;如果不存在,请说明理由.23.某一次函数的图象与直线y 2x 6=-+的交点A 的横坐标是4,与直线y x 1=-的交点B 的纵坐标是1,()1直接写出点A 、B 的坐标A______,B______;()2求此函数的解析式;()3在给出的平面直角坐标系中作出此函数的图象;()4求AOB 的面积;()5P 为x 轴上一点,且PAB 为等腰三角形,请直接写出点P 的坐标.24.如图,一架长2.5m 的梯子AB 斜靠在墙AC 上,∠C=90°,此时,梯子的底端B 离墙底C 的距离BC 为0.7m .(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?25.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租一本书,租书金额y(元)与租书时间x(天)之间的关系如图所示:(1)用租书卡每天租书的收费为元,用会员卡每天租书的收费是元;(2)分别写出用租书卡和会员卡租书的金额y1、y2与租书时间x之间的函数关系式;(3)如果租书50天,选择哪种租书方式比较划算?如果花费80元租书,选择哪种租书方式比较划算?参考答案1.B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】在227、3π、0.010010001中,无理数是3π,故选B .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.2.C【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【详解】A.62+82=102,能构成直角三角形,故不符合题意;B.32+42=52,能构成直角三角形,故不符合题意;C.42+52≠62,不能构成直角三角形,故符合题意;D.52+122=132,能构成直角三角形,故不符合题意.故选C.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握运算公式.3.A【分析】根据二次根式的性质化简.【详解】,故选A .【点睛】本题考查了二次根式的性质,属于基础知识,比较简单.4.D【分析】根据平方根的定义,可判断A ;根据无理数的定义,可判断B 、C ;根据实数的定义,可判断D .【详解】A 、4的平方根是±2,故A 错误;B 、无限不循环小数是无理数,故B 错误;C,故错误;D 、实数可分为有理数和无理数,故D 正确;故选D .【点睛】本题考查了实数,有理数与无理数的概念,有限小数和无限循环小数是有理数.5.D【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【详解】解:y 3x 1=- ,∴当x 0=时,y 1=-,故选项A 错误,k 30=>,y 随x 的增大而增大,故选项B 错误,k 3=,b 1=-,该函数的图象过第一、三、四象限,故选项C 错误,当1x 3>时,y 0>,故选项D 正确,故选D .【点睛】考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.C【分析】的取值范围,进而可得出结论.【详解】∵9<11<16,∴3<4,∴4+1<5.故选C.【点睛】本题考查的是估算无理数的大小,熟知用有理数逼近无理数,求无理数的近似值是解答此题的关键.7.B【解析】【分析】根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答.【详解】∵点P(0,a)在y轴的负半轴上,∴a<0,∴﹣a>0,﹣a+1>1,∴点M(a,﹣a+1)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.D【详解】试题解析:∵点(2,3)关于x轴对称;∴对称的点的坐标是(2,-3).故选D.考点:关于x轴、y轴对称的点的坐标.9.A【解析】【分析】根据点到x轴的距离等于纵坐标的长度判断出点P的纵坐标,再根据点到y轴的距离等于横坐标的长度进而得出答案.【详解】∵点P位于y轴的右侧且位于x轴下方,到x轴、y轴距离分别是4个单位、3个单位,∴点P的纵坐标为﹣4,点P的横坐标为3,∴点P的坐标为(3,﹣4).故选A.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,点到y轴的距离等于横坐标的长度是解题的关键.10.B【解析】【分析】利用一次函数图象上点的坐标特征来验证四个选项中的点是否在正比例函数图象上,此题得解.【详解】A、当x=1时,y=3x=3,∴点(1,3)在正比例函数y=3x的图象上,选项A不符合题意;B、当x=12时,y=3x=32,∴点(12,13)不在正比例函数y=3x的图象上,选项B符合题意;C、当x=﹣2时,y=3x=﹣6,∴点(﹣2,﹣6)在正比例函数y=3x的图象上,选项C不符合题意;D、当x=﹣3时,y=3x=﹣9,∴点(﹣3,﹣9)在正比例函数y=3x的图象上,选项D不符合题意.故选B.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y =kx+b是解题的关键.11.C【解析】【分析】根据一次函数图象与一次项,常数项的关系,利用排除法可得答案.【详解】∵直线y2=﹣x只经过二,四象限,故A、B选项排除;当k>0时,直线y1=kx﹣k经过一、三、四象限,当k<0时,直线y1=kx﹣k经过一、二、四象限,故D选项排除,故选C.【点睛】本题考查了一次函数图象,解决问题的关键是利用一次函数图象与一次项、常数项的关系.12.C【解析】【分析】①观察图象找出点(3.5,120),根据“速度=路程÷行驶时间”可以算出甲车的速度,再结合甲车中途休息半个小时即可得出a、m的值;②根据点(3.5,120),利用“速度=路程÷行驶时间”可以算出乙车的速度;③根据“时间=路程÷速度”可算出甲车距离A地260千米时行驶的时间,加上休息的0.5小时即可得出结论;④根据点(3.5,120),结合两车速度差即可算出当两车相距20千米时,甲车行驶的时间,再根据甲车比乙车早出发2小时可得出乙车行驶时间.对比给定的说法即可得出结论.【详解】①∵甲车途中休息了0.5小时,∴m=1.5﹣0.5=1,甲车的速度为:120÷(3.5﹣0.5)=40(千米/小时).a=1×40=40.∴①成立;②乙车的速度为:120÷(3.5﹣2)=80(千米/时),∴甲车的速度是40千米/小时,乙车的速度是80千米/小时,②成立;③当甲车距离A地260千米时,甲车所用的时间为:260÷40+0.5=7(小时),∴③成立;④∵两车相遇时时间为3.5时,且甲车速度为40千米/时,乙车速度为80千米/时,∴当两车相距20千米时,甲车行驶的时间为:3.5+20÷(80﹣40)=4(小时)或3.5﹣20÷(80﹣40)=3(小时),又∵甲车比乙车早出发2小时,∴当两车相距20千米时,则乙车行驶了1或2小时,④不正确.综上可知:正确的结论有①②③.故选C.【点睛】本题考查了一次函数的应用,解题的关键是结合图形找出点的坐标.本题属于基础题,难度不大,解决该题型题目时,观察图形找出点的坐标,再根据各数量之间的关系即可求出结论.13【解析】【分析】点A关于x轴对称点A′(1,﹣1),连接A′B交x轴于P,则此时,PA+PB=A′B的值最小,过A′作A′C⊥BC,根据勾股定理即可得到结论.【详解】∵A(1,1),∴点A关于x轴对称点A′(1,﹣1),连接A′B交x轴于P,则此时,PA+PB=A′B的值最小,过A′作A′C⊥BC,∴A ′B∴PA +PB ,.【点睛】此题考查的是轴对称﹣最短路线问题,熟知“两点之间线段最短”是解答此题的关键.14.10【解析】【分析】利用折叠的性质可得出AF ,CF 的值及∠ACF =∠ACB ,由AD ∥BC ,可得出∠CAD =∠ACF ,进而可得出AE =CE ,设AE =x ,则EF =8﹣x ,在Rt △AEF 中,利用勾股定理可求出x 的值,再利用三角形的面积公式即可求出△ACE 的面积.【详解】由折叠的性质,可知:AF =AB =4,CF =CB =8,∠F =∠B =90°,∠ACF =∠ACB .∵AD ∥BC ,∴∠CAD =∠ACB ,∴∠CAD =∠ACF ,∴AE =CE .设AE =x ,则EF =8﹣x .在Rt △AEF 中,AF =4,AE =x ,EF =8﹣x ,∠F =90°,∴42+(8﹣x )2=x 2,∴x =5,∴S △ACE =12AE •AB =12×5×4=10.故答案为10.【点睛】本题考查了翻折变换、矩形的性质、勾股定理以及三角形的面积,利用勾股定理求出AE 的长是解题的关键.15.(2n ﹣1,2n )【解析】【分析】先根据题意求出A 2点的坐标,再根据A 2点的坐标求出B 2的坐标,以此类推总结规律便可求出点B n 的坐标.【详解】∵点A 1坐标为(1,0),∴OA 1=1,过点A 1作x 轴的垂线交直线于点B 1,可知B 1点的坐标为(1,2),∵点A 2与点O 关于直线A 1B 1对称,∴OA 1=A 1A 2=1,∴OA 2=1+1=2,∴点A 2的坐标为(2,0),B 2的坐标为(2,4),∵点A 3与点O 关于直线A 2B 2对称.故点A 3的坐标为(4,0),B 3的坐标为(4,8),依此类推便可求出点A n 的坐标为(2n ﹣1,0),点B n 的坐标为(2n ﹣1,2n ).故答案为(2n ﹣1,2n ).【点睛】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了轴对称的性质.16【解析】【分析】垂线段最短,确定B 点位置;解直角三角形求解.【详解】解:作AB ⊥直线y x =-于点B.易知OAB 为等腰直角三角形,AOB 45 ∠=,OA 3=.作BC x ⊥轴于点C ,可得1OC OA 1.52==,BC OC 1.5==.∴当线段AB 最短时,点B 的坐标为()1.5,1.5-,AB【点睛】本题考查一次函数问题,关键是根据:垂线段最短以及等腰三角形的底边上的高与中线互相重合.17.83【解析】【分析】由翻折的性质得到AF AD 10==,在RT ABF 中利用勾股定理求出BF 的长,进而求出CF 的长,再根据勾股定理可求EC 的长.【详解】解: 四边形ABCD 是长方形,B 90∠∴= ,AEF 是由ADE 翻折,AD AF 10∴==,DE EF =,在Rt ABF 中,AF 10=,AB 6=,BF 8∴==,CF BC BF 1082∴=-=-=.222EF EC CF =+ ,2210EF (6EF)4EF DE 3∴=-+∴==8EC CD DE 3∴=-=,故答案为:83【点睛】本题考查翻折变换,矩形的性质、勾股定理等知识,熟练运用折叠的性质是解决问题的关键.18.(1)2【解析】【分析】(1)先化简各二次根式,再计算乘法,继而合并同类二次根式即可得;(2)将原式变形为[)2)]2017•(2,进一步计算可得.【详解】(1)原式=1242⨯⨯=2;(2)2017•(2017•(2=[)2)]2017•(2=(5﹣4)2017•(2=1×(2=2【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.19.1【解析】【分析】由正比例函数的定义可求得k 的取值,再再利用其增减性进行取舍,代入代数式求值即可.【详解】∵y =(k ﹣1)x 2|k|﹣3是正比例函数,∴2|k|﹣3=1,解得k =2或k =﹣2,∵y 随x 的增大而减小,∴k ﹣1<0,即k <1,∴k =﹣2,∴(k+3)2018=(﹣2+3)2018=1.【点睛】本题主要考查正比例函数性质,掌握正比例函数的增减性是解题的关键,即在y =kx 中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.20.24【解析】【分析】根据三角形面积求出AB,推出AC、BC的平方和等于AB的平方,求出∠C=90°,根据三角形面积公式求出即可.【详解】∵DE=7,△ABE的面积为35,∴12×AB×7=35,∴AB=10,∵BC=6,AC=8,∴AC2+BC2=AB2,∴∠C=90°,∴S△ABC =12×6×8=24.【点睛】本题考查了三角形的面积,勾股定理的逆定理的应用,解此题的关键是求出△ABC是直角三角形.21.(1;(2.【分析】(1)根据例题的方法、思路对(2)根据例题验证=【详解】解:(1)按照上面两个等式及其验证过程的基本思路,猜想:=;=(2)n>0).证明:左边==右边22.(1)B(0,4),A(﹣3,0);(2)t=3秒,直线BC解析式为:y=﹣43x+4;(3)见解析.【解析】【分析】(1)令=0,则y=4可求出点B的坐标,令y=0,则0=43x+4可求得点A的坐标;(2)先求出点A′的坐标,即点C的坐标,运用待定系数法可得直线BC的解析式;(3)分两种情况:当点P在第三象限时,当点P在第一象限时分别求解即可.【详解】(1)令=0,则y=4,则点B(0,4),令y=0,则0=43x+4,解得:x=﹣3,则点A(﹣3,0).(2)点A关于y轴点对称点为A′(3,0),所以当点C运动到A′(3,0)时,直线BC与直线AB关于y轴对称,则t=62=3秒.设此时直线BC的解析式为:y=kx+b.把点C(3,0)和点B(0,4)代入得:304k bb+=⎧⎨=⎩,解得:434kb⎧=-⎪⎨⎪=⎩.故直线BC解析式为:y=﹣43x+4.(3)存在,如图,当点P在第三象限时,S△BCP=2S△ABC,则S△ACP=S△ABC,∴点P到x轴的距离等于点B到x轴的距离,∴点P的纵坐标为﹣4,把y =﹣4代入到y =43x+4中得:﹣4=43x+4,解得:x =﹣6,则P (﹣6,﹣4);当点P 在第一象限时,S △BCP =2S △ABC ,则S △ACP =3S △ABC ,∴点P 到x 轴的距离等于点B 到x 轴的距离,∴点P 的纵坐标为12,把y =12代入到y =43x+4中得:12=43x+4,解得:x =6,则P'(6,12),即:点P 的坐标为(﹣6,﹣4)或(6,12).【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,坐标系中面积的计算方法,用分类讨论的思想是解本题的关键.23.(1)()4,2-,()2,1(2)3y x 42=-+(3)见解析(4)4(5)()2-,()2+,()1,0,()7,0或15,04⎛⎫⎪⎝⎭【解析】【分析】()1根据一次函数的图象与直线y 2x 6=-+的交点A 的横坐标是4,与直线y x 1=-的交点B 的纵坐标是1,可以求得点A 和点B 的坐标;()2根据()1中点A 和点B 的坐标可以求得此函数的解析式;()3根据()1中点A 和点B 的坐标可以画出此函数的图象;()4根据图形可以求出三角形AOB 的面积;()5根据题意画出相应的图形,然后利用分类讨论的数学思想解答.【详解】解:()1将x 4=代入y 2x 6=-+,得y 2=-,则点A 的坐标为()4,2-,将y 1=代入y x 1=-,得x 2=,则点B 的坐标为()2,1,故答案为:()4,2-,()2,1;()2设此函数的解析式解析式为y kx b =+,此函数过点()A 4,2-,()B 2,1,{4k b 22k b 1+=-∴+=,得324k b ⎧=-⎪⎨⎪=⎩,即此函数的解析式为3y x 42=-+;()3函数图象如右图所示;()4由图可知,AOB 的面积是:212342434222⨯⨯⨯⨯---=;()5点P 的坐标为()23,0-,()23,0+,()1,0,()7,0或15,04⎛⎫ ⎪⎝⎭,点()A 4,2-,()B 2,1,22AB (42)(21)13∴=-+--=当1BA BP =时,22(13)123-=∴点1P 的坐标为()23,0-;当2BA BP =时,22(13)123-=∴点2P 的坐标为()23,0+;当3AB AP =时,22(13)23-=,∴点3P 的坐标为()1,0;当4AB AP =时,22(13)23-=,∴点4P 的坐标为()7,0;当55P B P A =时,即点5P 在线段AB 的垂直平分线上且与x 轴交于点5P ,点()A 4,2-,()B 2,1,直线AB 的解析式为3y x 42=-+,∴线段AB 的中点为13,2⎛⎫- ⎪⎝⎭,设过线段AB 的中点和点5P 的直线解析式为2y x n 3=+,123n 23-=⨯+,得5n 2=-,∴过线段AB 的中点和点5P 的直线解析式为25y x 32=-,当y 0=时,250x 32=-,得15x 4=,即点5P 的坐标为15,04⎛⎫ ⎪⎝⎭;由上可得,点P 的坐标为()2-,()2+,()1,0,()7,0或15,04⎛⎫ ⎪⎝⎭.【点睛】本题是一道一次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,画出相应的图形,利用数形结合和分类讨论的数学思想解答.24.(1)此时梯顶A 距地面的高度AC 是2.4米;(2)梯子的底端B 在水平方向滑动了1.3m .【详解】试题分析:(1)在直角三角形ABC 中,已知AB ,BC 根据勾股定理即可求AC 的长度;根据AC=AA′+CA′即可求得CA′的长度,在直角三角形A′B′C 中,已知AB=A′B′,CA′即可求得CB′的长度,根据BB′=CB′-CB 即可求得BB′的长度.试题解析:(1)∵∠C=90°,AB=2.5,BC=0.7∴(米),答:此时梯顶A 距地面的高度AC 是2.4米;(2)∵梯子的顶端A 下滑了0.9米至点A′,∴A′C=AC ﹣A′A=2.4﹣0.9=1.5(m ),在Rt △A′CB′中,由勾股定理得:A′C 2+B′C 2=A′B′2,即1.52+B′C 2=2.52,∴B′C=2(m )∴BB′=CB′﹣BC=2﹣0.7=1.3(m ),答:梯子的底端B 在水平方向滑动了1.3m .25.(1)0.5;0.3;(2)用租书卡的关系为:y=0.5x,用会员卡的关系式为:y=0.3x+20;(3)见解析.【解析】【分析】(1)根据图象可知:租书卡每天租书花费为:50÷100,会员卡每天租书花费为:(50﹣20)÷100;(2)根据图象可知:用租书卡租书的金额y(元)与租书时间x(天)之间的函数关系是正比例函数关系,会员卡租书的金额y(元)与租书时间x(天)之间的函数关系是一次函数关系,然后利用待定系数法求解即可求得答案;(3)将x=50,y=80分别代入两函数解析式,求得y和x的值,比较即可求得答案.【详解】(1)租书卡每天租书花费:50÷100=0.5(元),设会员卡每天租书花费x元,则20+100x=50,得x=0.3;故答案为0.5;0.3;(2)设用租书卡的函数关系式为:y=kx,∴100k=50,解得:k=0.5,∴用租书卡的关系为:y=0.5x,设用会员卡的关系为:y=ax+b,∴20 10050 ba b=⎧⎨+=⎩,解得:0.320ab=⎧⎨=⎩,∴用会员卡的关系式为:y=0.3x+20;(3)租书50天,租书卡花费0.5×50=25(元),会员卡花费0.3×50+20=35(元),说明使用会员卡比租书卡划算.花费80元租书,租书卡花费0.5×x=80(元),解得:x=160,会员卡花费0.3×x+20=80(元),解得:x=200,说明使用会员卡比租书卡划算.【点睛】主要考查利用一次函数的模型解决实际问题的能力和读图能力.解题的关键是要分析题意根据实际意义准确的列出解析式,并会根据图象得出所需要的信息.注意数形结合与方程思想的应用.。
北师大版八年级上册数学期中考试试题一、单选题1.下列各数是无理数的是()A.227B.(4﹣π)0C.﹣πD2.下列函数中,y是x的正比例函数的是()A.y=5x﹣1B.y=12x C.y=x2D.y=3x3.如果点P(2,y)在第四象限,则y的取值范围是()A.y<0B.y>0C.y≤0D.y≥04)A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.下列各组数为勾股数的是()A.6,12,13B.3,4,7C.4,7.5,8.5D.8,15,17 6.下列计算正确的是()A B=1CD7.在一次函数y=﹣3x+9的图象上有两个点A(x1,y1),B(x2,y2),已知x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法确定8.有一长、宽、高分别为5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A B C D.2cm9.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A .B .C .D .10.已知点12(4,),(2,)y y -都在直线122y x =+上,则1y 和2y 的大小关系是()A .12y y >B .12y y =C .12y y <D .无法确定二、填空题11.函数y =中,自变量x 的取值范围是________.12.若直角三角形的两直角边长分别为3cm ,4cm ,则斜边的长为__________cm .13.在平面直角坐标系中,点()1,1A -和()1,1B 关于______轴对称.14.已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).15.已知实数x,y 满足2y =,则()2011y x -的值为__________.16.若某个正数的两个不同的平方根分别是2m ﹣4与2,则m 的值是________.17.已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8.则边BC 的长为_______.三、解答题18.191|﹣3)0+.20.已知函数()0y kx b k =+≠的图象经过点()2,1A -,点51,2B ⎛⎫ ⎪⎝⎭(1)求直线AB 的解析式;(2)若在直线AB上存在点C,使1=2ACO ABOS S∆∆,求出点C坐标.21.小明用的练习本可在甲、乙两个商店买到.已知两个商店的标价都是每本1元.但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖.⑴当购买数量超过10本时,分别写出在甲、乙两商店购买练习本的费用y(元)与购买数量x(本)之间的关系式;⑵小明要买30本练习本,到哪个商店购买较省钱?22.如图,长方形纸片ABCD中,AB=8,BC=10,折叠纸片的一边AD,使点D落在BC 边上的点F处,AE为折痕.请回答下列问题:(1)AF=________;(2)试求线段DE的长度.23.在平面直角坐标系xOy中, ABC三个顶点的坐标分别为A(0,2),B(2,0),C(5,3).(1)点C关于x轴对称的点C1的坐标为,点C关于y轴对称的点C2的坐标为.(2)试说明 ABC是直角三角形.(3)已知点P在x轴上,若12PBC ABCS S=△△,求点P的坐标.24.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1并写出坐标;(2)求出△A1B1C1的面积.25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与y轴相交于点C(0,6),与直线OA相交于点A且点A的纵坐标为2,动点P沿路线O A C→→运动.(1)求直线BC的解析式;(2)在y轴上找一点M,使得△MAB的周长最小,则点M的坐标为______;(请直接写出结果)(3)当△OPC的面积是△OAC的面积的14时,求出这时P的坐标.参考答案1.C【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A、227是分数,属于有理数,故此选项不符合题意;B、(4﹣π)0=1,1是有理数,故此选项不符合题意;C、﹣π是无理数,故此选项符合题意;D2,2是有理数,故此选项不符合题意;故选:C.【点睛】本题考查的是无理数的定义,掌握“无限不循环的小数是无理数”是解题的关键.2.B【解析】【分析】一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数,据此判断即可.【详解】解:A.y=5x﹣1不属于正比例函数,不合题意;B.y=12x属于正比例函数,符合题意;C.y=x2不属于正比例函数,不合题意;D.y=3x不属于正比例函数,不合题意;故选:B.【点睛】本题考查了正比例函数的识别,熟知形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数是解本题的关键.3.A【解析】【分析】根据第四象限的点的坐标特点解答即可.解:∵点P(2,y)在第四象限,∴y<0.故选:A.【点睛】本题考查了点的坐标特征,熟练掌握四个象限内点的坐标特征是解本题的关键.4.B【解析】【详解】根据9<13<16,可知32<13<42,可知34.故选B.【点睛】此题主要考查了二次根式的估算,解题关键是要找到被开方数相接近的平方数,即找到附近的平方数,确定开方的结果即可.5.D【解析】【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A、62+122≠132,故不符合题意,B、32+42≠72,故不符合题意,C、7.5,8.5不是正整数,故不符合题意,D、82+152=172,故符合题意.故选:D.6.C【解析】【分析】根据二次根式的运算方法判断选项的正确性.解:A选项错误,不是同类二次根式不可以加减;B选项错误,不是同类二次根式不可以加减;C选项正确;D选项错误,2故选:C.7.A【解析】根据一次函数解析式一次项系数的正负判断函数的增减关系.【详解】解:∵一次函数的一次项系数k=-3<0,∴y随着x的增大而减小,∵x1>x2,∴y1<y2.故选:A.8.A【解析】根据勾股定理即可得到结论.【详解】如图,,,故选:A.【点睛】此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.9.D根据正比例函数y kx =的图象经过第一,三象限可得: 0k >,因此在一次函数y kx k =-中0k >, 0b k =-<,根据0k >直线倾斜方向向右上方, 0b <直线与y 轴的交点在y 轴负半轴,画出图象即可求解.【详解】根据正比例函数y kx =的图象经过第一,三象限可得:所以0k >,所以一次函数y kx k =-中0k >,0b k =-<,所以一次函数图象经过一,三,四象限,故选D.【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.10.C 【解析】【分析】根据一次函数的增减性进行判断.【详解】∵122y x =+,k >0,∴y 随x 的增大而增大,又∵点12(4,),(2,)y y -在直线122y x =+上,且-4<2,∴y 1<y 2.故选:C .【点睛】考查了一次函数的性质,解题关键是熟记一次函数的性质:一次函数y=kx+b ,当k>0时,图象从左到右上升,y 随x 的增大而增大;当k<0时,图象从左到右下降,y 随x 的增大而减小.11.x≥0【解析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵y=∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.12.5【解析】【分析】直接根据勾股定理两直角边的平方和等于斜边的平方进行计算.【详解】根据勾股定理,得斜边的长5=(cm).故答案为:5【点睛】此题考查勾股定理,解题关键在于掌握运算法则.13.x【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可对称结论.【详解】解:点A(1,−1)和B(1,1)关于x轴对称,故答案为:x.【点睛】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.14.<【解析】【分析】由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2.【详解】解:∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.15.-1【解析】【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】都有意义,∴x=3,则y=2,故(y-x)2011=-1.故答案为:-1.【点睛】此题考查二次根式有意义的条件,正确得出x的值是解题关键.16.1【解析】【分析】根据平方根的定义得出2m﹣4+2=0,再进行求解即可得出答案.【详解】解:∵一个正数的两个平方根分别是2m ﹣4与2,∴2m ﹣4+2=0,∴m =1;故答案为:1.【点睛】本题考查了平方根的应用,能得出关于m 的方程是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.17.21或9【解析】【分析】根据题意,ABC 可能是锐角三角形或者钝角三角形,分两种情况进行讨论作图,然后利用勾股定理即可求解.【详解】解:在ABC 中,17AB =,10AC =,BC 边上高8AD =,如图所示,当ABC 为锐角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:15621BC BD DC =+=+=;如图所示:当ABC 为钝角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:1569BC BD DC =-=-=;综上可得:BC 的长为:21或9.故答案为:21或9.【点睛】题目主要考查勾股定理,进行分类讨论作出图象运用勾股定理解直角三角形是解题关键.18.56【解析】【分析】化简二次根式,然后先进行二次根式分母有理化计算,最后算加减.【详解】125024223226232)22622⨯2610262+-6526+-=5-.【点睛】本题主要考查了二次根式的混合运算,理解二次根式的性质,掌握二次根式的混合运算的运算顺序和计算法则是解答本题的关键.19+2【解析】【分析】利用零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算法则进行计算即可.【详解】解:原式)1153=--+-1153=+-+-2.【点睛】本题主要考查了零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算,解题的关键在于能够熟练掌握相关计算法则.20.(1)y=12x+2;(2)C (-1274,)或(-1736,);【解析】【分析】(1)根据点A 、B 的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C 是线段AB 的中点,或A 是线段BC 的三等分点,即可求得C 的坐标.【详解】(1)∵一次函数y=kx+b 的图象经过点A (-2,1)、点B (1,52).∴2152k b k b -+⎧⎪⎨+⎪⎩==,解得:122k b ==⎧⎪⎨⎪⎩.∴这个一次函数的解析式为:y=12x+2.(2)如图,∵在直线AB 上存在点C ,使S △ACO =12S △ABO ,∴C是线段AB的中点,或A是线段BC的三等分点,∵A(-2,1),B(1,5 2).∴C(-1274,)或(-7124,);【点睛】此题考查待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.21.(1)y甲=0.7x+3,y乙=0.85x.(2)在甲商店购买较省钱.【解析】【分析】(1)根据题意:甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖,列出函数关系式即可;(2)把x=30,分别代入甲乙的解析式,求出y的值就可以得出结论.【详解】⑴当x>10时,y甲=10+0.7(x-10)=0.7x+3,y乙=0.85x.⑵当x=30时,y甲=0.7×30+3=24元;y乙=0.85×30=25.5元;∵y甲<y乙,∴在甲商店购买较省钱.【点睛】此题考查一次函数的应用:关键在于根据题意用一次函数表示两个变量的关系,然后利用一次函数的性质解决问题.22.(1)10;(2)DE=5.【解析】【分析】(1)由折叠性质可得AF=AD,根据矩形的性质即可得到AF的长;(2)利用勾股定理可求出BF的长,进而求出CF的长,设DE=x,根据折叠性质可得EF=DE=x,利用勾股定理列出方程求得x的值即可得答案.【详解】(1)在长方形ABCD中,BC=10,∴AD=BC=10,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴AF=AD=10,故答案为:10(2)∵AB=8,AF=10,在Rt△ABF中,AB2+BF2=AF2,∴6BF==,∴CF=BC﹣BF=10-6=4,设DE=x,则CE=8﹣x,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴EF=DE=x,∠D=∠AFE=90°,∴EF2=CF2+CE2,即x2=(8﹣x)2+42,解得:x=5,∴DE=5.【点睛】本题考查矩形的性质、折叠性质及勾股定理,熟练掌握折叠的性质,正确找出对应边与对应角是解题关键.23.(1)(5,-3),(﹣5,3);(2)见解析;(3)P(0,0)或(4,0)【解析】(1)根据平面直角坐标系中关于坐标轴为对称点的特点可直接得到结果;(2)根据勾股定理求出AB2,AC2,BC2,再根据勾股定理的逆定理即可证得结论;(3)先求出S△ABC =6,设P点坐标为(t,0),根据三角形面积公式得到12×5×|t﹣2|=12×6=3,然后求出t的值,则可得到P点坐标.【详解】解:(1)∵C点的坐标为(5,3),∴点C关于x轴对称的点C1的坐标为(5,﹣3),点C关于y轴对称的点C2的坐标为(﹣5,3),故答案为:(5,-3),(﹣5,3);(2)∵AB 2=22+22=8,AC 2=(3﹣2)2+52=26,BC 2=(5﹣2)2+32=18,∴AB 2+BC 2=8+18=26=AC 2,∴△ABC 是直角三角形;(3)S △ABC =3×5﹣12×2×2﹣12×(5﹣2)×3﹣12×(3﹣2)×5=6,设P 点坐标为(t ,0),∵S △PBC =12S △ABC ,∴12×3×|t ﹣2|=12×6=3,∴t ﹣2=±2,∴t =0或t =4,∴P 点坐标为(0,0)或(4,0).【点睛】本题主要考查了坐标与图形,关于坐标轴对称的点的坐标特征,勾股定理的逆定理等等,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)图见解析;点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1);(2)92.【解析】【分析】(1)先根据轴对称的性质作出△A 1B 1C 1,然后再写出各点坐标即可;(2)用一个长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积即可.【详解】解:(1)如图所示:△A 1B 1C 1即为所求.由图可知:点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1).(2)用一个长方形将△A 1B 1C 1框住,如上图所示:由图可知:△A 1B 1C 1的面积=5×3-12×1×2-12×2×5-12×3×3=92【点睛】此题考查的是画关于y 轴对称的图形和网格中求面积,掌握关于y 轴对称的图形的画法和用长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积,是解决此题的关键.25.(1)BC 解析式为6y x =-+;(2)M (0,65);(3)点P 的坐标为(1,12)或(1,5).【解析】【分析】(1)设直线BC 的解析式是y=kx+b ,把B 、C 的坐标代入,求出k 、b 即可;(2)先确定出点M 的位置,进而求出直线AB'的解析式即可得出结论;(3)分为两种情况:①当P 在OA 上,此时OP :AO=1:4,根据A 点的坐标求出即可;②当P 在AC 上,此时CP :AC=1:4,求出P 即可.【详解】(1)设直线BC的解析式是y=kx+b,根据题意得:606bk b ⎧⎨+⎩==解得16 kb-⎧⎨⎩==则直线BC的解析式是:y=-x+6;(2)如图,作点B(6,0)关于y轴的对称点B',∴B'(-6,0),连接AB'交y轴于M,此时MA+MB最小,得到△MAB的周长最小设直线AB'的解析式为y=mx+n,∵A(4,2),∴42 60 m nm n+⎧⎨-+⎩==,∴1565 mn⎧⎪⎪⎨⎪⎪⎩==,∴直线AB'的解析式为y=16 55x+,令x=0,∴y=6 5,∴M(0,6 5),(3)设OA的解析式是y=ax,则4a=2,解得:a=12,则直线的解析式是:y=12 x,①当P在OA上时,∵当△OPC的面积是△OAC的面积的14时,∴P的横坐标是14×4=1,在y=12x中,当x=1时,y=12,则P的坐标是(1,12);②当P在AC上时,∵△OPC的面积是△OAC的面积的1 4,∴CP:AP=1:5,∵A(4,2)∴在y=-x+6中,当x=1时,y=5,则P的坐标是(1,5),∴P的坐标是:P1(1,12)或P2(1,5).【点睛】此题考查一次函数的交点问题,用待定系数法求一次函数的解析式等知识点,能求出符合的所有情况是解题的关键.。
A
B
E
D
C
八年级(上)期中考试数学试卷
(时间:90分钟.满分:100分)
班级 学号 姓名 成绩
一、选择题(本大题共10小题,每小题3分,共30分)
1、下列数中,0.4583,.
7.3,3.14,2,38-,
2
π
,0.373373337… 是无理数的有( ) A 、 2个 B 、 3个 C 、 4个 D 、 5个 2、下列说法正确的有( )个
①-1是1的平方跟 ②9是(-9)2的算术平方跟 ③-9的平方跟是±3 ④16的平方跟是±4。
A 、 1
B 、 2
C 、 3
D 、 4 3、下列关于12的说法中,错误..
的是( ) A 、12是无理数; B 、3<12<4; C 、12是12的算术平方根; D 、12不能再化简。
4、下列计算结果正确的是( )
A 、636±=;
B 、6.3)6.3(2
-=-; C 、2)3(3-=
-; D 、3355-=-
5、如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )
A 、不是直角三角形;
B 等腰三角形;
C 、等边三角形;
D 、以上答案都不对。
(第5题图) (第6题图)
6、 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD
折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.2㎝ B 、 3㎝ C 、 4㎝ D 、 5㎝。
7 、下列图形中,不能由图形M 经过一次平移或旋转得到的是( )。
题号 1 2 3 4 5 6 7 8 9 10 答案
A
B
C
A B C D
M
-1 0 1 A 2
D C A O B
8、如图1ΔABC 和ΔADE 都是等腰直角三角形,∠C 和∠ADE 都是直角,点C 在AE 上,ΔABC 绕着A 点经过逆时针旋转x 度后能够与ΔADE 重合 ,若将图1作为“基本图形”绕着A 点经过逆时针连续旋转y 度可得到图2. 则x 、y 的值分别为( )。
A
B C
D
E
A
B
C
D
E
(图1) (图2)
(A )45°,90° (B )90°,45° (C )60°,30° (D )30°,60° 9、如图,以数轴上的单位线段长为边作一个正方形, 以数轴原点为圆心,孕以正方形的对角线为半径画弧 交数轴正半轴于A 点,则A 点表示的等于( ) A 、
23 ; B 、2
1
; (9题图) C 、3 ; D
、2。
10 .
图案(
A )-(D )中能够通过平移图案(1)得到的是( ).
(1) A B C D
二、填空题(本小题共5小题,每题3分,共15分)
11、实数p 在数轴上的位置如图所示,化简=-+
-22
)2()1(p p .
12、如图,以左边图案的中心为旋转中心,将右边图案按 方向旋转 即可得到
左边图案。
(第12题) (第14题)
13、请你举出三个无理数: ;
14、如图,∠OAB=∠OBC=∠OCD=90°, (第15题) AB=BC=CD=1,OA=2,则OD 2=____________。
15
、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形
的边长为7cm ,则正方形A
,B ,C ,D 的面积之和为___________cm 2。
A B C
D
7cm o
1 P
2
三、解答下列各题(每小题6分,共30分)
15、计算:1
823.14.2⎛⎫ ⎪⎝⎭
-1++(-π)-2
1 6.印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅?”
请用学过的数学知识回答这个问题。
17、如图,CA ⊥AB ,AB=12,BC=13,DC=3,AD=4,求四边形ABCD 的面积。
D
C A
B
18、如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。
请在图中画出221352、、、这样的线段,并选择其中的一个说明这样画的道理。
19、将左图绕O 点逆时针旋转︒90,将右图向右平移6格。
O
四、(本大题3小题,共25分) 20、观察下面式子:
(1)运用计算器探索规律:(3分)
112-=____;111122- =____;111111222- =____;……
(2)根据你得到的规律计算:2n 111222n ∙∙∙-∙∙∙
位
位
=__________ . (7分) 21、若实数x ,y 满足 0)8(1322=-+--x y x ,求 y x 5
3
2+
的平方根. (8分)
22、阅读下面材料:(10分)
如图(1),把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△DEC 的位置; 如图(2),以BC 为轴,把△ABC 翻折180º,可以变到△DBC 的位置; 如图(3),以点A 为中心,把△ABC 旋转180º,可以变到△AED 的位置.
像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的. 这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换. 回答下列问题:
① 如图,四边形ABCD 是正方形,AF=AE ,观察图形,试问可以通过平行移动、 翻折旋转中的 哪一种 方法 怎样 变化,使△ABE 变到△ADF 的位置;
②指出图中线段BE 与DF 之间的关系,为什么?。