东北三省三校2018届高三第一次模拟考试数学(文)试题含答案
- 格式:docx
- 大小:751.34 KB
- 文档页数:18
2018年东北三省四市教研联合体高考模拟试卷(一)数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A. B. C. D.【答案】C【解析】因为,,所以,故选C.2. 若复数为纯虚数,则实数的值为()A. B. C. D.【答案】D【解析】设,得到:+∴,且解得:故选:D3. 中国有个名句“运城帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图所示)表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,以此类推,例如3266用算筹表示就是,则8771用算筹可表示为()A. B. C. D.【答案】C【解析】由题意各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,则8771用算筹可表示为,故选:C.4. 如图所示的程序框图是为了求出满足的最小偶数,那么在空白框中填入及最后输出的值分别是()A.和6 B. 和6 C. 和8 D. 和8【答案】D【解析】空白框中n依次加2可保证其为偶数,排除A,C时,,时,所以D选项满足要求.故选:D.5. 函数的部分图象大致为()A. B. C. D.【答案】D【解析】由函数是偶函数,排除A ,C ,当,.排除B故选:D.点睛:识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题. 6. 等差数列的公差不为零,首项,是和的等比中项,则数列的前9项之和是( )A. 9B. 10C. 81D. 90 【答案】C【解析】因为是和的等比中项,所以,又,所以,解得,所以,故选C.7. 某几何体的三视图如图所示(单位:),其俯视图为等边三角形,则该几何体的体积(单位:)是( )A. B. C. D.【答案】B【解析】由题意可知该几何体为正三棱柱去掉一个小三棱锥,.故选:B.8. 已知首项与公比相等的等比数列中,满足(,),则的最小值为()A. B. C. D.【答案】A【解析】由题意可得:,即即故选9. 已知过曲线上一点作曲线的切线,若切线在轴上的截距小于0时,则的取值范围是()A. B. C. D.【答案】C【解析】因为,所以切线方程为,即,令得,截距小于0时,,解得,故选C.10. 已知边长为2的等边三角形,为的中点,以为折痕进行折叠,使折后的,则过,,,四点的球的表面积为()A. B. C. D.【答案】C【解析】边长为2的等边三角形,为的中点,以为折痕进行折叠,使折后的,构成以D为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,1,,所以,球面积,故选C.11. 将函数的图象向右平移个单位得到函数的图象,则的值可以为()A. B. C. D.【答案】C【解析】将函数的图象向右平移个单位得到函数,而,故,所以当时,,故选C.12. 已知焦点在轴上的双曲线的左右两个焦点分别为和,其右支上存在一点满足,且的面积为3,则该双曲线的离心率为()A. B. C. D.【答案】B【解析】由双曲线可知,从而.故选:B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设实数,满足约束条件则的最大值为__________.【答案】【解析】作出可行域,如图:由可行域可确定目标函数在处取最大值故的最大值为14故答案为:14点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.14. 为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为,现表中一个数据为污损,则被污损的数据为__________.(最后结果精确到整数位)【答案】【解析】因为回归直线方程过样本数据中心点,而,所以,故污损数据约为38,故填38.15. 已知函数满足,当时,的值为__________.【答案】【解析】因为,所有,故函数的周期为4,所以,故填.点睛:一般含有递推关系的函数问题,可以考虑函数的周期性问题,常见的,都可以推出函数的周期为,在解题注意使用上述结论. 16. 已知菱形的一条对角线长为2,点满足,点为的中点,若,则__________.【答案】【解析】.如图建立平面直角坐标系,设,,,,,∵,∴,解得:.故答案为:-7三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角,,的对边分别为,,,若,且.(1)求的大小;(2)求面积的最大值.【答案】(1)(2)【解析】试题分析:(1)由正弦定理统一为角的三角函数,化简整理即可得出;(2)由余弦定理及基本不等式可求出,利用三角形面积公式可求出面积最大值.试题解析:解:(1)由正弦定理可得,,∵,故,∵,∴.(2)由,,由余弦定理可得,由基本不等式可得,,当且仅当时,取得最大值,故面积的最大值为.18. 树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)求出的值;(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率.【答案】(1)(2)平均数为41.5,中位数为(3)【解析】试题分析:(1)利用频率分布直方图可得的值;(2)平均数为;岁;设中位数为,则岁;(3)第1,2,3组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为. 设从5人中随机抽取3人,共10个基本事件,从而得到第2组中抽到2人的概率.试题解析:(1)由,得.(2)平均数为;岁;设中位数为,则岁.(3)第1,2,3组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为.设从5人中随机抽取3人,为,共10个基本事件,从而第2组中抽到2人的概率. 点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.19. 在如图所示的几何体中,四边形是正方形,平面,,分别是线段,的中点,.(1)证明:平面;(2)求点到平面的距离.【答案】(1)见解析(2)利用等体积法构建所求距离的方程即可.试题解析:(1)取中点,连接分别是中点, ,为中点,为正方形,,,四边形为平行四边形平面,平面,平面(2)平面,到平面的距离等于到平面的距离,平面,, ,在中,平面,, , , 平面,,则为直角三角形,,设到平面的距离为,则到平面的距离.20. 在平面直角坐标系中,椭圆:的离心率为,点在椭圆上.(1)求椭圆的方程;(2)已知与为平面内的两个定点,过点的直线与椭圆交于,两点,求四边形面积的最大值.【答案】(1)(2)6【解析】试题分析:(1)根据离心率及点在椭圆上可求出a,b,写出椭圆的方程;(2)联立直线和椭圆方程,消元得一元二次方程,求出弦长,再利用点到直线的距离求出高,即可写出面积,利用换元法,求其最大值.试题解析:解:(1)∵,∴,椭圆的方程为,将代入得,∴,∴椭圆的方程为.(2)设的方程为,联立消去,得,设点,,有,,有,点到直线的距离为,点到直线的距离为,从而四边形的面积(或)令,,有,设函数,,所以在上单调递增,有,故,所以当,即时,四边形面积的最大值为6.点睛:四边形的面积可以用对角线乘积的一半表示,也可以分割为三角形处理,当面积中带有根号的分式时,可以考虑换元法求其最值,或者考虑用均值不等式、构造函数利用单调性等方法处理.21. 已知函数,().(1)若恒成立,求实数的取值范围;(2)已知,是函数的两个零点,且,求证:.【答案】(1)(2)见解析【解析】试题分析:(1) 令,求出的最大值,令其小于等于零,即可求出实数的取值范围;(2)由(1)可知,若函数有两个零点,则,要证,只需证,由于在上单调递减,从而只需证.试题解析:(1)令,有,当时,,当时,,所以在上单调递减,在上单调递增,在处取得最大值,为,若恒成立,则即.(2)由(1)可知,若函数有两个零点,则,要证,只需证,由于在上单调递减,从而只需证,由,,即证令,,有在上单调递增,,所以.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线:,曲线:().(1)求与交点的极坐标;(2)设点在上,,求动点的极坐标方程.【答案】(1)(2),.【解析】试题分析:(1)联立极坐标方程,柯姐的交点极坐标;(2)设,且,根据,即可求出,从而写出点的极坐标.试题解析:解:(1)联立,∵,,,∴所求交点的极坐标.(2)设,且,,由已知,得∴,点的极坐标方程为,.23. 选修4-5:不等式选讲已知函数,.(1)当时,求不等式的解集;(2)对于都有恒成立,求实数的取值范围.【答案】(1)(2)【解析】试题分析:(1)对x分类讨论,得到三个不等式组,分别解之,最后求并集即可;(2)对于,都有恒成立,转化为求函数的最值问题即可.试题解析:(1)当时,当解得当恒成立.当解得,此不等式的解集为.,当时,当时,,当单调递减,∴f(x)的最小值为3+m,设当,当且仅当时,取等号即时,g(x)取得最大值.要使恒成立,只需,即.。
东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2018届高三第一次联合模拟考试数学试题(理科)1. 复数的模为( )A. B. C. D.【答案】C【解析】由题意得,所以.故选C.2. 已知集合,,若,则实数的取值范围是( )A. B. C. D.【答案】A【解析】由已知得,由,则,又,所以.故选A.3. 从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为( )A. B. C. D.【答案】B【解析】由题意,记“第一次抽到奇数”为事件A,记“第二次抽到偶数”为事件B,则,,所以.故选B.4. 已知,则( )A. B. C. D.【答案】B【解析】由题意知,.故选B.5. 中心在原点,焦点在轴上的双曲线的一条渐近线经过点,则它的离心率为( )A. B. 2 C. D.【答案】A【解析】由题意可知,此双曲线的渐近线方程为,则渐近线过点,即,,所以.故选A.6. 展开式中的常数项是( )A. B. C. 8 D.【答案】B【解析】由展开式的第项,得展开式的通项为或,则当或,即或时,为展开式的常数项,即.故选B.7. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的的值是( )A. B. C. 1 D. 3【答案】D【解析】由三视图可知,原几何体是一个四棱锥,其中底面是一个上底,下底,高分别为1,2,2的直角梯形,一条长为的侧棱垂直于底面,其体积为,解得.故选C.8. 已知函数的图象的相邻两条对称轴之间的距离是,则该函数的一个单调增区间为( )A. B. C. D.【答案】A【解析】由已知函数,则,解得,所以,令(),解得,当时,有.故选A.9. 辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入,,则输出的值为( )A. 148B. 37C. 333D. 0【答案】B【解析】由题意得,,则;,则;,则;,则;,则;,则余数.故选B.10. 底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥,该四棱锥的侧面积为,则该半球的体积为( )A. B. C. D.【答案】D【解析】由题意知,设半球的半径为,正方形的边长为,顶点在底面的身影是半球的球心,取的中点,连接,如图所示,则,所以四棱锥的侧面积为,,所以该半球的体积为.故选D.点睛:此题主要考查立体几何中简单组体的表面积和体积的计算,这里涉及到正四棱锥的侧面积和半球的体积的计算等方面的知识与技能,属于中档题型,也是常考考点.解决此类问题的突破口在于把空间组合体问题转化为平面图形问题,由于四棱锥侧面积涉及到斜高,而半球的体积涉及到其半径,所以在选截面图时要能把斜高和半径联系起来的平面图,再根据平面图形的特点来解决问题.11. 已知抛物线,直线与抛物线交于,两点,若以为直径的圆与轴相切,则的值是( )A. B. C. D.【答案】C【解析】由题意,可设交点的坐标分别为,联立直线与抛物线方程消去得,则,,,由,即,解得.故选C.12. 在,,,是边上的两个动点,且,则的取值范围为( )A. B. C. D.【答案】A【解析】由题意,可以点为原点,分别以为轴建立平面直角坐标系,如图所示,则点的坐标分别为,直线的方程为,不妨设点的坐标分别为,,不妨设,由,所以,整理得,则,即,所以当时,有最小值,当时,有最大值.故选A.点睛:此题主要考查了向量数量积的坐标运算,以及直线方程和两点间距离的计算等方面的知识与技能,还有坐标法的运用等,属于中高档题,也是常考考点.根据题意,把运动(即的位置在变)中不变的因素()找出来,通过坐标法建立合理的直角坐标系,把点的坐标表示出来,再通过向量的坐标运算,列出式子,讨论其最值,从而问题可得解.13. 在中,,,,则______________.【答案】1【解析】由题意,根据余弦定理得,即,解得,或(舍去).故填1.14. 若满足约束条件,则的最大值为______________.【答案】【解析】试题分析:作出可行域,如图内部(含边界),,,表示可行域内点与的连线的斜率,,因此最大值为.考点:简单线性规划的非线性运用.15. 甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科、、,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教学科;③在长春工作的教师教学科;④乙不教学科.可以判断乙教的学科是______________.【答案】C【解析】由乙不在长春工作,而在长春工作的教师教A学科,则乙不教A学科;又乙不教B 学科,所以乙教C学科,而在哈尔滨工作的教师不教C学科,故乙在沈阳教C学科.故填C.16. 已知函数,是函数的极值点,给出以下几个命题:①;②;③;④;其中正确的命题是______________.(填出所有正确命题的序号)【答案】①③【解析】由已知得,不妨令,由,当时,有总成立,所以在上单调递增,且,而是函数的极值点,所以,即,所以,即命题①成立,则命题②错;因为,所以,故③正确,而④错.所以填①③.点睛:此题主要考查了导数在研究函数的极值、最值、以及单调性等中的应用,主要涉及函数求导的计算公式、法则,还有函数极值点和最值的应用等方面的知识和技能,属于中高档题型,也是常考考点.首先利用导数判断函数的单调性,由函数值大小的比较,来确定其自变量的大小,从而解决问题①②.17. 已知正项数列满足:,其中为数列的前项和.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)由题意,可根据数列通项与前项和的关系进行整理化简,可以发现数列是以首项为3,公差为2的等差数列,从而根据等差数列的通项公式即求得数列的通项公式;(Ⅱ)由(Ⅰ)可求得,根据其特点,利用裂项相消求和法进行即可.试题解析:(Ⅰ)令,得,且,解得.当时,,即,整理得,,,所以数列是首项为3,公差为2的等差数列,故.(Ⅱ)由(Ⅰ)知:,.点睛:此题主要考查数列中求通项公式与前项和公式的运算,其中涉及到数列通项与前项和的关系式,还裂项相消求和法的应用,属于中档题型,也是常考考点.裂项相消求和法是数列求和问题中一种重要的方法,实质上是把一个数列的每一项分裂为两项的差,从而达到求和时相邻两项互相抵消而求出和的目的.18. 某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间,需求量为100台;最低气温位于区间,需求量为200台;最低气温位于区间,需求量为300台。
哈尔滨师大附中、东北师大附中、辽宁省实验中学2021 年高三第一次联合模拟考试理科数学试卷第一卷〔共 60 分〕一、选择题:本大题共12 个小题 , 每题 5 分 , 共 60 分. 在每题给出的四个选项中,只有一项是符合题目要求的 .1.复数2i的模为 ( ) 1 iA. 1B. 2C. 2D. 2222. 集合 A x y 9 x2 , B x x a ,假设 A B A ,那么实数a的取值范围是 ( )A. , 3B. , 3C. ,0D. 3,3. 从标有 1、 2、 3、4、 5 的五张卡片中,依次抽出2 张,那么在第一次抽到奇数的情况下,第二次抽到偶数的概率为 ( )A. 1B.1C.1D.2 4 23 34. sin3 a1,那么 cos 5 a ( )3 6A. 1B. 12 2D.2C.3 3 3 35. 中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点2,4 ,那么它的离心率为 ( )A. 5C. 3D. 5 2156. x2 2 1 展开式中的常数项是( )xA. 12B. 12 D. 87. 某几何体的三视图如下图,且该几何体的体积是3,那么正视图中的x 的值是( )A. 3B.9 2 28. 函数 f x3sin x cos x 0 的图象的相邻两条对称轴之间的距离是,那么该函数的一个单2调增区间为 ( )A. ,B. 5 ,C. , 2D.3,23 6 12 12 6 3 39.辗转相除法是欧几里德算法的核心思想,如下图的程序框图所描述的算法就是辗转相除法,假设输入m 8521 , n 6105 ,那么输出m的值为 ( )10. 底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥. 如图,半球内有一内接正四棱锥S-ABCD ,该四棱锥的侧面积为 4 3 ,那么该半球的体积为( )A. 4B.2C.8 2D.4 2 3 3 3 311. 抛物线 C : y2 2x ,直线 l : y 1 x b 与抛物线 C 交于A,B两点,假设以AB为直径的圆与x 轴相2切,那么 b 的值是 ( )A.1B.2C.48555D.512. 在 △ ABC , ∠ C 90°, AB 2BC 4 , M , N 是边 AB 上的两个动点,且 MN 1 ,那么 CM CN 的取值范围为 ( )A. 11 ,9B. 5,9C. 15 ,9D. 11 ,5444二、填空题〔每题5 分,总分值 20 分,将答案填在答题纸上〕13. 在 △ ABC 中, AB2 , AC 7 , ∠ ABC2,那么 BC ______________.3x 1 0y14. 假设 x, y 满足约束条件 x y 0,那么 的最大值为 ______________.xy 4 x 115. 甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A 、B 、C ,:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C 学科;③在长春工作的教师教A 学科;④乙不教B 学科 .可以判断乙教的学科是 ______________.16. 函数 f x1 2是函数 fx 的极值点,给出以下几个命题:x ln xx , x 02① 0 x 01;② x 01;③ f x 0x 0 0 ;④ f x 0 x 0 0 ;ee其中正确的命题是 ______________.( 填出所有正确命题的序号 )三、解答题 〔本大题共 6 小题,共 70 分. 解容许写出文字说明、证明过程或演算步骤. 〕17. 正项数列a n 满足:22 a n3 ,其中 S n 为数列 a n 的前 n 项和 .4S n a n(1) 求数列 a n 的通项公式;(2) 设 n1 ,求数列b n 的前 n 项和 T n .b2a n 118. 某商场按月订购一种家用电暖气,每销售一台获利润 200 元,未销售的产品返回厂家,每台亏损50 元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间20, 10 ,需求量为 100台;最低气温位于区间 25, 20 ,需求量为 200 台;最低气温位于区间 35, 25 ,需求量为 300 台。
东北三校2018届高三第一次联合模拟考试数学试题(理科)哈师大附中、东北师大附中、辽宁省实验中学本试卷分选择题和非选择题两部分,共22小题,共150分,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ部分(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.α是第一象限角,43tan =α,则=αsin ( )A .54B .53 C .54- D .53- 2.复数22)1(ii += ( )A .2B .-2C .-2iD .2i 3.函数)62cos()62sin(ππ++=x x y 的最小正周期是( ) A .2πB .4πC .π2D .π4.已知向量等于则垂直与若a b a n b n,),,1(),,1(-==( )A .1B .2C .2D .45.设双曲线)0,0(12222>>=-b a by a x 的离心率为3,且它的一条准线与抛物线x y 42=的A .16322=-y xB .132322=-y xC .1964822=-y xD .1241222=-y x6.已知函数⎪⎩⎪⎨⎧=≠--=ax a x ax x a x x f 2)(23是连续函数,则实数a 的值是( )A .1-B .1C .1±D .2-7.若nxx )1(+展开式的二项式系数之和为64,则展开式的常数项为 ( )A .10B .20C .30D .1208.设数列{}n a 的前n 项和S n ,且12+-=n a n ,则数列}{nS n的前11项为 ( )A .45-B .50-C .55-D .66-9.四面体ABCD 的外接球球心在CD 上,且2CD =,3=AB ,在外接球面上A B ,两点间的球面距离是( )A .π6B .π3C .2π3D .5π610.若,,R y x ∈则“()324l o g2=-+y x xy ”是“0258622=++-+y x y x ”成立的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件11.在一条南北方向的步行街同侧有8块广告牌,牌的底色可选用红、蓝两种颜色,若只要求相邻两块牌的底色不都为红色,则不同的配色方案共有 ( ) A .55 B .56 C .46 D .45 12.函数)(x f 在定义域R 内可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设).3(),21(),0(f c f b f a ===则( )A .c b a <<B .b a c <<C .a b c <<D .a c b <<第Ⅱ部分(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.按编号顺序平均分成20组(1—8号,9—16号,……153—160号),若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是________。
哈尔滨师大附中、东北师大附中、辽宁省实验中学2018年高三第一次联合模拟考试文科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合*2,A x x x N,2,B y y x x R,则A B( )A.0x x B.1x x C.1,2 D.0,1,22.已知复数z满足12i z i,i为虚数单位,则z等于( )A.1iB.1iC.1122i D.1122i3.在下列向量中,可以把向量3,1a表示出来的是( )A.10,0e,23,2e B.11,2e,23,2eC.13,5e,26,10e D.13,5e,23,5e4.在区间0,3上任取一个实数x,则22x的概率是( )A.23B.12C.13D.145.抛物线24y x的焦点到准线的距离为( )A.2B.1C.14D.186.已知,a b都是实数,p:直线0x y与圆222x a y b相切;q:2a b,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》,执行该程序框图若输出的4a,则输入的,a b不可能为( )A.4,8B.4,4C.12,16D.15,188.已知函数sin3f x x,则下列说法不正确的是( )A.f x的一个周期为2B.f x向左平移3个单位长度后图象关于原点对称C.f x在7,66上单调递减 D.f x的图象关于56x对称9.函数af x xx(其中a R)的图象不可能是( )A B C D10.如图所示是一个三棱锥的三视图,则此三棱锥的外接球的体积为( )A.43B.32C.556D.611.设双曲线222210,0x ya ba b的两条渐近线与直线2axc分别交于,A B两点,F为该双曲线的右焦点,若6090AFB∠°°,则该双曲线离心率e的取值范围是( )A.1,2B.23,3 C.2,2D.23,2312.已知函数21221221xx xx f xx,1cos g x a x x R ,若对任意的12,x x R ,都有12f x g x ,则实数a 的取值范围为( )A.0,2B.RC.2,0D.,20,二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若直线l平面,平面平面,则直线l 与平面的位置关系为_____________.14.若实数,x y 满足不等式组0103xx y x y,则32y x的取值范围是_____________.15.甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句真话。
东北三省三校2018 年高三第一次联合模拟考试文科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间120 分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题共60 分)一.选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合A {0, b}, B { x Z x23x 0}, 若A B ,则b等于()A.1 B.2 C.3 D.1 或22i2.复数2 i()1 2iA.i B.i C.2( 2 i)D.1 i3.ABC的内角A、B、C的对边分别为a、b、c,则“ a b ”是“ cos2 A cos2 B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.向量a,b满足a 1,b 2,(a b)(2a b), 则向量a与b的夹角为()A.45 B.60 C.90 D.1205.实数m是0,6 上的随机数,则关于x的方程x2mx 4 0 有实根的概率为()A.B.C.D.6.已知三棱锥的三视图,则该三棱锥的体积是f (x) lg(x 1) sin2 x 的零点个数为(A .63 B. 2 63C. 3 6 2 D. 622 7.椭圆 x y 2 4 1两个焦点分别是 F 1,F 2 , 任意一点,则 PF 1 PF 2 的取值范围是(点 P 是椭圆上A. 1,4 B. 1,3 C. 2,1D. 1,18.半径为1的球面上有四个点A,B ,C,D, 球 心 为 点 O , AB 过 点 O ,CA C B , DA DB , DC 1, 则三棱锥 A BCD 的体积为( ) B. C. 3 D. 已知数列 a n 满足 ln a 1 ln a 2 lna 325 8 a 10 =( )26A. e B 32 C. eD 9. e 35 29 e 3n 1 2 ln a n 3n 2 10.执行如图所示的程序框图,要使输出的 S 的值小于1, 则输入的 t 值不能是下面的( ) (n N ) ,则 A.8 B.9 C. 10 D. 11 11.若函数 f(x) 2x 3 3mx 2 6x 在区间 2, 上为增函数,则实数 m 的取值范围是 A.,2B. ,2C.52D.,5212.函数A.B.10 C.11 D.12 9第Ⅱ卷(非选择题 共 90 分)本卷包括必考题和选考题两部分 .第 13 题~第 21 题为必考题,每个试题考生都必须 做答,第 22题~第 24题为选考题,考生根据要求做答 . 二.填空题(本大题共 4小题,每小题 5 分.)13.若等差数列a n 中,满足 a 4 a 6 a 2010 a 2012 8 ,则 S 2015 = _________________________________ .3 2x y 914.若变量 x,y 满足约束条件,则 z x 2y 的最小值为6xy9下焦点的对称点分别为 A 、B ,点 Q 在双曲线 C 的上支上,点 P 关于点 Q 的对称点为 P 1,则P 1A P 1B = _______ .16.若函数 f(x)满足 : (ⅰ)函数 f (x)的定义域是 R ; (ⅱ)对任意 x 1,x 2 R 有3f(x 1 x 2) f(x 1 x 2) 2 f (x 1) f (x 2) ;(ⅲ) f(1) 23. 则下列命题中正确的是 __________________________写出所有正确命题的序号)①函数 f (x) 是奇函数;②函数 f (x) 是偶函数;③对任意 n 1,n 2 N ,若 n 1 n 2 ,则f (n 1) f (n 2);④ 对任意 x R ,有 f(x) 1.三. 解答题(解答应写出文字说明,证明过程或演算步骤)17.(本题满分 12 分)已知 ABC 的面积为 2, 且满足 0 AB AC 4, 设 AB 和 AC 的夹角为 . Ⅰ)求 的取值范围; Ⅱ)求函数 f( ) 2sin 2() 3cos2 的值域. 418.(本题满分 12 分)空气污染,又称为 大气污染 ,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度, 达到足够的时间, 并因此危害了人体的舒适、 健康和福利或环境的 现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:g /m 3)为 0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50 ~ 100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为 100 ~150 时,空气质量 级别为三级,空气质量状况属于轻度污染;当空气污染指数为 150 ~ 200 时,空气质量 级别为四级, 空气质量状况属于中度污染; 当空气污染指数为 200 ~ 300 时,空气质量15.已知双曲线 C :2 y16 点 P 与双曲线 C 的焦点不重合.若点P关于双曲线C的上、2x4级别为五级, 空气质量状况属于重度污染; 当空气污染指数为 300 以上时, 空气质量级 别为六级,空气质量状况属于严重污染. 2018 年1月某日某省 x 个监测点数据统计如 Ⅰ)根据所给统计表和频率分布直方 图中的信息求出 x, y 的值,并完成频 率分布直方图; Ⅱ)若 A 市共有 5个监测点, 其中有 3 个监测点为轻度污染,2个监测点 为良.从中任意选取 2 个监测点,事 件 A “其中至少有一个为良”发生的 概率是多少?19.(本题满分 12 分)如图,多面体 ABCDEF 中,底面 ABCD 是菱形, BCD 60 ,四边形 BDEF 是正方形,且DE 平面 ABCD .( Ⅰ ) 求证 : CF // 平面 AED ;(Ⅱ)若AE 2 ,求多面体 ABCDEF 的体积V .20.(本题满分 12 分)在平面直角坐标系 xOy 中,已知动圆过点 (2,0) ,且被 y 轴所截得的弦长为 4.( Ⅰ ) 求动圆圆心的轨迹 C 1 的方程 ;(Ⅱ) 过点 P (1,2)分别作斜率为 k 1, k 2的两条直线 l 1,l 2 ,交C 1于A, B 两点(点 A,B 异于2 21空气污染指数( 单位: g/m 3)0,5050,100100,150150,200监测点个数1540y100.008 0.007 0.006 0.005频率 组距AB点P), 若k1 k2 0,且直线AB与圆C2:(x 2)2y2相切,求△ PAB的面积.21.(本题满分 12 分)已知实数 a 为常数,函数 f(x) xlnx ax 2.Ⅰ)若曲线 y f(x)在 x 1处的切线过点A (0, 2) ,求实数 a 值; Ⅱ)若函数 y f(x) 有两个极值点 x 1, x 2 ( x 1 x 2).11①求证:2 a 0 ;②求证: f(x 1) 0, f(x 2)2.请从下面所给的 22 , 23 , 24 三题中任选一题做答,并用 2B 铅笔在答题卡上将所选题目 对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所 答第一题评分。
2018届黑龙江省哈尔滨市第三中学高三第一次模拟考试数学试卷(文史类)考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{|24}xA x =≥,集合(){|lg 1}B x y x ==-,则A B ⋂=A. [)1,2B. (]1,2C. [)2,+∞D. [)1,+∞ 2.下列函数中,既是偶函数又在区间()0,1内单调递减的是A.2y x =B.cos y x =C.2xy =D.x y ln =3.在等差数列{}n a 中,若18113=+a a ,公差2=d ,那么5a 等于A. 4B. 5C. 9D. 184.已知()οο15sin ,15cos =, ()οο75sin ,75cos ==A. 2D. 15. 过原点且倾斜角为3π的直线被圆0422=-+y y x 所截得的弦长为B. 2C. 6D. 326.设m l ,是两条不同的直线, βα,是两个不同的平面,给出下列条件,其中能够推出l ∥m 的是A. l ∥α,m ⊥β,α⊥βB. l ⊥α,m ⊥β,α∥βC. l ∥α,m ∥β,α∥βD. l ∥α,m ∥β,α⊥β7. 函数()log 31a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-= 上,其中0,0>>n m ,则mn 的最大值为A.21B.41C.81D.161 8. 设n S 是数列{}n a 的前n 项和,若32-=n n a S ,则=n SA. 12+nB. 121-+nC. 323-⋅nD. 123-⋅n9.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该几何体的体积为A.23B. 2C. 43D. 410.已知1F 、2F 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,点P 为双曲线C 右支上一点,212PF F F =,ο3021=∠F PF ,则双曲线C 的离心率为A. 2B. 12+C. 213+D. 13+10. 11.千年潮未落,风起再扬帆,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦奠定坚实基础,哈三中积极响应国家号召,不断加大拔尖人才的培养力度,据不完全统计:年 份(届) 2014 2015 2016 2017学科竞赛获省级一等奖及以上学生人数x51 49 55 57根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为1.35,我校2018届同学在学科竞赛中获省级一等奖及以上学生人数为63人,据此模型预报我校今年被清华、北大等世界名校录取的学生人数为 A. 111B. 115C.117D.12312.设函数x ax x x f 23ln )(2-+=,若1=x 是函数)(x f 的极大值点,则函数)(x f 的 极小值为A. 22ln -B. 12ln -C. 23ln -D. 13ln -2018年哈尔滨市第三中学第一次高考模拟考试数学试卷(文史类)第Ⅱ卷 (非选择题, 共90分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上) 13.已知正方形ABCD 边长为2, M 是CD 的中点,则BD AM ⋅= .14.若实数,x y 满足⎪⎩⎪⎨⎧-≥≥+≤111x y y x y ,则2x y +的最大值为 .15.直线l 与抛物线x y 42=相交于不同两点B A 、,若)4,(0x M 是AB 中点,则直线l 的斜率=k . 16.钝角ABC ∆中,若43π=A ,1=BC ,则AC AB 322+的最大值为 .三、解答题(共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)已知函数2()sin cos f x x x x =+.(1)当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域;(2)已知ABC ∆的内角,,A B C 的对边分别为,,,a b c ()22A f =,4,5a b c =+=,求ABC ∆的面积.18. (本小题满分12分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均课外体育锻炼时间在[)40,60的学生评价为“课外体育达标”. (1)请根据上述表格中的统计数据填写下面的22⨯列联表;(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考公式22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++A 119. (本小题满分12分)如图,直三棱柱111C B A ABC -中,ο120=∠ACB 且21===AA BC AC ,E 是1CC 中点,F 是AB 中点.(1)求证://CF 平面1AEB ; (2)求点B 到平面1AEB 的距离.20. (本小题满分12分)已知F 是椭圆12622=+y x 的右焦点,过F 的直线l 与椭圆相交于),(11y x A ,),(22y x B 两点. (1)若321=+x x ,求AB 弦长;(2)O 为坐标原点,θ=∠AOB ,满足64tan 3=⋅θOB OA ,求直线l 的方程.21. (本小题满分12分) 已知函数11ln )(--+-=xaax x x f . (1)当1-=a 时,求曲线)(x f y =在点))2(,2(f 处的切线方程; (2)当21≤a 时,讨论)(x f 的单调性.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程(本小题满分10分) 在极坐标系中,曲线1C 的方程为22312sin ρθ=+,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线2C 的方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 21232(t 为参数). (1)求曲线1C 的参数方程和曲线2C 的普通方程; (2)求曲线1C 上的点到曲线2C 的距离的最大值.23.选修4-5:不等式选讲(本小题满分10分) 已知函数()22f x x a x =--+. (1)当1a =时,求不等式()0f x ≥的解集; (2)当2a =时,函数()f x 的最小值为t ,114t m n+=- (0,0)m n >>,求m n +的最小值.A12018哈三中第一次模拟考试文科数学答案二、填空题13. 214. 5 15. 2116. 10 三、解答题17.(1)题意知,由2()sin cossin(2)3f x x x x x π=+=-+∵0,3x π⎡⎤∈⎢⎥⎣⎦,∴2,333x πππ⎡⎤-∈-⎢⎥⎣⎦,∴sin(2)322x π⎡-∈-⎢⎣⎦可得()f x ⎡∈⎣(2)∵()22Af =,∴sin()03A π-=,∵()0,A π∈可得3A π= ∵4,5a b c =+=,∴由余弦定理可得22216()3253b c bc b c bc bc =+-=+-=-∴3bc = ∴1sin 24ABC S bc A ∆== 18. (1)(2) 22200(60203090)2006.060 6.635150509011033K ⨯-⨯===<⨯⨯⨯ 所以在犯错误的概率不超过0.01的前提下不能判断“课外体育达标”与性别有关. 19. (1)取1AB 中点G ,连结FG EG 、,则FG ∥1BB 且121BB FG =. 因为当E 为1CC 中点时,CE ∥1BB 且121BB CE =,所以FG ∥CE 且=FG CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为1AEB CF 平面⊄,1AEB EG 平面⊂, 所以//CF 平面1AEB ;(2)因为ABC ∆中,BC AC =,F 是AB 中点,所以AB CF ⊥.又因为直三棱柱111C B A ABC -中,1BB CF ⊥,B BB AB =1I , 所以1ABB CF 平面⊥,C 到1ABB 平面的距离为1=CF .因为//1CC 平面1ABB ,所以E 到1ABB 平面的距离等于C 到1ABB 平面的距离等于1. 设点B 到平面1AEB 的距离为d .11ABB E AEB B V V --=,1313111⨯⨯=⨯⨯ABB AEB S d S ,易求321=ABB S ,21=AEB S ,解得3=d .点B 到平面1AEB 的距离为3.20.(1) 061212)13()2(63222222=-+-+⇒⎩⎨⎧-==+k x k x k x k y y x 613221=⇒=⇒=+AB k x x(2) 36264tan 3=⇒=⋅∆AOB S θ ()233,2-±==⇒x y x21. (1) 22ln )2(,1)2(+=='f f 所求切线方程为02ln =+-y x(2) 221)(11ln )(xax ax x f x a ax x x f -+--='⇒--+-= 11,10)(21-==⇒='ax x x f 0≤a 时)(x f 在)1,0(递减, ),1(+∞递增21=a 时)(x f 在),0(+∞递减 210<<a 时,)(x f 在)1,0(递减,在)11,1(-a 递增,在),11(+∞-a 递减22. (1)曲线1C 的参数方程为1:sin x C y αα⎧=⎪⎨=⎪⎩(α为参数)曲线2C的普通方程为20x -=(2)设曲线1C上任意一点,sin )P αα,点P到20x --=的距离d ==∵2)224πα≤+-≤∴202d ≤≤所以曲线1C 上的点到曲线2C的距离的最大值为2223.(1)当1a =时,不等式为2120212x x x x --+≥⇔-≥+两边平方得224(1)(2)x x -≥+,解得4x ≥或0x ≤∴()0f x ≥的解集为(][),04,-∞⋃+∞ (2)当2a =时,6,2,()22223,226,2x x f x x x x x x x -≤-⎧⎪=--+=--<<⎨⎪-≥⎩,可得4t =-,∴1144m n+=(0,0)m n >> ∴111()44m n m n m n ⎛⎫+=++ ⎪⎝⎭1515914444416n m m n ⎛⎫⎛⎫=++≥+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当2m n =,即316n =,38m =时取等号.。
哈尔滨师大附中、东北师大附中、辽宁省实验中学2018年高三第一次联合模拟考试理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数21ii +的模为( )A.12B.2D.22.已知集合{A x y ==,{}B x x a =≥,若A B A =I ,则实数a 的取值范围是( ) A.(],3-∞-B.(),3-∞-C.(],0-∞D.[)3,+∞3.从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为( ) A.14B.12C.13D.234.已知1sin 33a π⎛⎫-= ⎪⎝⎭,则5cos 6a π⎛⎫-=⎪⎝⎭( )A.13B.13-D. 5.中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点()2,4-,则它的离心率为( )B.26.()52121x x ⎛⎫+- ⎪⎝⎭展开式中的常数项是( )A.12B.12-C.8D.8-7.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A.32B.92C.1D.38.已知函数()()3sin cos 0f x x x ωωω=+>的图象的相邻两条对称轴之间的距离是2π,则该函数的一个单调增区间为( ) A.,36ππ⎡⎤-⎢⎥⎣⎦B.5,1212ππ⎡⎤-⎢⎥⎣⎦C.2,63ππ⎡⎤⎢⎥⎣⎦D.2,33ππ⎡⎤-⎢⎥⎣⎦9.辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入8521m =,6105n =,则输出m 的值为( )A.148B.37C.333D.010.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的侧面积为43,则该半球的体积为( )A.43πB.23π82π42π11.已知抛物线2:2C y x =,直线1:2l y x b =-+与抛物线C 交于A ,B 两点,若以AB 为直径的圆与x轴相切,则b 的值是( )A.15-B.25-C.45-D.85-12.在ABC △,90C =∠°,24AB BC ==,,M N 是边AB 上的两个动点,且1MN =,则CM CN ⋅u u u u r u u u r的取值范围为( ) A.11,94⎡⎤⎢⎥⎣⎦B.[]5,9C.15,94⎡⎤⎢⎥⎣⎦D.11,54⎡⎤⎢⎥⎣⎦二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在ABC △中,2AB =,AC =23ABC π=∠,则BC =______________. 14.若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x +的最大值为______________.15.甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A 、B 、C ,已知: ①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C 学科; ③在长春工作的教师教A 学科;④乙不教B 学科. 可以判断乙教的学科是______________.16.已知函数()21ln 2f x x x x =+,0x 是函数()f x 的极值点,给出以下几个命题:①010x e <<;②01x e >;③()000f x x +<;④()000f x x +>;其中正确的命题是______________.(填出所有正确命题的序号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知正项数列{}n a 满足:2423n nn S a a =+-,其中n S 为数列{}n a 的前n 项和. (1)求数列{}n a 的通项公式; (2)设211n nb a =-,求数列{}n b 的前n 项和n T . 18.某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间[]20,10--,需求量为100台;最低气温位于区间[)25,20--,需求量为200台;最低气温位于区间[)35,25--,需求量为300台。
东北三省三校2018届高三第一次模拟考试数学(文)试题含答案哈尔滨师大附中、东北师大附中、辽宁省实验中学2018年高三第一次联合模拟考试文科数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合{}*2,A xx x N=≤∈,{}2,B yy x x R==∈,则AB =( ) A.{}0xx ≥B.{}1xx ≥ C.{}1,2D.{}0,1,22.已知复数z 满足()12i z i+=,i 为虚数单位,则z 等于( )A.1i -B.1i +C.1122i- D.1122i+3.在下列向量中,可以把向量()3,1a =-表示出来的是( )A.()10,0e =,()23,2e =B.()11,2e =-,()23,2e =C.()13,5e =,()26,10e =D.()13,5e =-,()23,5e =-4.在区间()0,3上任取一个实数x ,则22x <的概率是( ) A.23B.12C.13D.145.抛物线24y x=的焦点到准线的距离为( ) A.2B.1C.14D.186.已知,a b 都是实数,p :直线0x y +=与圆()()222x a yb -+-=相切;q :2a b+=,则p是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件7.如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》,执行该程序框图若输出的4a=,则输入的,a b 不可能为( )A.4,8B.4,4C.12,16D.15,188.已知函数()s in 3f x x π⎛⎫=+ ⎪⎝⎭,则下列说法不正确的是( ) A.()f x 的一个周期为2πB.()f x 向左平移3π个单位长度后图象关于原点对称 C.()f x 在7,66ππ⎡⎤⎢⎥⎣⎦上单调递减D.()f x 的图象关于56xπ=-对称9.函数()a f x x x=+(其中a R∈)的图象不可能是( )ABCD10.如图所示是一个三棱锥的三视图,则此三棱锥的外接球的体积为( )A.43π2611.设双曲线()222210,0x y a b ab-=>>的两条渐近线与直线2axc=分别交于,A B 两点,F 为该双曲线的右焦点,若6090A F B <<∠°°,则该双曲线离心率e 的取值范围是( )A.(B.3⎛⎫+∞⎪⎪⎝⎭C.)2D.3⎛⎝⎭12.已知函数()()()21221221x x x x f x x --⎧-+-≤⎪=⎨->⎪⎩,()()1c o s g x a x x R =-∈,若对任意的12,x x R∈,都有()()12f xg x ≤,则实数a 的取值范围为( )A.[]0,2B.RC.[]2,0-D.(][),20,-∞-+∞二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若直线l⊥平面β,平面α⊥平面β,则直线l 与平面α的位置关系为_____________.14.若实数,x y 满足不等式组01030x x y x y ≥⎧⎪-+≤⎨⎪+-≤⎩,则32y x +-的取值范围是_____________.15.甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句真话。
甲说:是乙做的。
乙说:不是我做的。
丙说:不是我做的。
则做好事的是_____________.(填甲、乙、丙中的一个) 16.A B C △中,2B C=,A BC=,则A B C △面积的最大值为_____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 的前n 项和为()()31*1227n n S n N+=-∈.(1)求数列{}n a 的通项公式; (2)设2lo g nnb a =,求12231111n n b b b b b b ++++….18.中国政府实施“互联网+”战略以来,手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式,“一机在手,走遍天下”的时代已经到来。
在某著名的夜市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的22⨯列联表,已知其中从使用手机支付的人群中随机抽取1人,抽到青年的概率为710.(1)根据已知条件完成22⨯列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”?(2)现采用分层抽样从这100名顾客中按照“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本,设事件A 为“从这个样本中任选2人,这2人中至少有1人是不使用手机支付的”,求事件A 发生的概率?22⨯列联表附:()()()()()22n a d b c Ka b c d ac bd -=++++19.已知圆锥S O ,2S O=,A B 为底面圆的直径,2AB=,点C 在底面圆周上,且O CA B⊥,E在母线S C 上,且4SEC E=,F 为S B 中点,M 为弦A C 中点.(1)求证:A C ⊥平面S O M ;(2)求四棱锥O E F B C-的体积.20.已知椭圆()2222:10x y Ca b ab+=>>2,()1,0F c -,()2,0F c 为椭圆C 的左、右焦点,M 为椭圆C 上的任意一点,12M F F △的面积的最大值为1,A 、B 为椭圆C 上任意两个关于x 轴对称的点,直线2ax c=与x 轴的交点为P ,直线P B 交椭圆C 于另一点E .(1)求椭圆C 的标准方程; (2)求证:直线A E 过定点.21.已知函数()34f x x a x=-+,x R ∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 在[]1,1-上的最大值为1,求实数a 的取值集合. 22.已知在极坐标系中曲线1C 的极坐标方程为:4co s ρθ=,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,曲线2C的参数方程为:1322x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),点()3,0A .(1)求出曲线1C 的直角坐标方程和曲线2C 的普通方程; (2)设曲线1C 与曲线2C 相交于,P Q 两点,求A P A Q⋅的值.23.已知函数()2521f x x x =-++.(1)求不等式()1f x x >-的解集;(2)若()1f x a >-对于x R ∈恒成立,求实数a 的范围.2018年三省三校一模考试文科数学答案一、选择题(本大题共12小题,每小题5分,共60分)1.C2.A3.B4.C5.D6.B7.D8.B9.C 10.C 11.C 12.A 二、填空题(本大题共4小题,每小题5分,共20分)13. //l α或l α⊂ 14. []5,2-- 15.丙 16.三、解答题(本大题共70分) 17.(本小题满分12分)解:(Ⅰ)当时,当时,312=2⨯-,符合上式 所以. (Ⅱ)由(Ⅰ)得, 所以.18.(本小题满分12分) 解:(Ⅰ)从使用手机支付的人群中随机抽取1人,抽到青年的概率为710∴使用手机支付的人群中的青年的人数为7604210⨯=人,则使用手机支付的人群中的中老年的人数为604218-=人,所以22⨯列联表为:2≥n 3+13232111(22)(22)277n n n n n n a S S ---=-=---=1=n 112a S ==32*2()n n a n -=∈N 322lo g 2=32n n b n -=-=+-++⨯+⨯=++++)13)(23(174141111113221n n b b b b b b n n 13)1311(31)]131231()7141()411[(31+=+-=+--++-+-n n n n n2K的观测值2100(42241816)1800=8.867 58426040203k⨯-⨯=≈⨯⨯⨯28.8677.879(7.879)0.005P K>≥=,,故有99.5%的把握认为“市场购物用手机支付与年龄有关”.(Ⅱ) 这100名顾客中采用分层抽样从“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本中:使用手机支付的人有6053100⨯=人,记编号为1,2,3不使用手机支付的人有2人,记编号为a,b,则从这个样本中任选2人有(1,2)(1,3)(1,a)(1,b)(2,3)(2,a)(2,b)(3,a)(3,b)(a,b)共10种其中至少有1人是不使用手机支付的(1,a)(1,b) (2,a)(2,b)(3,a)(3,b)(a,b)共7种,故7()10P A=.19.(本小题满分12分)(Ⅰ)证明:∵S O⊥平面A B C,∴S O A C⊥,又∵点M是圆O内弦A C的中点,A C M O∴⊥,又S O M O O=A C∴⊥平面S O M(Ⅱ)∵S O⊥平面A B C,S O为三棱锥S O C B-的高,111112323S O C B O S C B V V --∴==⨯⨯⨯⨯=而O E F B C V -与O S C B V -等高,1s in 2215s in 2E SF S C BS E S F E S FS S S C S B C S B∆∆⨯⨯∠==⨯⨯∠,∴35S C B E F B C S S ∆=四边形 因此,33115535O E F B C O S C B V V --==⨯=20.(本小题满分12分)解:(Ⅰ)2c e a==,当M 为椭圆C 的短轴端点时,12M F F ∆的面积的最大值为112112c b b c ∴⨯⨯=∴=,而222a b c =+1a b ∴==故椭圆C 标准方程为:2212xy+=(Ⅱ)设112211(,),,),(,)B x y Ex y A x y -(,且12x x ≠, 2=2ax c=,(2,0)P ∴由题意知B P 的斜率必存在,设BP :(2)y k x =-,代入2212xy+=得2222(21)8820kx k x k+-+-=0∆>得212k<22121222882,2121k k x x x x kk-+=⋅=++12x x ≠∴AE 斜率必存在,AE :121121()y y y y x x x x ++=--由对称性易知直线AE 过的定点必在x 轴上,则当0y =时,得121122112211121212()(2)(2)()4y x x y x y x k x x k x x x x y y y y k x x k-+-+-=+==+++-2222121221228282222()2121=184421k k x x x x kkkx x k -⋅-⋅-+++==+--+即在212k <的条件下,直线AE 过定点(1,0).21. (本小题满分12分)解:(Ⅰ)2()12f x x a '=-+.当0a =时,3()4f x x =-在R 上单调递减;当0a <时,2()120f x x a '=-+<,即3()4f x x a x =-+在R 上单调递减;当0a >时,2()12f x x a '=-+.(,6x ∈-∞-时,()0f x '<,()f x在(,6-∞-上递减;(66x ∈-时,()0f x '>,()f x在(,66-上递增;)6x ∈+∞时,()0f x '<,()f x在)6+∞上递减;综上,当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(,)6-∞-上递减;在(66-上递增;)6+∞上递减.(Ⅱ)∵函数()f x 在[1,1]-上的最大值为1. 即对任意[1,1]x ∈-,()1f x ≤恒成立。