高中数学必修四2.3.4 平面向量共线的坐标表示导学案
- 格式:doc
- 大小:25.50 KB
- 文档页数:7
2.3.4 平面向量共线的坐标表示预习课本P98~100,思考并完成以下问题如何利用向量的坐标运算表示两个向量共线?[新知初探]平面向量共线的坐标表示[点睛] (1)平面向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有:x 1y 2-x 2y 1=0⇔a ∥b .[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( )(2)向量(2,3)与向量(-4,-6)反向.( )答案:(1)√ (2)√2.若向量a =(1,2),b =(2,3),则与a +b 共线的向量可以是( )A .(2,1)B .(-1,2)C .(6,10)D .(-6,10)答案:C3.已知a =(1,2),b =(x,4),若a ∥b ,则x 等于( )A .-12 B.12C .-2D .2 答案:D4.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在x 轴上,则点B 的坐标为________.答案:⎝⎛⎭⎫73,0[典例] (1)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13C .1D .2 (2)已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB 与CD 是否共线?如果共线,它们的方向相同还是相反?[解析] (1)法一:a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b )可得2(1+2λ)-4(2-2λ)=0,解得λ=12. 法二:假设a ,b 不共线,则由(a +2b )∥(2a -2b )可得a +2b =μ(2a -2b ),从而⎩⎪⎨⎪⎧1=2μ,2=-2μ,方程组显然无解,即a +2b 与2a -2b 不共线,这与(a +2b )∥(2a -2b )矛盾,从而假设不成立,故应有a ,b 共线,所以1λ=21,即λ=12. [答案] A(2)[解] AB =(0,4)-(2,1)=(-2,3),CD =(5,-3)-(1,3)=(4,-6), ∵(-2)×(-6)-3×4=0,∴AB ,CD 共线. 又CD =-2AB ,∴AB ,CD 方向相反.综上,AB 与CD 共线且方向相反.已知a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行,平行时它们的方向相同还是相反?解:ka +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),若ka +b 与a -3b 平行,则-4(k -3)-10(2k +2)=0,解得k =-13,此时ka +b =-13a +b =-13(a -3b ),故ka +b 与a -3b 反向. ∴k =-13时,ka +b 与a -3b 平行且方向相反.[典例] (1)已知OA =(3,4),OB =(7,12),OC =(9,16),求证:A ,B ,C 三点共线;(2)设向量OA =(k,12),OB =(4,5),OC =(10,k ),当k 为何值时,A ,B ,C 三点 共线?[解] (1)证明:∵AB =OB -OA =(4,8),AC =OC -OA =(6,12), ∴AC =32AB ,即AB 与AC 共线. 又∵AB 与AC 有公共点A ,∴A ,B ,C 三点共线.(2)若A ,B ,C 三点共线,则AB ,AC 共线, ∵AB =OB -OA =(4-k ,-7),AC =OC -OA =(10-k ,k -12),∴(4-k )(k -12)+7(10-k )=0.解得k =-2或k =11.一般是看AB 与BC AB 与AC AC BC AC BC AB λBC ,或AB =λAC 设点A (x,1),B (2x,2),C (1,2x ),D (5,3x ),当x 为何值时,AB 与CD 共线且方向相同,此时,A ,B ,C ,D 能否在同一条直线上?解:AB =(2x,2)-(x,1)=(x,1),BC =(1,2x )-(2x,2)=(1-2x,2x -2),CD =(5,3x )-(1,2x )=(4,x ).由AB 与CD 共线,所以x 2=1×4,所以x =±2.又AB 与CD 方向相同,所以x =2.此时,AB =(2,1),BC =(-3,2),而2×2≠-3×1,所以AB 与BC 不共线,所以A ,B ,C 三点不在同一条直线上.所以A ,B ,C ,D 不在同一条直线上.题点一:两直线平行判断1. 如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,设|AD|=1,则|DC|=1,|AB|=2.∵CE⊥AB,而AD=DC,∴四边形AECD为正方形,∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).∵ED=(-1,1)-(0,0)=(-1,1),BC=(0,1)-(1,0)=(-1,1),∴ED=BC,∴ED∥BC,即DE∥BC.题点二:几何形状的判断2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.证明:由已知得,AB=(4,3)-(1,0)=(3,3),CD=(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0,∴AB与CD共线.AD=(-1,2),BC=(2,4)-(4,3)=(-2,1),∵(-1)×1-2×(-2)≠0,∴AD与BC不共线.∴四边形ABCD是梯形.∵BC=(-2,1),AD=(-1,2),∴|BC|=5=|AD|,即BC=AD.故四边形ABCD是等腰梯形.题点三:求交点坐标3. 如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.解:法一:设OP=t OB=t(4,4)=(4t,4t),则AP=OP-OA=(4t,4t)-(4,0)=(4t-4,4t),AC=OC-OA=(2,6)-(4,0)=(-2,6).由AP ,AC 共线的条件知(4t -4)×6-4t ×(-2)=0,解得t =34.∴OP =(3,3). ∴P 点坐标为(3,3).法二:设P (x ,y ), 则OP =(x ,y ),OB =(4,4). ∵OP ,OB 共线,∴4x -4y =0.① 又CP =(x -2,y -6),CA =(2,-6), 且向量CP ,CA 共线,∴-6(x -2)+2(6-y )=0.②解①②组成的方程组,得x =3,y =3,∴点P 的坐标为(3,3).应用向量共线的坐标表示求解几何问题的步骤层级一 学业水平达标1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B.2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a ∥AB ,则实数λ的值为( )A .-23B.32C.23 D .-32解析:选C 根据A ,B 两点的坐标,可得AB =(3,1),∵a ∥AB ,∴2×1-3λ=0,解得λ=23,故选C. 3.已知A (2,-1),B (3,1),则与AB 平行且方向相反的向量a 是( )A .(2,1)B .(-6,-3)C .(-1,2)D .(-4,-8)解析:选D AB =(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( )A .-3B .2C .4D .-6解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6.5.设a =⎝⎛⎭⎫32,tan α,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为( ) A .30°B .60°C .45°D .75° 解析:选A ∵a ∥b ,∴32×13-tan α cos α=0, 即sin α=12,α=30°. 6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:∵向量a =(3x -1,4)与b =(1,2)共线,∴2(3x -1)-4×1=0,解得x =1.答案:17.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________. 解析:AB =(x +1,-6),AC =(4,-1), ∵AB ∥AC ,∴-(x +1)+24=0,∴x =23.答案:238.已知向量a =(1,2),b =(-2,3),若λa +μb 与a +b 共线,则λ与μ的关系是________.解析:∵a =(1,2),b =(-2,3),∴a +b =(1,2)+(-2,3)=(-1,5),λa +μb =λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),又∵(λa +μb )∥(a +b ),∴-1×(2λ+3μ)-5(λ-2μ)=0,∴λ=μ.答案:λ=μ9.已知A ,B ,C 三点的坐标为(-1,0),(3,-1),(1,2),并且AE =13AC ,BF =13BC ,求证:EF ∥AB .证明:设E ,F 的坐标分别为(x 1,y 1)、(x 2,y 2), 依题意有AC =(2,2),BC =(-2,3),AB =(4,-1). ∵AE =13AC ,∴(x 1+1,y 1)=13(2,2). ∴点E 的坐标为⎝⎛⎭⎫-13,23. 同理点F 的坐标为⎝⎛⎭⎫73,0,EF =⎝⎛⎭⎫83,-23. 又83×(-1)-4×⎝⎛⎭⎫-23=0,∴EF ∥AB . 10.已知向量a =(2,1),b =(1,1),c =(5,2),m =λb +c (λ为常数).(1)求a +b ;(2)若a 与m 平行,求实数λ的值.解:(1)因为a =(2,1),b =(1,1),所以a +b =(2,1)+(1,1)=(3,2).(2)因为b =(1,1),c =(5,2),所以m =λb +c =λ(1,1)+(5,2)=(λ+5,λ+2).又因为a =(2,1),且a 与m 平行,所以2(λ+2)=λ+5,解得λ=1.层级二 应试能力达标1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析:选C 因为a +b =(0,1+x 2),所以a +b 平行于y 轴.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A.13B.-13C.9 D.-9解析:选D A,B,C三点共线,∴AB∥AC,而AB=(-8,8),AC=(3,y+6),∴-8(y+6)-8×3=0,即y=-9.3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么() A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()A.(1,5)或(5,5)B.(1,5)或(-3,-5)C.(5,-5)或(-3,-5)D.(1,5)或(5,-5)或(-3,-5)解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,①若这个平行四边形为▱ABCD,则AB=DC,∴D(-3,-5);②若这个平行四边形为▱ACDB,则AC=BD,∴D(5,-5);③若这个平行四边形为▱ACBD,则AC=DB,∴D(1,5).综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).5.已知AB=(6,1),BC=(x,y),CD=(-2,-3),BC∥DA,则x+2y的值为________.解析:∵AD=AB+BC+CD=(6,1)+(x,y)+(-2,-3)=(x+4,y-2),∴DA=-AD=-(x+4,y-2)=(-x-4,-y+2).∵BC∥DA,∴x(-y+2)-(-x-4)y=0,即x+2y=0.答案:06.已知向量OA =(3,-4),OB =(6,-3),OC =(5-m ,-3-m ).若点A ,B ,C 能构成三角形,则实数m 应满足的条件为________.解析:若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线. ∵AB =OB -OA =(3,1),AC =OC -OA =(2-m,1-m ),∴3(1-m )≠2-m ,即m ≠12.答案:m ≠127.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a 与b 之间的数量关系;(2)若AC =2AB ,求点C 的坐标.解:(1)若A ,B ,C 三点共线,则AB 与AC 共线.AB =(3,-1)-(1,1)=(2,-2),AC =(a -1,b -1),∴2(b -1)-(-2)(a -1)=0,∴a +b =2.(2)若AC =2AB ,则(a -1,b -1)=(4,-4),∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,∴⎩⎪⎨⎪⎧ a =5,b =-3,∴点C 的坐标为(5,-3).8.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),求直线AC 与BD 交点P 的坐标.解:设P (x ,y ),则DP =(x -1,y ),DB =(5,4),CA =(-3,6),DC =(4,0).由B ,P ,D 三点共线可得DP =λDB =(5λ,4λ). 又∵CP =DP -DC =(5λ-4,4λ), 由于CP 与CA 共线得,(5λ-4)×6+12λ=0.解得λ=47, ∴DP =47DB =⎝⎛⎭⎫207,167,∴P 的坐标为⎝⎛⎭⎫277,167.。
2.3 平面向量的基本定理及其坐标表示2.3.1 平面向量基本定理2.3.2 平面向量的正交分解及坐标表示整体设计教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j.于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.三维目标1.通过探究活动,能推导并理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3.了解向量的夹角与垂直的概念,并能应用于平面向量的正交分解中,会把向量正交分解,会用坐标表示向量.重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.课时安排1课时教学过程导入新课思路 1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e 1、e 2是同一平面内的两个不共线的向量,a 是这一平面内的任一向量,那么a 与e 1、e 2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?推进新课新知探究提出问题图1①给定平面内任意两个不共线的非零向量e 1、e 2,请你作出向量3e 1+2e 2、e 1-2e 2.平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?②如图1,设e 1、e 2是同一平面内两个不共线的向量,a 是这一平面内的任一向量,我们通过作图研究a 与e 1、e 2之间的关系.活动:如图1,在平面内任取一点O,作OA =e 1,OB =e 2,OC =a .过点C 作平行于直线OB 的直线,与直线OA;过点C 作平行于直线OA 的直线,与直线OB 交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2.由于ON OM OC +=,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.当e 1、e 2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.定理说明:(1)我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:①可以.②a =λ1e 1+λ2e 2.提出问题①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? ②对平面中的任意一个向量能否用两个互相垂直的向量来表示?活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:图2已知两个非零向量a和b(如图2),作OA=a,OB=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.显然,当θ=0°时,a与b同向;当θ=180°时,a与b反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b.由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.②可以.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?图3活动:如图3,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=xi+y j ①这样,平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y) ②其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j=(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a与有序实数对(x,y)一一对应.(2)向量a 的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,11B A 是表示a 的有向线段,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2),则向量a 的坐标为x=x 2-x 1,y=y 2-y 1,即a 的坐标为(x 2-x 1,y 2-y 1).(3)为简化处理问题的过程,把坐标原点作为表示向量a 的有向线段的起点,这时向量a 的坐标就由表示向量a 的有向线段的终点唯一确定了,即点A 的坐标就是向量a 的坐标,流程表示如下:讨论结果:①平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y).②是一一对应的.应用示例思路1例1 如图4,ABCD,AB =a ,AD =b ,H 、M 是AD 、DC 之中点,F 使BF=31BC,以a ,b 为基底分解向量HF AM 和.图4活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.解:由H 、M 、F 所在位置,有+=+=AD DM AD AM a b AB AD DC 212121+=+=AB 21=b +21a . AD AD AB AD BC AH BF AB AH AF HF 21312131-+=-+-+=-= =a 61-b . 点评:以a 、b 为基底分解向量AM 与HF ,实为用a 与b 表示向量AM 与HF . 变式训练图5已知向量e 1、e 2(如图5),求作向量-2.5e 1+3e 2作法:(1)如图,任取一点O,作OA =-2.5e 1,OB =3e 2.(2)作OACB. 故OC OC 就是求作的向量.图6例2 如图6,分别用基底i、j 表示向量a 、b 、c 、d ,并求出它们的坐标.活动:本例要求用基底i 、j 表示a 、b 、c 、d ,其关键是把a 、b 、c 、d 表示为基底i 、j 的线性组合.一种方法是把a 正交分解,看a 在x 轴、y 轴上的分向量的大小.把向量a 用i 、j 表示出来,进而得到向量a 的坐标.另一种方法是把向量a 移到坐标原点,则向量a 终点的坐标就是向量a 的坐标.同样的方法,可以得到向量b 、c 、d 的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a 与b 关于y 轴对称,a 与c 关于坐标原点中心对称,a 与d 关于x 轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a =1AA +2AA =x i +y j ,∴a =(2,3).同理,b =-2i +3j =(-2,3);c =-2i -3j =(-2,-3);d =2i -3j =(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.变式训练i ,j 是两个不共线的向量,已知AB =3i +2j ,CB =i +λj ,CD =-2i +j ,若A 、B 、D 三点共线,试求实数λ的值.解:∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j ,又∵A、B 、D 三点共线, ∴向量AB 与BD 共线.因此存在实数υ,使得AB =υBD ,即3i +2j =υ[-3i +(1-λ)j ]=-3υi +υ(1-λ)j .∵i 与j 是两个不共线的向量,故⎩⎨⎧=-=-,2)1(,33λv v∴⎩⎨⎧=-=.3,1λv ∴当A 、B 、D 三点共线时,λ=3.例3 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A.①②B.②③C.①③D.①②③ 活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2图7例1 如图7,M 是△A BC 内一点,且满足条件=++CM BM AM 320,延长CM 交AB 于N,令CM =a ,试用a 表示CN .活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a =a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎪⎩⎪⎨⎧==.,2211b a b a 解:∵,,NM BN BM NM AN AM +=+= ∴由CM BM AM 32++=0,得=++++CM NM BN NM AN 3)(2)(0. ∴CM BN NM AN 323+++=0.又∵A、N 、B 三点共线,C 、M 、N 三点共线,由平行向量基本定理,设,,NM CM BN AN μλ== ∴=+++NM BN NM BN μλ3230.∴(λ+2)BN +(3+3μ)NM =0. 由于BN 和NM 不共线,∴⎩⎨⎧=+=+,033,02μλ∴⎩⎨⎧-=-=12μλ ∴.MN NM CM =-=∴CM MN CM CN 2=+==2a .点评:这里选取NM BN ,作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形式来解决.变式训练设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ、μ满足λa +μb =5e 1-e 2,求λ、μ的值.解:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb =5e 1-e 2.由平面向量基本定理,知⎩⎨⎧-=+=-.154,523λλλλ 解之,得λ=1,μ=-1.图8例2 如图8,△A BC 中,AD 为△A BC 边上的中线且AE=2EC,求GEBG GD AG 及的值. 活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值. 解:设μλ==GEBG GD AG , ∵BD =DC ,即AD -AB =AC -AD , ∴AD =21(AB +AC ). 又∵AG =λGD =λ(AD -AG ), ∴AG =λλ+1AD =)1(2λλ+AB +)1(2λλ+AC . ① 又∵BG =μGE ,即AG -AB =μ(AE -AG ),∴(1+μ)AG =AB +μAG AE ,=AE AB μμμ+++111 又AE =32AC ,∴AG =AB μ+11+)1(32μμ+AC . ② 比较①②,∵AB 、AC 不共线, ∴⎪⎪⎩⎪⎪⎨⎧+=++=+.)1(32)1(2,11)1(2μμλλμλλ解之,得⎪⎩⎪⎨⎧==23,4μλ∴.23,4==GE BG GD AG 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.变式训练过△O AB 的重心G 的直线与边OA 、OB 分别交于P 、Q,设OP =h OA ,OB k OQ =,试证:311=+kh 解:设OA =a ,OB =b ,OG 交AB 于D,则OD =21(OB OA +)=21(a +b )(图略). ∴OG =32OD =31(a +b ),OQ OG QG -==31(a +b )-k b =31a +331k -b , OQ OP QP -==h a -k b .∵P、G 、Q 三点共线,∴QP QG λ=. ∴31a +331k -b =λh a -λk b .∴⎪⎪⎩⎪⎪⎨⎧-=-=.331,31k k h λλ 两式相除,得.3311hk h k k h k =+⇒-=-, ∴kh 11+=3. 知能训练1.已知G 为△A BC 的重心,设AB =a ,AC =b ,试用a 、b 表示向量AG .2.已知向量a =(x+3,x 2-3x-4)与AB 相等,其中A(1,2),B(3,2),求x.图9解答:1.如图9,AG =32AD , 而=+=+=BC AB BD AB AD 21a +21(b -a )=21a +21b , ∴3232==AD AG (21a +21b )=31a +31b . 点评:利用向量加法、减法及数乘的几何意义. 2.∵A(1,2),B(3,2),∴AB =(2,0). ∵a=AB ,∴(x+3,x 2-3x-4)=(2,0). ∴⎩⎨⎧=--=+043,232x x x 解得⎩⎨⎧=-=-=.41,1x x x 或 ∴x=-1.点评:先将向量AB 用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决. 课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.作业课本习题2.3 A 组1.设计感想1.本节课内容是为了研究向量方便而引入的一个新定理——平面向量基本定理.教科书首先通过“思考”:让学生思考对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e 1+λ2e 2的向量表示.2.教师应该多提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题.3.如果条件允许,借助多媒体进行教学会有意想不到的效果.整节课的教学主线应以学生练习为主,教师给与引导和提示.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.。
必修42.3.4 平面向量共线的坐标表示【学习目标】1.能自己推导出平面向量共线的坐标表示,能对该结论熟练运用、解决实际问题;2.知道利用向量推导定比分点公式的推导方法,并运用此方法求解一些问题;3.培养同学们在解决问题过程中见“数”思“形”、以“形”助“数”的思维习惯.【学习重点】平面向量共线的坐标表示及运用 【难点提示】定比分点公式的推导与理解.【学法提示】1.请同学们课前将学案与教材98102P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题、阅读与思考、小结等都要仔细阅读)、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一、学习准备前面我们学习了向量有关知识,请对照上面知识网络,回顾其中知识内容,请对不熟悉的知识点进行复习,并填写在空白处,同时思考下列问题:1.平面向量的坐标运算公式,若),(11y x a =,),(22y x b = ,则________a b +=;_________a b -=;______()a R λλ=∈;2.向量共线定理:向量)(0≠a a 与b 共线 有 一个实数λ,使_______; 3.若点),(11y x A ,),(22y x B ,则________________________=AB4.令),(11y x a = ,),(22y x b = ,则⇔=⇔=),(),(2211y x y x b a___________二、学习探究 1.向量共线的坐标表示在“学习准备中”我们已经回顾了向量共线定理和平面向量坐标表示及运算,那么,我们自然要想这两者有怎样的联系呢?向量共线定理能否用坐标来表示呢?请同学们运用前面所学知识,亲自动手推导一下看!自己独立思考后,请阅读教材,在归纳总结.归纳概括 向量共线的坐标表示: 设),(11y x a =,),(22y x b = ,且)(0 ≠b ,则由向量共线定理可知,a//⇔≠)0( b b _________________________.快乐体验 (1)若向量a=(4,2)、b =(6,y)且a b ,求实数y 的值.解:(2)教材P100页练习第4题,可以作在书上. 解:同学们通过探究、归纳、体验,对向量共线的坐标表示有哪些感悟,能对此进行挖掘拓展吗?挖掘拓展 (1)(2 (3)向量共线有几种表现形式与判定方法?(链接1) 2.定比分点公式联想思考 现有这样一个问题:如图2.3.4-1已知点 111222(,)(,)P x y P x y 、,有一个人在直线12PP 上从1P 点开始走,当走到P 点时,他测得 12PP PP λ= (其中λ为给 定的常数),现在他想知道所在P 点的坐标,你能帮助他完 成这个心愿吗?温馨提示 (1)这时点P 的坐标能确定吗?若能确定,现在那些是已知,需要求什么? (2)如何利用三个条件12PP PP λ=、111222(,)(,)Px y P x y 、,是否需要设点P 的坐标 (,)x y ,在看运用那些知识可将三个点的坐标与已知式联系起来,从而用12P P 、的坐标及λ表示出,x y .推导过程归纳结论 若111222(,)(,)P x y P x y 、、(,)P x y ,当12PP PP λ=(其中λ为常数),则: _________,__________,x y ==这时我们把点P 叫做有向线段12PP 的定比分点,常数λ叫做点P 分有向线段12PP 的定比分值.快乐体验 教材P101页练习的5、6、7. 解:同学们通过探究、推导、归纳、体验,对定比分点坐标公式及相关内容有哪些感悟,你能对此进行挖掘拓展吗?挖掘拓展 (1)在关系式12PP PP λ=中,λ可以取那些实数?λ的取值与点P 的位置有何关系?(链接2)(2)该公式有何特征?有几个量?如何记忆?如何使用?使用范围是什么? (3)当1λ=时,点P 是线段12PP 的 点,此时,_____,_____,x y ==(链接3) (4)若点G 是ABC ∆的重心,),(11y x A 、),(22y x B 、33(,)C x y 、(,)G x y ,请用A 、B 、C 三点的坐标表示x y 、,有_________,__________x y ==(链接4).三、典例赏析例1.教材P98页例7,请同学们先独立完成后在对比教材的解答. 解:解后反思 (1)该题的题型怎样?你的求解与教材一致吗?求解时运用了哪些知识与思想方法?求解的关键在哪里?还有方法吗?(2)向量平行、向量共线、三点共线、直线平行有什么区别与联系?变式练习 已知a =(1,0),b =(2,1),当实数k 为何值时,向量k a -b 与a +3b 平行? 并确定此时它们是同向还是反向.解:例2.设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2),当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标. 解:解后反思 该题的题型怎样?求解时运用了哪些知识与思想方法?求解的关键在哪里?有易错点吗?若点P 为线段P 1P 2的一个四分点,如何求解呢?变式练习 如图2.3.4-2,已知ABC ∆中,A(0,5),O (0,0),B (4,3),14OC O A =,12OD OB =,AD 与BC 相交于点M ,求点M 的坐标.解:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法, 你的任务完成了吗?你讲的怎样?你提问了吗?我们的学习目标达到了吗?如:向量共线的坐标表示、有向线段定比分点公式等都理解与掌握了吗?并能灵活运用了吗?2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.本节课见到那些题型,都能求解了吗?你对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与课堂美在哪里吗?五、学习评价1. 若A(x,-1),B(1,3),C(2,5)三点共线,则x 的值为( ) A-3 B-1 C1 D32. 若j i 2+=, j y i x )4(3-+-=)( (其中j i,的方向分别与x 、y 轴正方向相同且为单位向量) AB 与DC 共线,则x 、y 的值可能分别为( )A1,2 B2,2 C3,2 D2,43. 已知(x,1)b ,)1,2(==a ,若b a b a -+22与平行,则x的值为4. 已知,平行四边形ABCD 的三个顶点的坐标分别为A (2,1),B (-1,3),C (3,4),则第四个顶点D 的坐标是_____________5. 已知A 、B 、C 、D 四点坐标分别为A(1,0),B(4,3),C(2,4),D(0,2),试证明:四边形ABCD 是梯形证:6.已知A 、B 、C 三点坐标分别为(-1,0)、(3,-1)、(1,2),,31=31=, 求证:EF ∥证:7.已知三点A (0,8),B (-4,0),C(5,-3),D点内分AB 的比为1∶3,E 点在BC 边上,且使△BDE 的面积是△ABC 面积的一半,求DE 中点的坐标. 解:8.教材P101习题2.3B 组第3、4题.◆承前启后 现在我们学习了向量的线性运算与坐标运算等知识,那么我们自然是否应想到向量还有其它的运算方式呢?如:向量有乘法与除法吗?【学习链接】链接1.向量共线从“形”上有平行与在同一直线上,从“式”上有线性关系与坐标表示. 判定方法三种:几何法、线性法、坐标法.链接2. P 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有四种情况:0λ=时,点P 与1P 重合;λ>0(内分) (外分) (λ<-1) ( 外分) (-1<λ<0)链接3. 当1λ=时,P 为线段12PP 的中点,121222x x y y x ++==、y 叫中点坐标公式;链接4.若G 是ABC ∆的重心,),(11y x A 、),(22y x B 、33(,)C x y 、(,)G x y ,则: 1233x x x x ++=,1233y y y y ++=叫三角形的重心坐标公式.。
高中数学 2.3.4平面向量共线的坐标表示学案新人教A 版必修4【学习目标】1、理解平面向量的坐标的概念;2、掌握平面向量的坐标运算;3、会根据向量的坐标,判断向量是否共线.【重点难点】教学重点:平面向量的坐标运算 教学难点:向量共线的坐标表示及直线上点的坐标的求解。
【学习内容】平面向量的坐标运算一、预习导航:预习时完成下列题目,试试你的身手.(一)温故而知新:1、平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a = .(1) 我们把 向量1e ,2e 叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底1e ,2e 的条件下进行分解;(4) 基底给定时,分解形式 . λ1,λ2是被a ,1e ,2e 唯一确定的数量.(二)阅读课本,完成下列题目1)若11(,)a x y =22(,)b x y =,则a b += ,a b -= 语言叙述:(2)若),(y x a = 和实数λ,则=a λ(3) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=语言描述:(三)试试你的自学能力1、已知向量a ,b 的坐标,求b a +,b a -的坐标:(1)、)4,2(-=a ,)2,5(=b(2)、)3,4(=a ,)8,3(-=b2、已知)2,3(=a ,)1,0(-=b,求b a 42+-,b a 34+的坐标3、已知A (1,2)、B (-1,3)两点的坐标,求AB ,BA 的坐标二、课堂听评:你能掌握要领,提高能力吗?例1: 已知a =(2,1),b =(-3,4),求a +b ,a -b ,3a +4b 的坐标.例2: 已知平面上三点的坐标分别为A(-2,1),B(-1,3),C (3,4),求点D 的坐标使这四点构成平行四边形四个顶点.例4:已知点A(2,3)、B(5,4)、C(7,10),若AC AB AP λ+=(λ∈R),试求λ为何值时,点P 在第三象限内?。
高中数学必修四2.3.4 平面向量共线的坐标表示导学案
234 平面向量共线的坐标表示
【学习目标】
1.理解平面向量共线的坐标表示;
2.掌握平面上两点间的中点坐标公式及定点坐标公式;
3.会根据向量的坐标,判断向量是否共线
【新知自学】
知识回顾:
1.平面向量基本定理:
2.平面向量的坐标表示:
=x + ,=( )
3.平面向量的坐标运算
(1)若=( ), =( ),
则,
(2)若,,
则
4.什么是共线向量?
新知梳理:
1、两个向量共线的坐标表示
设=(x1,1) ,=(x2,2)共线,其中᠒
由=λ 得,(x1,1) =λ(x2,2) 消去λ即可
所以∥( ᠒ )的等价条是
思考感悟:
(1)上式在消去λ时能不能两式相除?
(2)条x12-x21=0 能不能写成?
(3)向量共线的几种表示形式:∥( ᠒ ) x12-x21=0
对点练习:
1.若=(2,3),=(4,-1+),且∥,则=()
A6 B 7 D8
2若A(x,-1),B(1,3),(2,)三点共线,则x的值为()A-3 B-1 1 D3
3若= +2 ,=(3-x) +(4-) (其中、的方向分别与x、轴正方向相同且为单位向量) 与共线,则x、的值可能分别为()
A1,2 B2,2
3,2 D2,4
【合作探究】
典例精析:
例1:已知=(4,2),=(6,),且∥,求
变式1 :若向量=(-1,x)与=(-x,2)共线且方向相同,求x
变式2:已知A(-1,-1),B(1,3),(1,) ,D (2,7) ,向量与平行吗?直线AB平行于直线D吗?
例2:已知A(-1,-1),B(1,3),(2,),试判断A,B,三点之间的位置关系(你有几种方法)
变式3:已知:四点A(,1),B(3,4),(1,3),D(,-3) ,如何求证:四边形ABD是梯形?
规律总结:要注意向量的平行与线段的平行之间的区别和联系
例3:设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,1),(x2,2)
(1)当点P是线段P1P2的中点时,求点P的坐标;
(2)当点P是线段P1P2的一个三等分点时,求点P的坐标
思考探究:本例在(1)中P1P:PP2= ;在(2)中P1P:PP 2= ;若P1P:PP2= ,如何求点P的坐标?
【堂小结】
1、知识2方法3思想
【当堂达标】
1 若=(-1,x)与=(-x,2)共线且方向相同,则x= .
2已知=(1,2),=(x,1),若与平行,则x的值为
3 设=(4,-3),=(x,),=(-1,),若+ = ,则(x,)= .
4、若A(-1,-1),B(1,3),(x,) 三点共线,则x= .
【时作业】
1已知=(,-3),(-1,3),=2 ,则点D坐标
A.(11,9) B.(4,0)
.(9,3) D.(9,-3)
2、若向量=(1,-2) ,| | = 4 | |,且,共线,则可能是A.(4,8) B.(-4,8)
.(-4,-8) D.(8,4) 3*、在平面直角坐标系中,为坐标原点,已知两点A(3,1),B(-1,3).若点(x,)满足→=αA→+βB→,其中α,β∈R且α+β=1,则x ,所满足的关系式为()
A.3x+2-11=0
B.(x-1)2+(-2)2=
.2x-=0
D.x+2-=0
4、已知=(3,2),=(-2,1),若λ + 与+λ (λ∈R)平行,则λ= .、已知| |=10,=(4,-3),且∥,则向量的坐标是.
*6.已知a=(1,0),b=(2,1).
(1)当为何值时,a-b与a+2b共线?
(2)若AB→=2a+3b,B→=a+b且A,B,三点共线,求的值.
7 如图所示,在你四边形ABD中,已知,求直线A与BD交点P 的坐标。
【延伸探究】
1.对于任意的两个向量=(a,b),n=(,d),规定运算“X”为Xn =(a-bd,b+ad),运算“⊕”为⊕n=(a+,b+d).设=(p,q),若(1,2)X=(,0),则(1,2)⊕等于________.2、如图所示,已知△AB 中,A(0, ),(0,0),B(4,3),→=14A→,D→=12B→,AD与B相交
于点,求点的坐标.。