考点5 函数与方程、函数模型及其应用
- 格式:doc
- 大小:275.00 KB
- 文档页数:6
高三数学函数模型及其应用试题答案及解析1.定义在上的函数满足,则=()A.-1B.0C.1D.2【答案】C【解析】因为2015=6×336-1,所以f(2015)=f(-1)=log(1+1)=1.选C2【考点】分段函数求值2.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y=ka x,若牛奶在0℃的冰箱中,保鲜时间约为100 h,在5℃的冰箱中,保鲜时间约为80 h,那么在10℃时保鲜时间约为()A.49 h B.56 h C.64 h D.72 h【答案】C【解析】由得k=100,a5=,所以当10℃时,保鲜时间为100·a10=100·()2=64,故选C.3.(2011•湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).【答案】(1)(2)3333辆/小时【解析】(1)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为(2)依题并由(1)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(1)函数v(x)的表达式(2)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.4.某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如表:时间(将第x天记为x)x1101118而这20天相应的销售量Q(百件/天)与x对应的点(x,Q)在如图所示的半圆上.(1)写出每天销售收入y(元)与时间x(天)的函数关系式y=f(x).(2)在这20天中哪一天销售收入最高?为使每天销售收入最高,按此次测试结果应将单价P定为多少元为好?(结果精确到1元)【答案】(1)y=100QP=100,x∈[1,20],x∈N*(2)7【解析】(1)P=x∈N*,Q=,x∈[1,20],x∈N*,所以y=100QP=100,x∈[1,20],x∈N*.(2)因为(x-10)2[100-(x-10)2]≤=2500,所以当且仅当(x-10)2=100-(x-10)2,即x=10±5时,y有最大值.因为x∈N*,所以取x=3或17时,y=700max≈4999(元),此时,P=7元.答:第3天或第17天销售收入最高,按此次测试结果应将单价P定为7元为好.5.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.【答案】(1)当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元(2)当长为16米,宽为10米时总造价最低,总造价最低为38 882元.【解析】(1)设污水处理池的宽为x米,则长为米.则总造价f(x)=400×(2x+)+248×2x+80×162=1 296x++12 960=1 296(x+)+12 960≥1 296×2 +12 960=38 880(元),当且仅当x=(x>0),即x=10时取等号.∴当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元.(2)由限制条件知,∴10≤x≤16,设g(x)=x+(10≤x≤16),g(x)在上是增函数,∴当x=10时(此时),g(x)有最小值,即f(x)有最小值,即为1 296×+12 960=38 882元.∴当长为16米,宽为10米时总造价最低,总造价最低为38 882元.6.农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:根据上表所提供信息,第_____号区域的总产量最大,该区域种植密度为_____株/.{第13,14题的第一空3分,第二空2分}【答案】5,3.6【解析】由图中数据可得,,总产量,故时取得最大值,即第5号区域的总产量最大,该区域种植密度为.【考点】二次函数.7.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且. 假设该容器的建造费用仅与其表面积有关. 已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为22千元. 设该容器的建造费用为y千元. 当该容器建造费用最小时,r的值为()A.B.1C.D.2【答案】B【解析】设容器的容积为,由题意知:,又,故由于,因此.所以建造费用,因此,,此时易知,故选B.【考点】1.几何体的体积;2.基本不等式.8.设函数,.(1)解方程:;(2)令,求证:;(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.【答案】(1);(2)参考解析;(3)【解析】(1)由于函数,,所以解方程.通过换元即可转化为解二次方程.即可求得结论.(2)由于即得到.所以.所以两个一组的和为1,还剩中间一个.即可求得结论.(3)由是实数集上的奇函数,可求得.又由于对任意实数恒成立.该式的理解较困难,所以研究函数的单调性可得.函数在实数集上是递增.集合奇函数,由函数值大小即可得到变量的大小,再利用基本不等式,从而得到结论.试题解析:(1)即:,解得,(2).因为,所以,,(3)因为是实数集上的奇函数,所以.,在实数集上单调递增.由得,又因为是实数集上的奇函数,所以,,又因为在实数集上单调递增,所以即对任意的都成立,即对任意的都成立,.【考点】1.解方程的思想.2.函数的单调性.3.归纳推理的思想.4.基本不等式.9.为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,要使接下来的4天中能够持续有效净化,试求的最小值(精确到0.1,参考数据:取1.4).【答案】(1)可达8天;(2)a的最小值为.【解析】(1)根据题中条件每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系已经给出,则易得一次喷洒4个单位的净化剂时的函数关系式:,这样就得到一个分段函数,对分段函数的处理常用的原则:先分开,现合并,解两个不等式即可求解; (2)中若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,根据题意从第6天开始浓度来源与两方面,这是题中的难点,前面留下的为:,后面新增的为:,所得化简即可得到:,结合基本不等式知识求出最小值,最后解一个不等式:,即可求解.试题解析:(1)因为一次喷洒4个单位的净化剂,所以浓度则当时,由,解得,所以此时. 3分当时,由解得,所以此时.综合得,若一次投放4个单位的制剂,则有效净化时间可达8天. 7分(2)设从第一次喷洒起,经x()天,浓度. 10分因为,而,所以,故当且仅当时,y有最小值为.令,解得,所以a的最小值为. 14分【考点】1.实际应用问题;2.分段函数;3.基本不等式.10.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D)有x+l∈D,且f (x+l)≥f(x),则称f(x)为M上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的8高调函数,那么实数a的取值范围是( )A. B. C. D.【答案】A【解析】当时,,则,即为上的8高调函数;当时,函数的图象如图所示,若为上的8高调函数,则,解得且.综上.【考点】1.新定义题;2.函数图像.11.要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?【答案】半圆直径与矩形的高的比为2∶1【解析】设半圆直径为2R,矩形的高为a,则2a+2R+πR=L(定值),S=2Ra+πR2=-R2+LR,当R=时S最大,此时=1,即半圆直径与矩形的高的比为2∶1时,窗户能够透过最多的光线.12.我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变,经过5570年(叫做14C的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C的原始含量为a,则经过t年后的残余量a′(与a之间满足a′=a·e-kt).现测得出土的古莲子中14C残余量占原量的87.9%,试推算古莲子的生活年代.【答案】1036年前【解析】因a′=a·e-kt,即=e-kt.两边取对数,得lg=-ktlge.①又知14C的半衰期是5570年,即t=5570时,=.故lg=-5570klge,即klge=.代入①式,并整理,得t=-.这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的是0.879,代入公式,得t=-≈1036.即古莲子约是1036年前的遗物.13.用长为90cm、宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm时,容器的容积最大.【答案】10【解析】设容器的高为xcm,即小正方形的边长为xcm,该容器的容积为V,则V=(90-2x)(48-2x)x=4(x3-69x2+1080x),0<x<12,V′=12(x2-46x+360)=12(x-10)(x-36),当0<x<10时,V′>0;当10<x<12时,V′<0.所以V在(0,10]上是增函数,在[10,12)上是减函数,故当x =10时,V最大.14.某客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过25kg按0.5元/kg收费,超过25kg的部分按0.8元/kg收费,计算收费的程序框图如图所示,则①②处应填()A.y=0.8xy=0.5xB.y=0.5xy=0.8xC.y=0.8x-7.5y=0.5xD.y=0.8x+12.5y=0.8x【答案】C【解析】设行李的质量为xkg,则所需费用为:y=即y=15.定义在R上的函数及二次函数满足:且。
ʏ张文伟函数是每年高考的必考内容㊂纵观近几年的高考试题,函数的概念与性质,函数的图像与应用问题,分段函数问题,以函数形式出现的综合题和应用题一直是常考点,且常考常新㊂下面就函数的概念与性质的常见典型考题进行举例分析,供大家学习与参考㊂题型一:函数概念的理解判断对应关系是否构成函数的关键:一是自变量x的取值是否任意,二是对应的函数值y是否唯一㊂判断两个函数是否相同,要根据函数的 三要素 来判断,即看函数的定义域㊁对应关系㊁值域是否一致,当三者都一致的时候,两个函数才是相同函数㊂例1设M={x|0ɤxɤ2},N={y| 0ɤyɤ2},给出下列四个图形,如图1,图2,图3,图4,其中能表示从集合M到N的函数关系的图形有()㊂图1图2图3图4A.1个B.2个C.3个D.4个解:由函数的定义知,M中任意一个x,在N中都有唯一的y与之对应,故图1,图2,图4正确㊂应选C㊂跟踪训练1:下列函数中与函数y=x是同一个函数的是()㊂A.y=(x)2B.y=3x3C.y=4x4D.y=(x+1)2x+1-1提示:A中,y=(x)2=x(xȡ0),yȡ0,可知定义域不同且值域不同,所以两个函数不是同一个函数㊂B中,y=3x3=x(xɪR),yɪR,对应关系相同,定义域和值域都相同,所以是同一个函数㊂C中,y=4x4,yȡ0,与y=x值域不同,且当x<0时,它的对应关系与函数y=x不相同,所以不是同一个函数㊂D中,y=(x+1)2x+1-1的定义域为{x|xʂ-1},与函数y=x的定义域不相同,所以不是同一个函数㊂应选B㊂题型二:求具体函数的定义域函数的定义域是指使函数有意义的自变量的取值集合,其实质是以使函数的表达式所含运算有意义为原则㊂函数的定义域要用集合或区间的形式表示㊂若已知函数f(x)的定义域为[a,b],则函数f[g(x)]的定义域是指满足不等式aɤg(x)ɤb的x取值范围;已知f[g(x)]的定义域是[a,b],指的是xɪ[a,b],要求f(x)的定义域,就是求xɪ[a,b]时g(x)的值域㊂例2函数y=x+3-3x2+x-6的定义域是㊂解:要使此函数有意义,x必须满足x+3ȡ0,x2+x-6ʂ0,{即xȡ-3,xʂ2且xʂ-3,{也即x>-3且xʂ2,所以函数的定义域为(-3, 2)ɣ(2,+ɕ)㊂跟踪训练2:若函数f(x)的定义域为[-2,1],求函数y=f x+14()㊃f x-14()的定义域㊂提示:要使函数y=f x+14()㊃f x-14()有意义,必须满足经典题突破方法高一数学2022年10月-2ɤx +14ɤ1,-2ɤx -14ɤ1㊂ìîíïïïï由此解得-94ɤx ɤ34,-74ɤx ɤ54,ìîíïïïï即-74ɤx ɤ34㊂故函数y =f x +14()㊃f x -14()的定义域为-74,34[]㊂题型三:函数的值与值域问题一次函数的值域为R ,二次函数的值域可用公式法㊁配方法或图像法求解,反比例函数的值域可用图像法求解㊂在求值域时,一定要考虑定义域,如求y =x 2-2x (-1ɤx <2)的值域,不能用公式法,可根据定义域结合图像求解㊂例3 已知函数f (x )=3x 2-2x -1,则f (-2)=;f (m -1)=;f [f (-1)]=㊂解:f (-2)=3ˑ(-2)2-2ˑ(-2)-1=15㊂f (m -1)=3(m -1)2-2(m -1)-1=3m 2-8m +4㊂因为f (-1)=3ˑ(-1)2-2ˑ(-1)-1=4,所以f [f (-1)]=f (4)=3ˑ42-2ˑ4-1=39㊂跟踪训练3:求下列函数的值域㊂(1)y =2x -4x +3㊂(2)y =1x 2+2x +2㊂提示:(1)因为y =2x -4x +3=2(x +3)-10x +3=2-10x +3ʂ2,所以y ɪ(-ɕ,2)ɣ(2,+ɕ),即此函数的值域为(-ɕ,2)ɣ(2,+ɕ)㊂(2)令u =x 2+2x +2=(x +1)2+1ȡ1,则y =1u㊂因为u ɪ[1,+ɕ),所以y ɪ(0,1],即此函数的值域为(0,1]㊂题型四:求函数的解析式求函数解析式的四种常用方法:待定系数法,当已知函数类型时,常用待定系数法;代入法,已知y =f (x )的解析式,求函数y =f [g (x )]的解析式时,可直接用新自变量g (x )替换y =f (x )中的x ;换元法,已知y =f [g (x )]的解析式,求y =f (x )的解析式,可令g (x )=t ,反解出x ,然后代入y =f [g (x )]中,求出f (t ),即得f (x );构造方程组法,当同一个对应关系中的两个自变量之间有互为相反数或者互为倒数关系时,可构造方程组求解㊂例4 设二次函数f (x )满足f (x -2)=f (-x -2),且图像与y 轴交点的纵坐标为1,被x 轴截得的线段长为22,求函数f (x )的解析式㊂解:(方法1)设f (x )=a x 2+b x +c (a ʂ0)㊂由已知得c =1㊂由f (x -2)=f (-x -2),可得4a -b =0㊂由|x 1-x 2|=b 2-4a c |a |=22,可得b 2-4a c =8a2㊂由上可得,b =2,a =12,c =1,所以函数f (x )=12x 2+2x +1㊂(方法2)因为f (x -2)=f (-x -2),所以y =f (x )图像的对称轴为x =-2㊂又|x 1-x 2|=22,所以y =f (x )的图像与x 轴的交点为(-2-2,0),(-2+2,0)㊂设f (x )=a (x +2+2)(x +2-2)㊂因为f (0)=1,所以a =12㊂故函数f (x )=12[(x +2)2-2]=12x 2+2x +1㊂跟踪训练4:求下列函数的解析式㊂(1)已知f (x -1)=x +2x ,求f (x )㊂(2)设f (x )是定义在(1,+ɕ)上的一个函数,且f (x )=2x f1x ()-1,求f (x )㊂提示:(1)令t =x -1,则t ȡ-1,且x =t +1,所以f (t )=(t +1)2+2(t +1)=t 2+4t +3㊂故f (x )=x 2+4x +3(x ȡ-1)㊂(2)因为f (x )=2x f 1x ()-1,所以用1x 代换x ,得f 1x()=21xf (x )-1㊂由上经典题突破方法高一数学 2022年10月消去f1x(),解得f (x )=4f (x )-2x -1,所以f (x )=23x +13㊂又因为x ɪ(1,+ɕ),所以函数f (x )=23x +13,x ɪ(1,+ɕ)㊂题型五:分段函数的应用求分段函数的函数值时,一般应先确定自变量的取值在哪个区间上,然后用与这个区间相对应的解析式求函数值㊂已知分段函数的函数值,求自变量的值,要进行分类讨论,逐段用不同的函数解析式求解,求解最后检验所求结果是否适合条件㊂实际问题中的分段函数,以自变量在不同区间上的对应关系的不同进行分段求解㊂例5已知函数f (x )=x 2+1,x ȡ0,-2x ,x <0,{若f (x )=10,则x =㊂解:当x ȡ0时,f (x )=x 2+1=10,可得x =-3(舍去)或x =3;当x <0时,f (x )=-2x =10,可得x =-5㊂综上可知,x =-5或x =3㊂跟踪训练5:已知函数f (x )=12x -1,x ȡ0,1x,x <0,ìîíïïïï若f (a )=a ,则实数a 的值是㊂提示:当a ȡ0时,f (a )=a2-1=a ,可得a =-2(舍去);当a <0时,f (a )=1a=a ,可得a =-1或a =1(舍去)㊂综上知实数a =-1㊂题型六:函数的单调性问题证明函数f (x )在区间上的单调性的五个步骤:①设元,②作差,③变形,④判号,⑤定论㊂解决与抽象函数有关的变量的取值范围问题,关键是利用单调性 脱去 函数符号 f,从而转化为不等式求解㊂例6 已知函数f (x )在区间(-1,1)上单调递减,且f (a -1)>f (1-4a ),求a 的取值范围㊂解:由题意知-1<a -1<1,-1<1-4a <1,{解得0<a <12㊂因为函数f (x )在区间(-1,1)上单调递减,且f (a -1)>f (1-4a ),所以a -1<1-4a ,可得a <25㊂综上可得,0<a <25,即a 的取值范围是0,25()㊂跟踪训练6:设函数f (x )=x |x -1|+m ,当m >1时,求函数f (x )在区间[0,m ]上的最大值㊂提示:函数f (x )=x |x -1|+m =-x 2+x +m ,0ɤx ɤ1,x 2-x +m ,1<x ɤm ㊂{当0ɤx ɤ1时,f (x )=-x 2+x +m =-x -12()2+m +14ɤm +14;当1<x ɤm 时,由f (x )=x 2-x +m =x -12()2+m -14,可得f (x )在(1,m ]上单调递增,所以f (x )m a x =f (m )=m 2㊂由m 2ȡm +14且m >1得m ȡ1+22㊂所以f (x )m a x =m +14,1<m <1+22,m 2,m ȡ1+22㊂ìîíïïïï题型七:函数性质的应用函数的性质主要有定义域㊁值域㊁单调性㊁奇偶性㊁周期性㊁对称性等㊂利用奇偶性和单调性解不等式要注意的是:奇函数在定义域内的关于y 轴对称的两个区间上的单调性相同,偶函数在定义域内的关于y 轴对称的两个区间上的单调性相反㊂例7 设f (x )在R 上是偶函数,在(-ɕ,0)上单调递减,若f (a 2-2a +3)>f (a 2+a +1),求实数a 的取值范围㊂解:由题意知f (x )在(0,+ɕ)上单调递增㊂因为a 2-2a +3=(a -1)2+2>0,a 2+a +1=a +12()2+34>0,且f (a 2-2a +3)>f (a 2+a +1),所以a 2-2a +3>a 2+a +1,解得a <23㊂故所求实数a 的取值范围是 经典题突破方法 高一数学 2022年10月-ɕ,23()㊂跟踪训练7:设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围㊂提示:因为f (x )是偶函数,所以f (-x )=f (x )=f (|x |)㊂不等式f (1-m )<f (m )等价于f (|1-m |)<f (|m |)㊂又f (x )在区间[0,2]上单调递减,所以|1-m |>|m |,-2ɤm ɤ2,-2ɤ1-m ɤ2,ìîíïïï解得-1ɤm <12㊂故实数m 的取值范围是-1,12[)㊂题型八:幂函数问题对于幂函数f (x )=xα,当α>0时,在(0,+ɕ)上单调递增;当α<0时,在(0,+ɕ)上单调递减㊂对于幂函数f (x )=xα,在(0,1)上,指数越大,图像越靠近x 轴(简记为 指大图低 );在(1,+ɕ)上,指数越大,图像越远离x 轴(简记为 指大图高)㊂例8 已知函数f (x )=x 3,x ɤa ,x 2,x >a,{若存在实数b ,使方程f (x )-b =0有两个根,则a 的取值范围是㊂解:存在实数b ,使方程f (x )-b =0有两个根等价于存在实数b ,函数y =f (x )与y =b 的图像有两个交点(图略)㊂当a <0时,y =f (x )在(a ,0)上单调递减,(0,+ɕ)上单调递增,所以存在实数b ɪ(0,a 2),使函数y =f (x )与y =b 的图像有两个交点;当0ɤa ɤ1时,y =f (x )在R 上单调递增,所以不存在实数b ,使函数y =f (x )与y =b 的图像有两个交点;当a >1时,y =f (x )在(-ɕ,a )上单调递增,(a ,+ɕ)上也单调递增,所以存在实数b ɪ(a 2,a3),使函数y =f (x )与y =b 的图像有两个交点㊂综上可得,a ɪ(-ɕ,0)ɣ(1,+ɕ)㊂跟踪训练8:已知幂函数y =x 3m -9(m ɪN *)的图像关于y 轴对称,且在(0,+ɕ)上单调递减,求满足(a +1)-m 3<(3-2a )-m3的a 的取值范围㊂提示:因为幂函数y =x 3m -9在(0,+ɕ)上单调递减,所以3m -9<0,解得m <3㊂又m ɪN *,所以m =1或m =2㊂因为函数图像关于y 轴对称,所以3m -9为偶数,可知m =1,则(a +1)-13<(3-2a )-13㊂因为y =x -13在(-ɕ,0),(0,+ɕ)上均单调递减,所以a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1㊂故a 的取值范围为(-ɕ,-1)ɣ23,32()㊂题型九:二次函数模型二次函数求最值的四种方法:配方法,判别式法,换元法,单调性法㊂求二次函数最值问题,最好结合二次函数的图像㊂例9 某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (t)之间的函数关系式可以近似地表示为y =x 25-48x +8000㊂已知此生产线年产量最大为210t ㊂若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少解:设可获得的总利润为W 万元,则W =40x -y=40x -x 25+48x -8000=-x 25+88x -8000=-15(x -220)2+1680(0ɤx ɤ210)㊂因为W 在[0,210]上单调递增,所以当x =210时,W m a x =-15(210-220)2+1680=1660(万元)㊂故年产量为210t 时,可获得最大利润,最大利润为1660万元㊂跟踪训练9:某工厂生产甲㊁乙两种产品所得利润分别为P (万元)和Q (万元),它们与投入资金m (万元)的关系有如下公式:P =12m +60,Q =70+6m ㊂今将200万元资金投入生产甲㊁乙两种产品,并要求对甲㊁乙两种产品的投入资金都不低于25经典题突破方法高一数学 2022年10月万元㊂(1)设对乙种产品投入资金x (万元),求总利润y (万元)关于x 的函数关系式及其定义域㊂(2)如何分配投入资金,才能使总利润最大?求出最大总利润㊂提示:(1)根据题意知,对乙种产品投入资金x 万元,对甲种产品投入资金(200-x )万元,那么总利润y =12(200-x )+60+70+6x =-12x +6x +230㊂由x ȡ25,200-x ȡ25,{解得25ɤx ɤ175,所以函数的定义域为[25,175]㊂(2)令t =x ,则y =-12t 2+6t +230=-12(t -6)2+248㊂因为x ɪ[25,175],所以t ɪ[5,57]㊂当t ɪ[5,6]时,函数单调递增;当t ɪ[6,57]时,函数单调递减㊂所以当t =6,即x =36时,y m ax =248㊂故当甲种产品投入资金164万元,乙种产品投入资金36万元时,总利润最大,最大总利润为248万元㊂题型十:分段函数模型对于自变量的不同取值范围,有着不同的对应法则,这样的函数称为分段函数㊂分段函数是一个函数,而不是几个函数㊂分段函数的定义域是各段函数定义域的并集,值域是各段函数值域的并集㊂例10 某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购1个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元㊂(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数P =f (x )的表达式㊂(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元(一个零件的利润=实际出厂单价-成本)解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02,即x 0=550㊂因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元㊂(2)当0<x ɤ100时,P =60;当100<x ɤ550时,P =60-0.02(x -100)=62-x50;当x >550时,P =51㊂所以函数P =f(x )=60,0<x ɤ100,62-x 50,100<x ɤ550,51,x >550ìîíïïïï(x ɪN )㊂(3)设销售商一次订购量为x 个时,工厂获得的利润为L 元,则函数L =(P -40)x =20x ,0<x ɤ100,22x -x 250,100<x ɤ550,11x ,x >550ìîíïïïï(x ɪN )㊂当x =500时,L =6000;当x =1000时,L =11000㊂因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元㊂跟踪训练10:某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元㊂经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t (单位:百件)时,销售所得的收入约为5t -12t 2(万元)㊂(1)若该公司的年产量为x (单位:百件),试把该公司生产并销售这种产品所得的年利润f (x )表示为年产量x 的函数㊂(2)当这种产品的年产量为多少时,当年所得利润最大?提示:(1)当0<x ɤ5时,产品全部售出,当x >5时,产品只能售出500件㊂所以函数f(x )=经典题突破方法 高一数学 2022年10月5x -12x 2()-(0.5+0.25x ),0<x ɤ5,5ˑ5-12ˑ52()-(0.5+0.25x ),x >5,ìîíïïïï即函数f (x )=-12x 2+4.75x -0.5,0<x ɤ5,12-0.25x ,x >5㊂{(2)当0<x ɤ5时,f (x )=-12x 2+4.75x -0.5,所以当x =4.75(百件)时,f (x )有最大值,可得f (x )m a x =10.78125(万元)㊂当x >5时,f (x )<12-0.25ˑ5=10.75(万元)㊂故当这种产品的年产量为475件时,当年所得利润最大㊂题型十一:抽象函数问题解抽象函数问题,主要用赋值法㊂赋值法的关键环节是 赋值 ,赋值的方法灵活多样,既要照顾到已知条件的运用和待求结论的产生,又要考虑所给关系式的结构特点㊂例11 已知定义在区间(0,+ɕ)上的函数f (x )满足f x 1x 2()=f (x 1)-f (x 2),且当x >1时,f (x )<0㊂(1)证明:f (x )为单调递减函数㊂(2)若f (3)=-1,求f (x )在[2,9]上的最小值㊂解:(1)任取x 1,x 2ɪ(0,+ɕ),且x 1>x 2,则x 1x 2>1㊂因为当x >1时,f (x )<0,所以f x1x 2()<0,即f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),所以函数f (x )在区间(0,+ɕ)上是单调递减函数㊂(2)因为f (x )在(0,+ɕ)上是单调递减函数,所以f (x )在[2,9]上的最小值为f (9)㊂由f x 1x 2()=f (x 1)-f (x 2),可得f 93()=f (9)-f (3),而f (3)=-1,所以f (9)=-2㊂故f (x )在[2,9]上的最小值为-2㊂跟踪训练11:设函数f (x )的定义域为U ={x |x ɪR 且x >0},且满足条件f (4)=1㊂对任意的x 1,x 2ɪU ,有f (x 1㊃x 2)=f (x 1)+f (x 2),且当x 1ʂx 2时,有f (x 2)-f (x 1)x 2-x 1>0㊂(1)求f (1)的值㊂(2)如果f (x +6)+f (x )>2,求x 的取值范围㊂提示:(1)对任意的x 1,x 2ɪU ,有f (x 1㊃x 2)=f (x 1)+f (x 2),可令x 1=x 2=1,得f (1ˑ1)=f (1)+f (1)=2f (1),所以f (1)=0㊂(2)设0<x 1<x 2,则x 2-x 1>0㊂因为当x 1ʂx 2时,f (x 2)-f (x 1)x 2-x 1>0,所以f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),所以f (x )在定义域内为增函数㊂令x 1=x 2=4,可得f (4ˑ4)=f (4)+f (4)=1+1=2,即f (16)=2㊂当x +6>0,x >0,{即x >0时,原不等式可化为f [x (x +6)]>f (16)㊂因为f (x )在定义域上为增函数,所以x (x +6)>16,解得x >2或x <-8㊂又x >0,所以x >2㊂故x 的取值范围为(2,+ɕ)㊂题型十二:函数的创新题这类问题的特点是背景新颖,信息量大,通过它可考查同学们获取信息㊁分析信息并解决问题的能力㊂解答这类问题,首先要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,然后应用到具体的解题过程之中,这是破解新定义信息题难点的关键㊂例12 给出定义:若m -12<x ɤm +12(其中m 为整数),则m 叫作离实数x 最近的整数,记作{x },即{x }=m ㊂现给出下列关于函数f (x )=|x -{x }|的四个命题:①f -12()=12;②f (3.4)=-0.4;③f -14()=f 14();④y =f (x )的定义域为R ,值域是-12,12[]㊂经典题突破方法高一数学 2022年10月其中真命题的序号是㊂解:因为-1-12<-12ɤ-1+12,所以-12{}=-1,所以f-12()=-12--12{}=-12+1=12,①正确㊂因为3-12<3.4ɤ3+12,所以{3.4}=3,所以f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4,②错误㊂因为0-12<-14ɤ0+12,所以-14{}=0,所以f -14()=-14-0=14㊂因为0-12<14ɤ0+12,所以14{}=0,所以f 14()=14-0=14,所以f -14()=f 14(),③正确㊂y =f (x )的定义域为R ,值域是012[],④错误㊂答案为①③㊂跟踪训练12:(多选题)对任意实数a ,b ,定义m i n {a ,b }=a ,a ɤb ,b ,a >b,{若f (x )=2-x 2,g (x )=x 2-2,则关于函数F (x )=m i n {f (x ),g (x )}的说法正确的是( )㊂A .函数F (x )是偶函数B .方程F (x )=0有一个解C .函数F (x )有四个单调区间D .函数F (x )有最大值为0,无最小值提示:由题意可得,函数F (x )=2-x 2,x ɪ(-ɕ,-2]ɣ[2,+ɕ),x 2-2,x ɪ(-2,2),{作出函数F (x )图像,如图5所示㊂图5由图5可知,该函数为偶函数,有两个零点-2,2,四个单调区间㊂当x =ʃ2时,函数F (x )取得最大值为0,无最小值㊂应选A C D ㊂1.已知函数f (x )=m x 2-2m x +m -1x 2-2x +1(m ɪR ),试比较f (5)与f (-π)的大小㊂提示:f (x )=m x 2-2m x +m -1x 2-2x +1=m -1(x -1)2㊂y =-1x 2的图像向右平移1个单位得到y =-1(x -1)2的图像,再向上(m ȡ0)或向下(m <0)平移|m |个单位得到y =m -1(x -1)2的图像㊂因为y =-1x2在(-ɕ,0)上单调递减,在(0,+ɕ)上单调递增,且关于y 轴对称,所以f (x )在(-ɕ,1)上单调递减,(1,+ɕ)上单调递增,且关于直线x =1对称,所以f (-π)=f (2+π),而2+π>5,所以f (-π)=f (2+π)>f (5),即f (5)<f (-π)㊂2.已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,求f (x ),g (x )的解析式㊂提示:因为f (x )是偶函数,g (x )是奇函数,所以f (-x )=f (x ),g (-x )=-g (x )㊂由f (x )+g (x )=x 2+x -2,可得f (-x )+g (-x )=(-x )2-x -2,即f (x )-g (x )=x 2-x -2㊂由上可得函数f (x )=x 2-2,g (x )=x ㊂3.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 3-2x 2+2,求f (x )的解析式㊂提示:因为f (x )是定义在R 上的奇函数,所以当x =0时,f (-0)=-f (0),即f (0)=0㊂当x <0时,-x >0,所以f (x )=-f (-x )=-[(-x )3-2(-x )2+2]=x 3+2x 2-2㊂所以函数f (x )=x 3+2x 2-2,x <0,0,x =0,x 3-2x 2+2,x >0㊂ìîíïïï作者单位:河南省开封高中(责任编辑 郭正华)经典题突破方法 高一数学 2022年10月。
高中数学公式大全(完整版)1.集合与常用逻辑用语在数学中,集合是一个基本概念,它被定义为一组互不相同的对象的集合。
常用的逻辑用语包括“如果……那么……”、“当且仅当……”、“存在……”、“任意……”等。
2.复数复数是由实数和虚数组成的数。
虚数是指不能表示为实数的平方根的数。
复数可以用复平面上的点来表示,其中实数部分在x轴上,虚数部分在y轴上。
3.平面向量平面向量是有大小和方向的量,可以用箭头表示。
向量的加法和减法可以用平行四边形法则来计算。
向量的数量积和叉积可以用来计算向量之间的夹角和方向。
4.算法、推理与证明算法是一组有序的步骤,用于解决特定的问题。
推理是根据已知事实推断出新的结论的过程。
证明是用逻辑推理来证明一个命题的真实性。
5.不等式、线性规划不等式是包含不等于符号的数学表达式。
线性规划是一种优化问题,目标是最大化或最小化一个线性函数,同时满足一组线性不等式约束条件。
6.计数原理与二项式定理计数原理是用来计算可能性数量的方法。
二项式定理是一个重要的公式,可以用来展开二项式的幂。
7.函数、基本初等函数的图像与性质函数是一种将一个集合中的元素映射到另一个集合中的元素的规则。
基本初等函数包括多项式函数、指数函数、对数函数和三角函数等。
这些函数的图像和性质在数学中起着重要作用。
8.函数与方程、函数模型及其应用函数与方程是数学中的两个基本概念。
函数模型是用函数来描述现实世界中的问题的方法。
函数模型在物理学、工程学和经济学等领域中得到广泛应用。
9.导数及其应用导数是一个函数在某一点处的变化率。
导数在数学中有着广泛的应用,包括极值问题、曲线的切线和曲率等。
10.三角函数的图形与性质三角函数是一组基本函数,包括正弦函数、余弦函数和正切函数等。
这些函数的图像和性质在几何学和物理学中有着广泛的应用。
11.三角恒等变化与解三角形三角恒等式是一组等式,用于描述三角函数之间的关系。
解三角形是指确定三角形的各个角度和边长的过程。
202X年高考考试大纲(课程标准实验版)——数学(理)Ⅰ考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取因此,高考应具有较高的信度、效度,必要的区分度和适当的难度。
Ⅱ考试内容根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部202X年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容。
数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。
数学科考试,要发挥数学作为主要基础学科的作用,要考查考生对中学的基础知识、基本技能的掌握程度,要考查对数学思想方法和数学本质的理解水平,要考查进入高等学校继续学习的潜能。
一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能各部分知识整体要求及其定位参照《课程标准》相应模块的有关说明对知识的要求依次是了解、理解、掌握三个层次(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等(3)掌握:要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等2能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识(1)空间想像能力:能根据条件作出正确的图形,根据图形想像出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质空间想像能力是对空间形式的观察、分析、抽象的能力主要表现为识图、画图和对图形的想像能力识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想像主要包括有图想图和无图想图两种,是空间想像能力高层次的标志(2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某一观点或作出某项结论抽象概括能力就是从具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断(3)推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成,论证是由已有的正确的前提到被论证的结论正确的一连串的推理过程推理既包括演绎推理,也包括合情推理论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法一般运用合情推理进行猜想,再运用演绎推理进行证明中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性初步的推理能力(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算运算求解能力是思维能力和运算技能的结合运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力(5)数据处理能力:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题创新意识是理性思维的高层次表现对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强3个性品质要求个性品质是指考生个体的情感、态度和价值观要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神4考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构(1)对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度(2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能对能力的考查要全面考查能力,强调综合性、应用性,并要切合学生实际。
函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=kx(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1);(8)“对勾”函数模型:y=x+ax(a>0).(1)形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a]和[a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.②当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.(2)函数f(x)=xa+bx(a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab,+∞)内单调递增.2.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大,逐渐表现为与y轴平行随x的增大,逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x幂函数模型y=x n(n>0)可以描述增长幅度不同的变化,当n,值较小(n≤1)时,增长较慢;当n值较大(n>1)时,增长较快.考点一二次函数、分段函数模型[典例]国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?[解](1)设每团人数为x,由题意得0<x≤75(x∈N*),飞机票价格为y元,则y ,0<x≤30,-10(x-30),30<x≤75,即y,0<x≤30,200-10x,30<x≤75.(2)设旅行社获利S元,则Sx-15000,0<x≤30,200x-10x2-15000,30<x≤75,即Sx-15000,0<x≤30,10(x-60)2+21000,30<x≤75.因为S=900x-15000在区间(0,30]上为增函数,故当x=30时,S取最大值12000.又S=-10(x-60)2+21000,x∈(30,75],所以当x=60时,S取得最大值21000.故当x=60时,旅行社可获得最大利润.[解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小.(3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x),0<x≤A,+B(x-A),x>A.已知某家庭2018年前三个月的煤气费如表:月份用气量煤气费一月份4m34元二月份25m314元三月份35m 319元若四月份该家庭使用了20m 3的煤气,则其煤气费为()A .11.5元B .11元C .10.5元D .10元解析:选A根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x ),0<x ≤5,+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少?解:(1)由题意知x 的取值范围为[10,90].(2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25000+500003,所以当x =1003y min =500003.故核电站建在距A 城1003km 处,能使月供电总费用y 最少.考点二指数函数、对数函数模型[典例]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解](1)由题图,设y 0≤t ≤1,a,t >1,当t =1时,由y =4,得k =4,由-a =4,得a =3.所以y 0≤t ≤1,-3,t >1.(2)由y ≥0.25≤t ≤1,t ≥0.253≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型.(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中.[题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析:选B设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.2.声强级Y(单位:分贝)由公式Y=10lg I为声强(单位:W/m2).(1)平常人交谈时的声强约为10-6W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?解:(1)当声强为10-6W/m2时,由公式Y=得Y=10lg106=60(分贝).(2)当Y=0时,由公式Y=得0.∴I10-12=1,即I=10-12W/m2,则最低声强为10-12W/m2.[课时跟踪检测]1.(2018·福州期末)某商场销售A型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:销售单价/元45678910日均销售量/件400360320280240200160请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A.4B.5.5C.8.5D.10解析:选C由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-+1210,故当x =172=8.5时,该商品的日均销售利润最大,故选C.2.(2019·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为()A .13立方米B .14立方米C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =x ,0≤x ≤10,+5(x -10),x >10,即y x ,0≤x ≤10,x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为()A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是()A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物.∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k,∴0.1=e-5k,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01,=ln 0.01,∴t =10.∴排放前至少还需要过滤的时间为t -5=5(时).5.(2019·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析=k +b ,=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.答案:19097.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,求其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1m/s ,故a +b log 39010=1,整理得a +2b =1.+b =0,+2b =1,=-1,=1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2m/s ,则有v ≥2,所以-1+log 3Q10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要270个单位.8.据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (单位:km/h)与时间t (单位:h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积为时间t 内台风所经过的路程s (单位:km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知,直线OA 的方程是v =3t (0≤t ≤10),直线BC 的方程是v =-2t +70(20<t ≤35).当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550.综上可知,s 随t 变化的规律是s2,t ∈[0,10],t -150,t ∈(10,20],t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t ∈(20,35]时,令-t 2+70t -550=650,解得t =30或t =40(舍去),即在台风发生30小时后将侵袭到N 城.。
高考考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列2的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题.<一)必考内容与要求1.集合<1)集合的含义与表示<2<32<1..<2<3③知道对数函数是一类重要的函数模型;④了解指数函数与对数函数互为反函数<).<4)幂函数①了解幂函数的概念.②结合函数的图像,了解它们的变化情况.<5)函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.②根据具体函数的图像,能够用二分法求相应方程的近似解.<6)函数模型及其应用①了解指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型<如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.3.立体几何初步<1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形<长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不.<2◆公理1◆公理2◆公理3.◆公理4与判定..4<1①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线位置的几何要素,掌握直线方程的几种形式<点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两条相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.<2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.<3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.5.算法初步<1)算法的含义、程序框图①了解算法的含义,了解算法的思想.②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.<2)基本算法语句.6<1<2<37.概率<1.<2<3②了解几何概型的意义.8.基本初等函数Ⅱ<三角函数)<1)任意角的概念、弧度制①了解任意角的概念.②了解弧度制概念,能进行弧度与角度的互化.<2)三角函数①理解任意角三角函数<正弦、余弦、正切)的定义.②能利用单位圆中的三角函数线推导出α,π±α的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性.③理解正弦函数、余弦函数在区间[0,2π]的性质<如单调性、最大值和最小值以及与x轴交点等).理解正切函数在区间<)内的单调性.④理解同角三角函数的基本关系式:⑤了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.9.平面向量<1)平面向量的实际背景及基本概念①了解向量的实际背景.②理解平面向量的概念,理解两个向量相等的含义.③理解向量的几何表示.<2)向量的线性运算①掌握向量加法、减法的运算,并理解其几何意义.<3<4<510<1<211.解三角形<1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.<2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.12.数列<1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法<列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.<2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.13.不等式<1)不等关系了解现实世界和日常生活中的不等关系,了解不等式<组)的实际背景.<2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.<3<414<1②了解“.<2<315<1<2了解方程的曲线与曲线的方程的对应关系.16.空间向量与立体几何<1)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.②掌握空间向量的线性运算及其坐标表示.③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.<2)空间向量的应用①理解直线的方向向量与平面的法向量.②能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.③能用向量方法证明有关直线和平面位置关系的一些定理<包括三垂线定理).④能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用.17.导数及其应用<1)导数概念及其几何意义①了解导数概念的实际背景.②理解导数的几何意义.<2)导数的运算①能根据导数定义,求函数(c为常数>的导数.②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数<仅限于形如f<ax+b)的复合函数)的导数.?(C。
高三数学考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题.(一)必考内容与要求1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用韦恩(V e n n)图表达集合的关系及运算.2.函数概念与基本初等函数I (指数函数、对数函数、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图像理解和研究函数的性质.(2)指数函数①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.④知道指数函数是一类重要的函数模型.(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.③知道对数函数是一类重要的函数模型.④了解指数函数与对数函数互为反函数(a>0,且a≠1 ).(4)幂函数①了解幂函数的概念.②结合函数的图像,了解它们的变化情况.(5)函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.②根据具体函数的图像,能够用二分法求相应方程的近似解.(6)函数模型及其应用①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.3.立体几何初步(1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式.(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.•公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.•公理2:过不在同一条直线上的三点,有且只有一个平面.•公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.•公理4:平行于同一条直线的两条直线互相平行.•定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.•如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.•如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.•如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.•如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.•如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.•如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.•垂直于同一个平面的两条直线平行.•如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.4.平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两条相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.5.算法初步(1)算法的含义、程序框图①了解算法的含义,了解算法的思想.②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.(2)基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.6.统计(1)随机抽样①理解随机抽样的必要性和重要性.②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.(2)用样本估计总体①了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.②理解样本数据标准差的意义和作用,会计算数据标准差.③能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.(3)变量的相关性①会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.7.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别. ②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率.②了解几何概型的意义.8.基本初等函数Ⅱ(三角函数)(1)任意角的概念、弧度制①了解任意角的概念.②了解弧度制的概念,能进行弧度与角度的互化.(2)三角函数①理解任意角三角函数(正弦、余弦、正切)的定义.π±α的正弦、余弦、正切的诱导公式,能画出y = s i n x ,y = c o s x ,y = t a n x 的图像,了解三 角函数的周期性.③理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、 最大值和最小值以及与x 轴的交点等),理解正切函数在区间,22ππ⎛⎫- ⎪⎝⎭内的单调性. ④理解同角三角函数的基本关系式:sin 2x +cos 2x = 1,sin tan .cos x x x= ⑤了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图像,了解参数,,A ωϕ对函数图像变化的影响.⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角 函数解决一些简单实际问题.9.平面向量(1)平面向量的实际背景及基本概念:①了解向量的实际背景.②理解平面向量的概念,理解两个向量相等的含义.③理解向量的几何表示.(2)向量的线性运算:①掌握向量加法、减法的运算,并理解其几何意义.②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.③了解向量线性运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示:①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加法、减法与数乘运算.④理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积:①理解平面向量数量积的含义及其物理意义.②了解平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用:①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题.10.三角恒等变换:(1)和与差的三角函数公式:①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公武导出两角差的正弦、正切公式.③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换:能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).11.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.12.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.13.不等式(1)不等关系:了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)—元二次不等式:①会从实际情境中抽象出一元二次不等式模型.②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.)①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题.14.常用逻辑用语(1)命题及其关系:①理解命题的概念.②了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.③理解必要条件、充分条件与充要条件的意义.(2)简单的逻辑联结词:了解逻辑联结词“或”、“且”、“非”的含义.(3)全称量词与存在量词:①理解全称量词与存在量词的意义.②能正确地对含有一个量词的命题进行否定.15.圆锥曲线与方程①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.②掌握椭圆的定义、几何图形、标准方程及简单几何性质.③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.④理解数形结合的思想.⑤了解圆锥曲线的简单应用.16.导数及其应用(1)导数概念及其几何意义:①了解导数概念的实际背景.②理解导数的几何意义.(2)导数的运算导数.②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+c)的复合函数)的导数.•常见基本初等函数的导数公式:•常用的导数运算法则:法则 1:法则 2:法则3:(3)导数在研究函数中的应用①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(4)生活中的优化问题.会利用导数解决某些实际问题.17.统计案例:了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验:了解独立性检验(只要求2x2列联表)的基本思想、方法及其简单应用.(2)回归分析:了解回归分析的基本思想、方法及其简单应用.18.推理与证明(1)合情推理与演绎推理①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.③了解合情推理和演绎推理之间的联系和差异.(2)直接证明与间接证明①了解直接证明的两种基本方法—分析法和综合法;了解分析法和综合法的思考过程、特点.②了解间接证明的一种基本方法—反证法;了解反证法的思考过程、特点.19.数系的扩充与复数的引入(1)复数的概念:①理解复数的基本概念.②理解复数相等的充要条件.③了解复数的代数表示法及其几何意义.(2)复数的四则运算:①会进行复数代数形式的四则运算.②了解复数代数形式的加、减运算的几何意义.20.框图:(1)流程图①了解程序框图.②了解工序流程图(即统筹图).③能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.(2)结构图:①了解结构图.②会运用结构图梳理已学过的知识,整理收集到的资料信息.(二)选考内容与要求1.几何证明选讲(1)了解平行线截割定理,会证明并应用直角三角形射影定理.(2)会证明并应用圆周角定理、圆的切线的判定定理及性质定理.(3)会证明并应用相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.(4)了解平行投影的含义,通过圆柱与平面的位置关系了解平行投影;会证平面与圆柱面的截线是椭圆(特殊情形是圆).(5)了解下面的定理.定理:在空间中,取直线l为轴,直线l’与l相交于点O,其夹角为α,l’围绕l旋转得到以O为顶点,l’为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行,记β=0),则:①β>α,平面π与圆锥的交线为椭圆.②β=α,平面π与圆锥的交线为抛物线.③β=α,平面π与圆锥的交线为双曲线.(6)会利用丹迪林(Dandelin)双球(如下图所示,这两个球位于圆锥的内部,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥面均相切,其切点分别为E,F)证明上述定理①的情形:当β>α时,平面π与圆锥的交线为椭圆.(图中上、下两球与圆锥面相切的切点分别为点B和点C,线段BC与平面π相交于点A. )(7)会证明以下结果:①在(6)中,一个丹迪林球与圆锥面的交线为一个圆,并与圆锥的底面平行.记这个圆所在平面为π'.②如果平面π与平面π'的交线为m,在(5)①中椭圆上任取一点A,该丹迪林球与平面π的切点为F,则点A到点F的距离与点A到直线m的距离比是小于1的常数e(称点F为这个椭圆的焦点,直线m为椭圆的准线,常数e为离心率).(1)了解定理(5)③中的证明,了解当β无限接近α时,平面π的极限结果.2.坐标系与参数方程(1)坐标系①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.⑤了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.(2)参数方程①了解参数方程,了解参数的意义.②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.③了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.3.不等式选讲(1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:①|a+b| ≤ | a | + |b | .②| a-b|≤| a-c | + | c-b |.③会利用绝对值的几何意义求解以下类型的不等式:| ax+b| ≤c; | ax+b丨≥c; | x-a | + | x-b丨≥c.(2)了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.①柯西不等式的向量形式:(此不等式通常称为平面三角不等式.)(3)会用参数配方法讨论柯西不等式的一般情形:(4)会用向量递归方法讨论排序不等式.(5)了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.(6)会用数学归纳法证明伯努利不等式:了解当n为大于1的实数时伯努利不等式也成立.(7)会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.(8)了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.。
考点5、 函数与方程、函数模型及其应用1.(2010·天津高考文科·T4)函数f (x )=2x e x +-的零点所在的一个区间是()(A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2)【命题立意】考查函数零点的概念及运算。
【思路点拨】逐一代入验证。
【规范解答】选C ,()2,(0)10,(1)10,x f x e x f f e =+-∴=-<=-> 故选C 。
2.(2010·天津高考理科·T2)函数f(x)=23x x +的零点所在的一个区间是( )(A)(-2,-1) (B)(-1,0) (C)(0,1) (D)(1,2)【命题立意】考查函数零点的概念及运算【思路点拨】逐一代入验证。
【规范解答】选B ,5()23,(1)0,(0)10,2x f x x f f =+∴-=-<=> 故选B 。
3.(2010·福建高考文科·T7)函数223,0()2ln ,0⎧+-≤=⎨-+>⎩x x x f x x x 的零点个数为( ) A.2 B.3 C.4 D.5【命题立意】本题从分段函数的角度出发,考查了学生对基本初等函数的掌握程度。
【思路点拨】作出分段函数的图像,利用数形结合解题。
【规范解答】选C ,⎪⎩⎪⎨⎧>≤-+=0,ln 0,4)1()(22x ex x x x f ,绘制出图像大致如右图,所以零点个数为2。
【方法技巧】本题也可以采用分类讨论的方法进行求解。
令()f x 0=,则(1)当x 0≤时,2x 2x 30+-=,x 3∴=-或x 1=(舍去); (2)当x 0>时,2ln x 0-+=,2x e ∴=综上述:函数()f x 有两个零点。
4.(2010·福建高考理科·T4)函数223,0()2ln ,0⎧+-≤=⎨-+>⎩x x x f x x x 的零点个数为( )A.0B.1C.2D.3【命题立意】本题从分段函数的角度出发,考查了学生对基本初等函数的掌握程度。
【思路点拨】作出分段函数的图像,利用数形结合解题。
【规范解答】选C ,⎪⎩⎪⎨⎧>≤-+=0,ln 0,4)1()(22x ex x x x f , 绘制出图像大致如右图,所以零点个数为2。
【方法技巧】本题也可以采用分类讨论的方法进行求解。
令()f x 0=,则 (1)当x 0≤时,2x 2x 30+-=,x 3∴=-或x 1=(舍去); (2)当x 0>时,2ln x 0-+=,2x e ∴=综上述:函数()f x 有两个零点。
5.(2010·浙江高考文科·T9)已知x 0是函数f(x)=2x +11x-的一个零点.若1x ∈(1,0x ), 2x ∈(0x ,+∞),则( ) (A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0(C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>0【命题立意】考察了数形结合的思想,以及函数零点的概念和零点的判断,属中档题【思路点拨】本题可先判断函数()f x 的单调性,从而得到零点两侧函数值的符号。
【规范解答】选B 。
2x y =与11y x =-在(1,)+∞上都为增函数,所以1()21x f x x =+-在(1,)+∞上单调递增,因为0()0f x =,1020,x x x x <>,所以12()0,()0f x f x <>。
6.(2010·浙江高考理科·T9)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是( )(A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4【命题立意】本题考查函数的性质,考查函数的零点存在定理。
【思路点拨】本题可验证函数在区间的端点处的函数值是否异号;如果异号,则存在零点;如果同号,一般不存在零点。
【规范解答】选A 。
(4)4sin(7)40f -=-+>,(2)4sin(3)2f -=-+,536ππ-<-<- ,sin y x =在-,-2ππ⎡⎤⎢⎥⎣⎦上单调减,51sin(3)sin()62π∴->-=-,(2)0f ∴->,所以()f x 在区间[4,2]--内不存在零点。
同理可验证在B 、C 、D 的区间内存在零点。
7.(2010·陕西高考理科·T10)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表。
那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x ]([x ]表示不大于x 的最大整数)可以表示为( )(A) y=10x ⎡⎤⎢⎥⎣⎦ (B) y=310x +⎡⎤⎢⎥⎣⎦ (C) y=410x +⎡⎤⎢⎥⎣⎦ (D) y=510x +⎡⎤⎢⎥⎣⎦【命题立意】本题考查灵活运用已有的知识解决新问题的能力,属难题。
【思路点拨】理解y=[x ]的含义及选法规定是解题的关键,可用特例法进行解答。
【规范解答】选B 若67x =,则由推选方法可得7y =,而(A) [6.7]6y ==;(B) y =3[7]710x +⎡⎤==⎢⎥⎣⎦;同理可得(C) y 7;= (D) y=7,否定A ;再令66x =可否定C 、D ;故选B 【方法技巧】特例法的解选择题的方法技巧用特殊值(特殊数值、特殊图形、特殊位置、特殊情形等等)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特殊值有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等等,注意:特例法只能否定选择支,不能肯定选择支。
当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略.近几年高考选择题中可用或结合特例法解答的约占30%左右.8.(2010·福建高考理科·T10)对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(,k b 为常数),对任给的正数m ,存在相应的0∈x D ,使得当∈x D 且0>x x 时,总有0()()0()()f h m h g mχχχχ<-<⎧⎨<-<⎩则称直线l:y =k x +b 为曲线()=y f x 与()=y g x 的“分渐近线”。
给出定义域均为{|1}=>D x x 的四组函数如下:①2(),()=f x x g x ②23()102,();--=+=x x f x g x x③21ln 1(),();ln ++==x x x f x g x x x ④22(),()2(1).1-==--+x x f x g x x e x 其中,曲线()=y f x 与()=y g x 存在“分渐近线”的是( )A. ①④B. ②③C. ②④D. ③④【命题立意】本题从大学数列极限定义的角度出发,仿造构造了分渐近线函数,目的是考查学生分析问题、解决问题的能力,考生需要抓住本质进行做答,是一道好题,思维灵活。
【思路点拨】读懂新定义、利用新定义,在新背景下进行即时性学习,即可解决问题。
【规范解答】选C ,对于①,存在分渐近线的充要条件是x →∞时,()fx -()g x →0,当x >1时便不符合,所以①不存在;对于 ②,存在分渐近线2=y ,此时()2100--=>x f x ,()320-=>g x x,且对于任意的m>0,取033,⎧⎫=⎨⎬⎩⎭x m ,当0x x >时,必有310,-<<x m m x ; 对于③,假设存在()=+h x kx b ,则()()()11-=-+-f x h x k x b x , 若1≠k 则当→+∞x 时,()()()11-=-+-→∞f x h x k x b x,不满足题意, 若1=k ,(1)当0≠b 则当<m b 时,→+∞x 时必有10-<b x 或1->b m x成立,不满足题意,(2)当0=b 即()=h x x ,而事实上()()10ln -=-<h x g x x ,不满足题意, 综上述:③不存在;对于④,存在分渐近线22=-y x ,此时()()22201--=>+f x x x , ()()2220---=>x g x x e ,且对于任意的m>0,取010********,⎧⎫=⎨⎬⎩⎭x m , 当0>x x 时,必有2,21-<<+x m e m x 。
9.(2010·北京高考文科·T14)如图放置的边长为1的正方形PABC沿x 轴滚动。
设顶点p (x ,y )的纵坐标与横坐标的函数关系是()y f x =,则()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为 。
说明:“正方形PABC 沿x 轴滚动”包含沿x 轴正方向和沿x 轴负方向滚动。
沿x 轴正方向滚动是指以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续,类似地,正方形PABC 可以沿着x 轴负方向滚动。
【命题立意】本题考查函数的相关知识,考查了函数的周期、零点。
要求考生具有探索意识和动手能力,属创新题。
【思路点拨】让正方形向右滚动,作出点P 的图象。
从图象可求出周期与面积。
【规范解答】点P 在一个周期内的运行轨迹如图所示。
()y f x =的最小正周期为4。
()y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为三个扇形扇形'PP A ,扇形''''P P B ,扇形'''P PC 与两个直角三角形','''Rt P AB Rt BP C ∆∆的面积之和,即22211111121114442ππππ⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯=+【答案】4 1π+10.(2010·北京高考理科·T14)如图放置的边长为1的正方形PABC 沿x 轴滚动。
设顶点(,)P x y 的轨迹方程是()y f x =,则函数()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图象与x 轴所围区域的面积为 。